Development and validation of two SCORE-based cardiovascular risk prediction models for Eastern Europe: a multicohort study

. 2020 Sep 14 ; 41 (35) : 3325-3333.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33011775

Grantová podpora
MR/R024227/1 Medical Research Council - United Kingdom
R01 AG023522 NIA NIH HHS - United States
Wellcome Trust - United Kingdom
R01 AG056477 NIA NIH HHS - United States
106554/Z/14/Z Wellcome Trust - United Kingdom
064947/Z/01/Z Wellcome Trust - United Kingdom

AIMS: Cardiovascular disease (CVD) risk prediction models are used in Western European countries, but less so in Eastern European countries where rates of CVD can be two to four times higher. We recalibrated the SCORE prediction model for three Eastern European countries and evaluated the impact of adding seven behavioural and psychosocial risk factors to the model. METHODS AND RESULTS: We developed and validated models using data from the prospective HAPIEE cohort study with 14 598 participants from Russia, Poland, and the Czech Republic (derivation cohort, median follow-up 7.2 years, 338 fatal CVD cases) and Estonian Biobank data with 4632 participants (validation cohort, median follow-up 8.3 years, 91 fatal CVD cases). The first model (recalibrated SCORE) used the same risk factors as in the SCORE model. The second model (HAPIEE SCORE) added education, employment, marital status, depression, body mass index, physical inactivity, and antihypertensive use. Discrimination of the original SCORE model (C-statistic 0.78 in the derivation and 0.83 in the validation cohorts) was improved in recalibrated SCORE (0.82 and 0.85) and HAPIEE SCORE (0.84 and 0.87) models. After dichotomizing risk at the clinically meaningful threshold of 5%, and when comparing the final HAPIEE SCORE model against the original SCORE model, the net reclassification improvement was 0.07 [95% confidence interval (CI) 0.02-0.11] in the derivation cohort and 0.14 (95% CI 0.04-0.25) in the validation cohort. CONCLUSION: Our recalibrated SCORE may be more appropriate than the conventional SCORE for some Eastern European populations. The addition of seven quick, non-invasive, and cheap predictors further improved prediction accuracy.

Komentář v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Piepoli  MF, Hoes  AW, Agewall  S, Albus  C, Brotons  C, Catapano  AL, Cooney  M-T, Corrà  U, Cosyns  B, Deaton  C, Graham  I, Hall  MS, Hobbs  FDR, Løchen  M-L, Löllgen  H, Marques-Vidal  P, Perk  J, Prescott  E, Redon  J, Richter  DJ, Sattar  N, Smulders  Y, Tiberi  M, van der Worp  HB, van Dis  I, Verschuren  WMM.  2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J  2016;37:2315–2381. PubMed PMC

Conroy  RM, Pyörälä  K, Fitzgerald  AE, Sans  S, Menotti  A, De Backer  G, De Bacquer  D, Ducimetiere  P, Jousilahti  P, Keil  U, Njølstad  I.  Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J  2003;24:987–1003. PubMed

Vikhireva  O, Pajak  A, Broda  G, Malyutina  S, Tamosiunas  A, Kubinova  R, Simonova  G, Skodova  Z, Bobak  M, Pikhart  H.  SCORE performance in Central and Eastern Europe and former Soviet Union: MONICA and HAPIEE results. Eur Heart J  2014;35:571–577. PubMed PMC

Fiscella  K, Tancredi  D, Franks  P.  Adding psychosocial status to Framingham scoring to reduce disparities in coronary risk assessment. Am Heart J  2009;157:988–994. PubMed

Vikhireva  O, Broda  G, Kubinova  R, Malyutina  S, Pająk  A, Tamosiunas  A, Skodova  Z, Simonova  G, Bobak  M, Pikhart  H.  Does inclusion of education and marital status improve SCORE performance in Central and Eastern Europe and former Soviet Union? Findings from MONICA and HAPIEE cohorts. PLoS One  2014;9:e94344. PubMed PMC

Ramsay  SE, Morris  RW, Whincup  PH, Papacosta  AO, Thomas  MC, Wannamethee  SG.  Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by psychosocial position: results from a study in British men. Eur J Cardiovasc Prev Rehabil  2011;18:186–193. PubMed

Ingle  L, Carroll  S, Stamatakis  E, Hamer  M.  Benefit of adding lifestyle-related risk factors for prediction of cardiovascular death among cardiac patients. Int J Cardiol  2013;163:196–200. PubMed

Pujades-Rodriguez  M, Timmis  A, Stogiannis  D, Rapsomaniki  E, Denaxas  S, Shah  A, Feder  G, Kivimaki  M, Hemingway  H.  Psychosocial deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS One  2014;9:e104671. PubMed PMC

Ferrario  MM, Veronesi  G, Chambless  LE, Tunstall-Pedoe  H, Kuulasmaa  K, Salomaa  V, Borglykke  A, Hart  N, Söderberg  S, Cesana  G, Jørgensen  T; for the MORGAM Project. The contribution of educational class in improving accuracy of cardiovascular risk prediction across European regions: the MORGAM Project Cohort Component. Heart  2014;100:1179–1187. PubMed

Schnohr  P, Marott  JL, Kristensen  TS, Gyntelberg  F, Gronbaek  M, Lange  P, Jensen  MT, Jensen  GB, Prescott  E.  Ranking of psychosocial and traditional risk factors by importance for coronary heart disease: the Copenhagen City Heart Study. Eur Heart J  2015;36:1385–1393. PubMed

