Development and validation of two SCORE-based cardiovascular risk prediction models for Eastern Europe: a multicohort study
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
MR/R024227/1
Medical Research Council - United Kingdom
R01 AG023522
NIA NIH HHS - United States
Wellcome Trust - United Kingdom
R01 AG056477
NIA NIH HHS - United States
106554/Z/14/Z
Wellcome Trust - United Kingdom
064947/Z/01/Z
Wellcome Trust - United Kingdom
PubMed
33011775
PubMed Central
PMC7544536
DOI
10.1093/eurheartj/ehaa571
PII: 5917758
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiovascular diseases, Eastern Europe, Psychosocial deprivation, Risk prediction, Sensitivity and specificity, Socioeconomic factors,
- MeSH
- hodnocení rizik MeSH
- kardiovaskulární nemoci * epidemiologie MeSH
- kohortové studie MeSH
- lidé MeSH
- prospektivní studie MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Česká republika MeSH
- Polsko MeSH
- Rusko MeSH
AIMS: Cardiovascular disease (CVD) risk prediction models are used in Western European countries, but less so in Eastern European countries where rates of CVD can be two to four times higher. We recalibrated the SCORE prediction model for three Eastern European countries and evaluated the impact of adding seven behavioural and psychosocial risk factors to the model. METHODS AND RESULTS: We developed and validated models using data from the prospective HAPIEE cohort study with 14 598 participants from Russia, Poland, and the Czech Republic (derivation cohort, median follow-up 7.2 years, 338 fatal CVD cases) and Estonian Biobank data with 4632 participants (validation cohort, median follow-up 8.3 years, 91 fatal CVD cases). The first model (recalibrated SCORE) used the same risk factors as in the SCORE model. The second model (HAPIEE SCORE) added education, employment, marital status, depression, body mass index, physical inactivity, and antihypertensive use. Discrimination of the original SCORE model (C-statistic 0.78 in the derivation and 0.83 in the validation cohorts) was improved in recalibrated SCORE (0.82 and 0.85) and HAPIEE SCORE (0.84 and 0.87) models. After dichotomizing risk at the clinically meaningful threshold of 5%, and when comparing the final HAPIEE SCORE model against the original SCORE model, the net reclassification improvement was 0.07 [95% confidence interval (CI) 0.02-0.11] in the derivation cohort and 0.14 (95% CI 0.04-0.25) in the validation cohort. CONCLUSION: Our recalibrated SCORE may be more appropriate than the conventional SCORE for some Eastern European populations. The addition of seven quick, non-invasive, and cheap predictors further improved prediction accuracy.
Estonian Genome Center Institute of Genomics University of Tartu Riia 23b 51010 Tartu Estonia
Institute of Cell and Molecular Biology University of Tartu Riia 23b 51010 Tartu Estonia
Institute of Mathematics and Statistics University of Tartu Narva mnt 18 51009 Tartu Estonia
Novosibirsk State Medical University Krasny Prospect 52 630091 Novosibirsk Russia
Zobrazit více v PubMed
Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney M-T, Corrà U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FDR, Løchen M-L, Löllgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WMM. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2016;37:2315–2381. PubMed PMC
Conroy RM, Pyörälä K, Fitzgerald AE, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njølstad I. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24:987–1003. PubMed
Vikhireva O, Pajak A, Broda G, Malyutina S, Tamosiunas A, Kubinova R, Simonova G, Skodova Z, Bobak M, Pikhart H. SCORE performance in Central and Eastern Europe and former Soviet Union: MONICA and HAPIEE results. Eur Heart J 2014;35:571–577. PubMed PMC
Fiscella K, Tancredi D, Franks P. Adding psychosocial status to Framingham scoring to reduce disparities in coronary risk assessment. Am Heart J 2009;157:988–994. PubMed
Vikhireva O, Broda G, Kubinova R, Malyutina S, Pająk A, Tamosiunas A, Skodova Z, Simonova G, Bobak M, Pikhart H. Does inclusion of education and marital status improve SCORE performance in Central and Eastern Europe and former Soviet Union? Findings from MONICA and HAPIEE cohorts. PLoS One 2014;9:e94344. PubMed PMC
Ramsay SE, Morris RW, Whincup PH, Papacosta AO, Thomas MC, Wannamethee SG. Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by psychosocial position: results from a study in British men. Eur J Cardiovasc Prev Rehabil 2011;18:186–193. PubMed
Ingle L, Carroll S, Stamatakis E, Hamer M. Benefit of adding lifestyle-related risk factors for prediction of cardiovascular death among cardiac patients. Int J Cardiol 2013;163:196–200. PubMed
Pujades-Rodriguez M, Timmis A, Stogiannis D, Rapsomaniki E, Denaxas S, Shah A, Feder G, Kivimaki M, Hemingway H. Psychosocial deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS One 2014;9:e104671. PubMed PMC
