Does inclusion of education and marital status improve SCORE performance in central and eastern europe and former soviet union? findings from MONICA and HAPIEE cohorts
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
R01 AG023522
NIA NIH HHS - United States
1R01 AG23522
NIA NIH HHS - United States
PubMed
24714549
PubMed Central
PMC3979770
DOI
10.1371/journal.pone.0094344
PII: PONE-D-13-52154
Knihovny.cz E-zdroje
- MeSH
- ateroskleróza epidemiologie mortalita MeSH
- dospělí MeSH
- kardiovaskulární nemoci epidemiologie mortalita MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- manželský stav MeSH
- prognóza MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- socioekonomické faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Rusko MeSH
- východní Evropa MeSH
BACKGROUND AND OBJECTIVE: The SCORE scale predicts the 10-year risk of fatal atherosclerotic cardiovascular disease (CVD), based on conventional risk factors. The high-risk version of SCORE is recommended for Central and Eastern Europe and former Soviet Union (CEE/FSU), due to high CVD mortality rates in these countries. Given the pronounced social gradient in cardiovascular mortality in the region, it is important to consider social factors in the CVD risk prediction. We investigated whether adding education and marital status to SCORE benefits its prognostic performance in two sets of population-based CEE/FSU cohorts. METHODS: The WHO MONICA (MONItoring of trends and determinants in CArdiovascular disease) cohorts from the Czech Republic, Poland (Warsaw and Tarnobrzeg), Lithuania (Kaunas), and Russia (Novosibirsk) were followed from the mid-1980s (577 atherosclerotic CVD deaths among 14,969 participants with non-missing data). The HAPIEE (Health, Alcohol, and Psychosocial factors In Eastern Europe) study follows Czech, Polish (Krakow), and Russian (Novosibirsk) cohorts from 2002-05 (395 atherosclerotic CVD deaths in 19,900 individuals with non-missing data). RESULTS: In MONICA and HAPIEE, the high-risk SCORE ≥5% at baseline strongly and significantly predicted fatal CVD both before and after adjustment for education and marital status. After controlling for SCORE, lower education and non-married status were significantly associated with CVD mortality in some samples. SCORE extension by these additional risk factors only slightly improved indices of calibration and discrimination (integrated discrimination improvement <5% in men and ≤1% in women). CONCLUSION: Extending SCORE by education and marital status failed to substantially improve its prognostic performance in population-based CEE/FSU cohorts.
Environmental Health Monitoring System National Institute of Public Health Prague Czech Republic
Epidemiology and Public Health Department University College London London United Kingdom
Zobrazit více v PubMed
Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, et al. (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24: 987–1003. PubMed
Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, et al. (2012) European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 33: 1635–1701. PubMed
Cooney MT, Dudina A, De Bacquer D, Fitzgerald A, Conroy R, et al. (2009) How much does HDL cholesterol add to risk estimation? A report from the SCORE Investigators. Eur J Cardiovasc Prev Rehabil 16: 304–314. PubMed
Cooney MT, Vartiainen E, Laatikainen T, Joulevi A, Dudina A, et al. (2010) Simplifying cardiovascular risk estimation using resting heart rate. Eur Heart J 31: 2141–2147. PubMed
Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, et al. (2010) Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J 31: 883–891. PubMed
Schottker B, Muller H, Rothenbacher D, Brenner H (2013) Fasting plasma glucose and HbA(1c) in cardiovascular risk prediction: a sex-specific comparison in individuals without diabetes mellitus. Diabetologia 56: 92–100. PubMed
World Health Organisation (2013) European Health for All database, World Health Organization Regional Office for Europe, Copenhagen, Denmark. Accessed 7 February 2014. http://data.euro.who.int/hfamdb/.
Shkolnikov VM, Leon DA, Adamets S, Andreev E, Deev A (1998) Educational level and adult mortality in Russia: an analysis of routine data 1979 to 1994. Soc Sci Med 47: 357–369. PubMed
Murphy M, Bobak M, Nicholson A, Rose R, Marmot M (2006) The widening gap in mortality by educational level in the Russian Federation, 1980–2001. Am J Public Health 96: 1293–1299. PubMed PMC
Leinsalu M, Stirbu I, Vagero D, Kalediene R, Kovacs K, et al. (2009) Educational inequalities in mortality in four Eastern European countries: divergence in trends during the post-communist transition from 1990 to 2000. Int J Epidemiol 38: 512–525. PubMed
Dennis BH, Zhukovsky GS, Shestov DB, Davis CE, Deev AD, et al. (1993) The association of education with coronary heart disease mortality in the USSR Lipid Research Clinics Study. Int J Epidemiol 22: 420–427. PubMed
Malyutina S, Bobak M, Simonova G, Gafarov V, Nikitin Y, et al. (2004) Education, marital status, and total and cardiovascular mortality in Novosibirsk, Russia: a prospective cohort study. Ann Epidemiol 14: 244–249. PubMed
Sidorenkov O, Nilssen O, Grjibovski AM (2012) Determinants of cardiovascular and all-cause mortality in northwest Russia: a 10-year follow-up study. Ann Epidemiol 22: 57–65. PubMed
Winkleby MA, Jatulis DE, Frank E, Fortmann SP (1992) Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health 82: 816–820. PubMed PMC
Galobardes B, Lynch J, Smith GD (2007) Measuring socioeconomic position in health research. Br Med Bull 81–82: 21–37. PubMed
Hajdu P, McKee M, Bojan F (1995) Changes in premature mortality differentials by marital status in Hungary and in England and Wales. Eur J Public Health 5: 259–264.
