Perturbed fatty-acid metabolism is linked to localized chromatin hyperacetylation, increased stress-response gene expression and resistance to oxidative stress

. 2023 Jan ; 19 (1) : e1010582. [epub] 20230110

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36626368
Odkazy

PubMed 36626368
PubMed Central PMC9870116
DOI 10.1371/journal.pgen.1010582
PII: PGENETICS-D-22-01201
Knihovny.cz E-zdroje

Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.

Zobrazit více v PubMed

Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem. 2017. Jun 20;86:715–748. doi: 10.1146/annurev-biochem-061516-045037 PubMed DOI

Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021. Sep;20(9):689–709. doi: 10.1038/s41573-021-00233-1 PubMed DOI PMC

Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol. 2018. Oct 16;9:1162. doi: 10.3389/fphar.2018.01162 PubMed DOI PMC

O’Donnell P, Do KQ, Arango C. Oxidative/Nitrosative stress in psychiatric disorders: are we there yet? Schizophr Bull. 2014. Sep;40(5):960–2. doi: 10.1093/schbul/sbu048 PubMed DOI PMC

Aroor AR, DeMarco VG. Oxidative stress and obesity: the chicken or the egg? Diabetes. 2014. Jul;63(7):2216–8. doi: 10.2337/db14-0424 PubMed DOI

Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013. May;13(5):349–61. doi: 10.1038/nri3423 PubMed DOI PMC

Shiozaki K, Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 1996. Sep 15;10(18):2276–88. doi: 10.1101/gad.10.18.2276 PubMed DOI

Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, et al.. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 1996. Sep 15;10(18):2289–301. doi: 10.1101/gad.10.18.2289 PubMed DOI

Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, et al., Bähler J. Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell. 2003. Jan;14(1):214–29. doi: 10.1091/mbc.e02-08-0499 PubMed DOI PMC

Chen D, Wilkinson CR, Watt S, Penkett CJ, Toone WM, Jones N, et al.. Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell. 2008. Jan;19(1):308–17. doi: 10.1091/mbc.e07-08-0735 PubMed DOI PMC

Vivancos AP, Jara M, Zuin A, Sansó M, Hidalgo E. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Genet Genomics. 2006. Dec;276(6):495–502. doi: 10.1007/s00438-006-0175-z PubMed DOI

Quinn J, Findlay VJ, Dawson K, Millar JB, Jones N, Morgan BA, et al.. Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell. 2002. Mar;13(3):805–16. doi: 10.1091/mbc.01-06-0288 PubMed DOI PMC

Shiozaki K, Russell P. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature. 1995. Dec 14;378(6558):739–43. doi: 10.1038/378739a0 PubMed DOI

López-Avilés S, Lambea E, Moldón A, Grande M, Fajardo A, Rodríguez-Gabriel MA, et al.. Activation of Srk1 by the mitogen-activated protein kinase Sty1/Spc1 precedes its dissociation from the kinase and signals its degradation. Mol Biol Cell. 2008. Apr;19(4):1670–9. doi: 10.1091/mbc.e07-07-0639 PubMed DOI PMC

Převorovský M, Oravcová M, Tvarůžková J, Zach R, Folk P, Půta F, et al.. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles. PLoS One. 2015. Sep 14;10(9):e0137820. doi: 10.1371/journal.pone.0137820 PubMed DOI PMC

Burr R, Stewart EV, Shao W, Zhao S, Hannibal-Bach HK, Ejsing CS, et al.. Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast. J Biol Chem. 2016. Jun 3;291(23):12171–83. doi: 10.1074/jbc.M116.723650 PubMed DOI PMC

Převorovský M, Oravcová M, Zach R, Jordáková A, Bähler J, Půta F, et al.. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast. Cell Cycle. 2016. Nov 16;15(22):3082–3093. doi: 10.1080/15384101.2016.1235100 PubMed DOI PMC

Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell. 2006. Jul 21;23(2):207–17. doi: 10.1016/j.molcel.2006.05.040 PubMed DOI

Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014. Aug;15(8):536–50. doi: 10.1038/nrm3841 PubMed DOI

Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009. May 22;324(5930):1076–80. doi: 10.1126/science.1164097 PubMed DOI PMC

Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem. 2012. Jul 6;287(28):23865–76. doi: 10.1074/jbc.M112.380519 PubMed DOI PMC