Ferrario MM, Veronesi G, Chambless LE, Tunstall-Pedoe H, Kuulasmaa K, Salomaa V, Borglykke A, Hart N, Söderberg S, Cesana G, Jørgensen T; for the MORGAM Project. The contribution of educational class in improving accuracy of cardiovascular risk prediction across European regions: the MORGAM Project Cohort Component. Heart 2014;100:1179–1187. PubMed
Schnohr P, Marott JL, Kristensen TS, Gyntelberg F, Gronbaek M, Lange P, Jensen MT, Jensen GB, Prescott E. Ranking of psychosocial and traditional risk factors by importance for coronary heart disease: the Copenhagen City Heart Study. Eur Heart J 2015;36:1385–1393. PubMed
Veronesi G, Gianfagna F, Giampaoli S, Chambless LE, Mancia G, Cesana G, Ferrario MM. Improving long-term prediction of first cardiovascular event: the contribution of family history of coronary heart disease and social status. Prev Med 2014;64:75–80. PubMed
Graversen P, Abildstrøm SZ, Jespersen L, Borglykke A, Prescott E. Cardiovascular risk prediction: can Systematic Coronary Risk Evaluation (SCORE) be improved by adding simple risk markers? Results from the Copenhagen City Heart Study. Eur J Prev Cardiol 2016;23:1546–1556. PubMed
Colantonio LD, Richman JS, Carson AP, Lloyd‐Jones DM, Howard G, Deng L, Howard VJ, Safford MM, Muntner P, Goff DC. Performance of the atherosclerotic cardiovascular disease pooled cohort risk equations by social deprivation status. J Am Heart Assoc 2017;6:e005676. PubMed PMC
Veronesi G, Borchini R, Landsbergis P, Iacoviello L, Gianfagna F, Tayoun P, Grassi G, Cesana G, Ferrario MM; The Cohorts Collaborative Study in Northern Italy (CCSNI) Research Group. Cardiovascular disease prevention at the workplace: assessing the prognostic value of lifestyle risk factors and job-related conditions. Int J Pub Health 2018;63:723–732. PubMed PMC
Peasey A, Bobak M, Kubinova R, Malyutina S, Pajak A, Tamosiunas A, Pikhart H, Nicholson A, Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Pub Health 2006;6:255. PubMed PMC
Leitsalu L, Haller T, Esko T, Tammesoo M-L, Alavere H, Snieder H, Perola M, Ng PC, Mägi R, Milani L, Fischer K, Metspalu A. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol 2015;44:1137–1147. PubMed
Fischer K, Kettunen J, Würtz P, Haller T, Havulinna AS, Kangas AJ, Soininen P, Esko T, Tammesoo M-L, Mägi R, Smit S, Palotie A, Ripatti S, Salomaa V, Ala-Korpela M, Perola M, Metspalu A. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med 2014;11:e1001606. PubMed PMC
Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361–387. PubMed
Munafo MR, Davey-Smoth G. Robust research needs many lines of evidence. Nature 2018;553:399–401. PubMed
KivimäKi M, Batty GD, Hamer M, Ferrie JE, Vahtera J, Virtanen M, Marmot MG, Singh-Manoux A, Shipley MJ. Using additional information on working hours to predict coronary heart disease: a cohort study. Ann Intern Med 2011;154:457–463. PubMed PMC
Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, Brindle P. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008;336:1475–1482. PubMed PMC
Collins GS, Altman DG. Predicting the 10 year risk of cardiovascular disease in the United Kingdom: independent and external validation of an updated version of QRISK2. BMJ 2012;344:e4181. PubMed PMC
Muntner P, Colantonio LD, Cushman M, Goff DC, Howard G, Howard VJ, Kissela B, Levitan EB, Lloyd-Jones DM, Safford MM. Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA 2014;311:1406–1415. PubMed PMC
Emdin CA, Khera AV, Natarajan P, Klarin D, Baber U, Mehran R, Rader DJ, Fuster V, Kathiresan S. Evaluation of the pooled cohort equations for prediction of cardiovascular risk in a contemporary prospective cohort. Am J Cardiol 2017;119:881–885. PubMed
Ruwanpathirana T, Owen A, Reid CM. Review on cardiovascular risk prediction. Cardiovasc Ther 2015;33:62–70. PubMed
Sattar N, Welsh P, Sarwar N, Danesh J, Di Angelantonio E, Gudnason V, Davey Smith G, Ebrahim S, Lawlor DA. NT-proBNP is associated with coronary heart disease risk in healthy older women but fails to enhance prediction beyond established risk factors: results from the British Women's Heart and Health Study. Atherosclerosis 2010;209:295–299. PubMed
Abraham G, Havulinna AS, Bhalala OG, Byars SG, De Livera AM, Yetukuri L, Tikkanen E, Perola M, Schunkert H, Sijbrands EJ, Palotie A, Samani NJ, Salomaa V, Ripatti S, Inouye M. Genomic prediction of coronary heart disease. Eur Heart J 2016;37:3267–3278. PubMed PMC
Woodward M, Brindle P, Tunstall-Pedoe H; for the SIGN Group on Risk Estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2005;93:172–176. PubMed PMC
Carter AR, Gill D, Davies NM, Taylor AE, Tillmann T, Vaucher J, Wootton RE, Munafò MR, Hemani G, Malik R, Seshadri S, Woo D, Burgess S, Davey Smith G, Holmes MV, Tzoulaki I, Howe LD, Dehghan A. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ 2019;365:l1855. PubMed PMC
Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol 2018;15:215–229. PubMed