Robles TF, Kiecolt-Glaser JK (2003) The physiology of marriage: pathways to health. Physiol Behav 79: 409–416. PubMed
Molloy GJ, Stamatakis E, Randall G, Hamer M (2009) Marital status, gender and cardiovascular mortality: behavioural, psychological distress and metabolic explanations. Soc Sci Med 69: 223–228. PubMed PMC
Whisman MA, Uebelacker LA, Settles TD (2010) Marital distress and the metabolic syndrome: linking social functioning with physical health. J Fam Psychol 24: 367–370. PubMed
Tunstall-Pedoe H (2003) World Health Organisation MONICA Project. MONICA Monograph and Multimedia Sourcebook: World’s largest study of heart disease, stroke, risk factors and population trends 1979–2002. Geneva: World Health Organisation.
Kuulasmaa K, Tunstall-Pedoe H, Dobson A, Fortmann S, Sans S, et al. (2000) Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. Lancet 355: 675–687. PubMed
Peasey A, Bobak M, Kubinova R, Malyutina S, Pajak A, et al. (2006) Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health 6: 255. PubMed PMC
Vikhireva O, Pajak A, Broda G, Malyutina S, Tamosiunas A, et al. (2013) SCORE performance in Central and Eastern Europe and former Soviet Union: MONICA and HAPIEE results. Eur Heart J 35: 571–577. PubMed PMC
Cifkova R, Byma S, Ceska R, Horky K, Karen I, et al. (2005) Prevence kardiovaskularnich onemocneni v dospelem veku. Spolecne doporuceni ceskych odbornych spolecnosti. Supplementum Cor Vasa 47: 3–14.
Podolec P, Kopec G, Pajak A, Undas A, Kozek E, et al. (2007) Polish forum for prevention guidelines on cardiovascular risk assessment. Kardiol Pol 65: 100–104. PubMed
Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, et al. (2009) Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119: 2408–2416. PubMed PMC
Royston P, Moons KG, Altman DG, Vergouwe Y (2009) Prognosis and prognostic research: Developing a prognostic model. BMJ 338: b604. PubMed
Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S (1997) A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 16: 965–980. PubMed
Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361–387. PubMed
Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27: 157–172. PubMed
Pencina MJ, D’Agostino RB, Vasan RS (2010) Statistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med 48: 1703–1711. PubMed PMC
Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94: 496–509.
Kenward MG, Carpenter J (2007) Multiple imputation: current perspectives. Stat Methods Med Research 16: 199–218. PubMed
World Health Organisation (2011) Global InfoBase, World Health Organization, Geneva, Switzerland. Accessed 7 February 2014. https://apps.who.int/infobase/Index.aspx.
United Nations (2008) Demographic Yearbook 2006. New York: United Nations Statistics Division.
Andreev EM, Nolte E, Shkolnikov VM, Varavikova E, McKee M (2003) The evolving pattern of avoidable mortality in Russia. Int J Epidemiol 32: 437–446. PubMed
Zaridze D, Maximovitch D, Lazarev A, Igitov V, Boroda A, et al. (2009) Alcohol poisoning is a main determinant of recent mortality trends in Russia: evidence from a detailed analysis of mortality statistics and autopsies. Int J Epidemiol 38: 143–153. PubMed
Cifkova R, Skodova Z, Bruthans J, Holub J, Adamkova V, et al. (2010) Longitudinal trends in cardiovascular mortality and blood pressure levels, prevalence, awareness, treatment, and control of hypertension in the Czech population from 1985 to 2007/2008. J Hypertens 28: 2196–2203. PubMed
Grigoriev P, Shkolnikov V, Andreev E, Jasilionis D, Jdanov D, et al. (2011) Mortality in Belarus, Lithuania, and Russia: divergence in recent trends and possible explanations. Eur J Population 26: 245–274.
Bandosz P, O’Flaherty M, Drygas W, Rutkowski M, Koziarek J, et al. (2012) Decline in mortality from coronary heart disease in Poland after socioeconomic transformation: modelling study. BMJ 344: d8136. PubMed PMC
Bruthans J, Cifkova R, Lanska V, O’Flaherty M, Critchley JA, et al. (2012) Explaining the decline in coronary heart disease mortality in the Czech Republic between 1985 and 2007. Eur J Prev Cardiol [Epub ahead of print]. PubMed
Donders AR, van der Heijden GJ, Stijnen T, Moons KG (2006) Review: a gentle introduction to imputation of missing values. J Clin Epidemiol 59: 1087–1091. PubMed
Rubin DB (1996) Multiple imputation after 18+ years. J Am Stat Assoc 91: 473–489.