Veronesi  G, Gianfagna  F, Giampaoli  S, Chambless  LE, Mancia  G, Cesana  G, Ferrario  MM.  Improving long-term prediction of first cardiovascular event: the contribution of family history of coronary heart disease and social status. Prev Med  2014;64:75–80. PubMed

Graversen  P, Abildstrøm  SZ, Jespersen  L, Borglykke  A, Prescott  E.  Cardiovascular risk prediction: can Systematic Coronary Risk Evaluation (SCORE) be improved by adding simple risk markers? Results from the Copenhagen City Heart Study. Eur J Prev Cardiol  2016;23:1546–1556. PubMed

Colantonio  LD, Richman  JS, Carson  AP, Lloyd‐Jones  DM, Howard  G, Deng  L, Howard  VJ, Safford  MM, Muntner  P, Goff  DC.  Performance of the atherosclerotic cardiovascular disease pooled cohort risk equations by social deprivation status. J Am Heart Assoc  2017;6:e005676. PubMed PMC

Veronesi  G, Borchini  R, Landsbergis  P, Iacoviello  L, Gianfagna  F, Tayoun  P, Grassi  G, Cesana  G, Ferrario  MM; The Cohorts Collaborative Study in Northern Italy (CCSNI) Research Group. Cardiovascular disease prevention at the workplace: assessing the prognostic value of lifestyle risk factors and job-related conditions. Int J Pub Health  2018;63:723–732. PubMed PMC

Peasey  A, Bobak  M, Kubinova  R, Malyutina  S, Pajak  A, Tamosiunas  A, Pikhart  H, Nicholson  A, Marmot  M.  Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Pub Health  2006;6:255. PubMed PMC

Leitsalu  L, Haller  T, Esko  T, Tammesoo  M-L, Alavere  H, Snieder  H, Perola  M, Ng  PC, Mägi  R, Milani  L, Fischer  K, Metspalu  A.  Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol  2015;44:1137–1147. PubMed

Fischer  K, Kettunen  J, Würtz  P, Haller  T, Havulinna  AS, Kangas  AJ, Soininen  P, Esko  T, Tammesoo  M-L, Mägi  R, Smit  S, Palotie  A, Ripatti  S, Salomaa  V, Ala-Korpela  M, Perola  M, Metspalu  A.  Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med  2014;11:e1001606. PubMed PMC

Harrell  FE, Lee  KL, Mark  DB.  Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med  1996;15:361–387. PubMed

Munafo  MR, Davey-Smoth  G.  Robust research needs many lines of evidence. Nature  2018;553:399–401. PubMed

KivimäKi  M, Batty  GD, Hamer  M, Ferrie  JE, Vahtera  J, Virtanen  M, Marmot  MG, Singh-Manoux  A, Shipley  MJ.  Using additional information on working hours to predict coronary heart disease: a cohort study. Ann Intern Med  2011;154:457–463. PubMed PMC

Hippisley-Cox  J, Coupland  C, Vinogradova  Y, Robson  J, Minhas  R, Sheikh  A, Brindle  P.  Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ  2008;336:1475–1482. PubMed PMC

Collins  GS, Altman  DG.  Predicting the 10 year risk of cardiovascular disease in the United Kingdom: independent and external validation of an updated version of QRISK2. BMJ  2012;344:e4181. PubMed PMC

Muntner  P, Colantonio  LD, Cushman  M, Goff  DC, Howard  G, Howard  VJ, Kissela  B, Levitan  EB, Lloyd-Jones  DM, Safford  MM.  Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA  2014;311:1406–1415. PubMed PMC

Emdin  CA, Khera  AV, Natarajan  P, Klarin  D, Baber  U, Mehran  R, Rader  DJ, Fuster  V, Kathiresan  S.  Evaluation of the pooled cohort equations for prediction of cardiovascular risk in a contemporary prospective cohort. Am J Cardiol  2017;119:881–885. PubMed

Ruwanpathirana  T, Owen  A, Reid  CM.  Review on cardiovascular risk prediction. Cardiovasc Ther  2015;33:62–70. PubMed

Sattar  N, Welsh  P, Sarwar  N, Danesh  J, Di Angelantonio  E, Gudnason  V, Davey Smith  G, Ebrahim  S, Lawlor  DA.  NT-proBNP is associated with coronary heart disease risk in healthy older women but fails to enhance prediction beyond established risk factors: results from the British Women's Heart and Health Study. Atherosclerosis  2010;209:295–299. PubMed

Abraham  G, Havulinna  AS, Bhalala  OG, Byars  SG, De Livera  AM, Yetukuri  L, Tikkanen  E, Perola  M, Schunkert  H, Sijbrands  EJ, Palotie  A, Samani  NJ, Salomaa  V, Ripatti  S, Inouye  M.  Genomic prediction of coronary heart disease. Eur Heart J  2016;37:3267–3278. PubMed PMC

Woodward  M, Brindle  P, Tunstall-Pedoe  H; for the SIGN Group on Risk Estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart  2005;93:172–176. PubMed PMC

Carter  AR, Gill  D, Davies  NM, Taylor  AE, Tillmann  T, Vaucher  J, Wootton  RE, Munafò  MR, Hemani  G, Malik  R, Seshadri  S, Woo  D, Burgess  S, Davey Smith  G, Holmes  MV, Tzoulaki  I, Howe  LD, Dehghan  A.  Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ  2019;365:l1855. PubMed PMC

Kivimäki  M, Steptoe  A.  Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol  2018;15:215–229. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...