Kaplan GA, Keil JE (1993) Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation 88: 1973–1998. PubMed
Harper S, Lynch J, Smith GD (2011) Social determinants and the decline of cardiovascular diseases: understanding the links. Annu Rev Public Health 32: 39–69. PubMed
Clarke R, Shipley M, Lewington S, Youngman L, Collins R, et al. (1999) Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol 150: 341–353. PubMed
Farzadfar F, Finucane MM, Danaei G, Pelizzari PM, Cowan MJ, et al. (2011) National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. Lancet 377: 578–586. PubMed
Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, et al. (2011) National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 377: 568–577. PubMed
World Health Organisation (2011) Global status report on alcohol and health. Geneva: World Health Organisation.
Ulmer H, Kollerits B, Kelleher C, Diem G, Concin H (2005) Predictive accuracy of the SCORE risk function for cardiovascular disease in clinical practice: a prospective evaluation of 44 649 Austrian men and women. Eur J Cardiovasc Prev Rehabil 12: 433–441. PubMed
Vlismas K, Panagiotakos DB, Pitsavos C, Chrysohoou C, Skoumas Y, et al. (2011) The role of dietary and socioeconomic status assessment on the predictive ability of the HellenicSCORE. Hellenic J Cardiol 52: 391–398. PubMed
Feldman JJ, Makuc DM, Kleinman JC, Cornoni-Huntley J (1989) National trends in educational differentials in mortality. Am J Epidemiol 129: 919–933. PubMed
Fiscella K, Franks P (2004) Should years of schooling be used to guide treatment of coronary risk factors? Ann Fam Med 2: 469–473. PubMed PMC
Laaksonen M, Talala K, Martelin T, Rahkonen O, Roos E, et al. (2008) Health behaviours as explanations for educational level differences in cardiovascular and all-cause mortality: a follow-up of 60 000 men and women over 23 years. Eur J Public Health 18: 38–43. PubMed
Mendes de Leon CF, Appels AW, Otten FW, Schouten EG (1992) Risk of mortality and coronary heart disease by marital status in middle-aged men in the Netherlands. Int J Epidemiol 21: 460–466. PubMed
Ben-Shlomo Y, Smith GD, Shipley M, Marmot MG (1993) Magnitude and causes of mortality differences between married and unmarried men. J Epidemiol Community Health 47: 200–205. PubMed PMC
Ebrahim S, Wannamethee G, McCallum A, Walker M, Shaper AG (1995) Marital status, change in marital status, and mortality in middle-aged British men. Am J Epidemiol 142: 834–842. PubMed
Mackenbach JP, Stirbu I, Roskam AJ, Schaap MM, Menvielle G, et al. (2008) Socioeconomic inequalities in health in 22 European countries. N Engl J Med 358: 2468–2481. PubMed
Ramsay SE, Morris RW, Whincup PH, Papacosta AO, Thomas MC, et al. (2011) Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by socioeconomic position: results from a study in British men. Eur J Cardiovasc Prev Rehabil 18: 186–193. PubMed
Macleod J, Metcalfe C, Smith GD, Hart C (2007) Does consideration of either psychological or material disadvantage improve coronary risk prediction? Prospective observational study of Scottish men. J Epidemiol Community Health 61: 833–837. PubMed PMC
Fiscella K, Tancredi D, Franks P (2009) Adding socioeconomic status to Framingham scoring to reduce disparities in coronary risk assessment. Am Heart J 157: 988–994. PubMed
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, et al. (2007) Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ 335: 136. PubMed PMC
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, et al. (2008) Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 336: 1475–1482. PubMed PMC
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Brindle P (2008) Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: a validation study. Heart 94: 34–39. PubMed
Collins GS, Altman DG (2009) An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study. BMJ 339: b2584. PubMed PMC
Woodward M, Brindle P, Tunstall-Pedoe H (2007) Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 93: 172–176. PubMed PMC
De la Iglesia B, Potter JF, Poulter NR, Robins MM, Skinner J (2011) Performance of the ASSIGN cardiovascular disease risk score on a UK cohort of patients from general practice. Heart 97: 491–499. PubMed
Rose G (2001) Sick individuals and sick populations. Int J Epidemiol 30: 427–432. PubMed
Mendis S, Lindholm LH, Anderson SG, Alwan A, Koju R, et al. (2011) Total cardiovascular risk approach to improve efficiency of cardiovascular prevention in resource constrain settings. J Clin Epidemiol 64: 1451–1462. PubMed
Lloyd-Jones DM, Liu K, Tian L, Greenland P (2006) Narrative review: Assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann Intern Med 145: 35–42. PubMed
Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, et al. (2009) Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA 302: 49–57. PubMed PMC
Lloyd-Jones DM (2010) Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation 121: 1768–1777. PubMed