Rodríguez-López M, Cotobal C, Fernández-Sánchez O, Borbarán Bravo N, Oktriani R, Abendroth H, et al.. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast. Wellcome Open Res. 2017. May 5;1:19. doi: 10.12688/wellcomeopenres.10038.3 PubMed DOI PMC

Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M. Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun. 2014. Oct 29;5:5344. doi: 10.1038/ncomms6344 PubMed DOI PMC

Petersen J, Russell P. Growth and the Environment of Schizosaccharomyces pombe. Cold Spring Harb Protoc. 2016. Mar 1;2016(3):pdb.top079764. doi: 10.1101/pdb.top079764 PubMed DOI PMC

Oravcová M, Teska M, Půta F, Folk P, Převorovský M. Fission yeast CSL proteins function as transcription factors. PLoS One. 2013;8(3):e59435. doi: 10.1371/journal.pone.0059435 PubMed DOI PMC

Sabatinos SA, Forsburg SL. Molecular genetics of Schizosaccharomyces pombe. Methods Enzymol. 2010;470:759–95. doi: 10.1016/S0076-6879(10)70032-X PubMed DOI

Gregan J, Rabitsch PK, Rumpf C, Novatchkova M, Schleiffer A, Nasmyth K. High-throughput knockout screen in fission yeast. Nat Protoc. 2006;1(5):2457–64. doi: 10.1038/nprot.2006.385 PubMed DOI PMC

Castillo EA, Vivancos AP, Jones N, Ayte J, Hidalgo E. Schizosaccharomyces pombe cells lacking the Ran-binding protein Hba1 show a multidrug resistance phenotype due to constitutive nuclear accumulation of Pap1. J Biol Chem. 2003. Oct 17;278(42):40565–72. doi: 10.1074/jbc.M305859200 PubMed DOI

Carmona M, de Cubas L, Bautista E, Moral-Blanch M, Medraño-Fernández I, Sitia R, et al.. Monitoring cytosolic H2O2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nat Commun. 2019. Oct 4;10(1):4526. doi: 10.1038/s41467-019-12475-0 PubMed DOI PMC

Vivancos AP, Castillo EA, Jones N, Ayté J, Hidalgo E. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol Microbiol. 2004. Jun;52(5):1427–35. doi: 10.1111/j.1365-2958.2004.04065.x PubMed DOI

Sansó M, Gogol M, Ayté J, Seidel C, Hidalgo E. Transcription factors Pcr1 and Atf1 have distinct roles in stress- and Sty1-dependent gene regulation. Eukaryot Cell. 2008. May;7(5):826–35. doi: 10.1128/EC.00465-07 PubMed DOI PMC

Jara M, Vivancos AP, Calvo IA, Moldón A, Sansó M, Hidalgo E. The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast. Mol Biol Cell. 2007. Jun;18(6):2288–95. doi: 10.1091/mbc.e06-11-1039 PubMed DOI PMC

Marte L, Boronat S, Barrios R, Barcons-Simon A, Bolognesi B, Cabrera M, et al.. Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects. Int J Mol Sci. 2022. Apr 1;23(7):3950. doi: 10.3390/ijms23073950 PubMed DOI PMC

Salat-Canela C, Paulo E, Sánchez-Mir L, Carmona M, Ayté J, Oliva B, et al.. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. J Biol Chem. 2017. Aug 18;292(33):13635–13644. doi: 10.1074/jbc.M117.794339 PubMed DOI PMC

Lock A, Rutherford K, Harris MA, Hayles J, Oliver SG, Bähler J, et al.. PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information. Nucleic Acids Res. 2019. Jan 8;47(D1):D821–D827. doi: 10.1093/nar/gky961 PubMed DOI PMC

Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, et al.. The genome sequence of Schizosaccharomyces pombe. Nature. 2002. Feb 21;415(6874):871–80. doi: 10.1038/nature724 PubMed DOI

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019. Aug;37(8):907–915. doi: 10.1038/s41587-019-0201-4 PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009. Aug 15;25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC

Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, et al.. HTSlib: C library for reading/writing high-throughput sequencing data. Gigascience. 2021. Feb 16;10(2):giab007. doi: 10.1093/gigascience/giab007 PubMed DOI PMC

Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al.. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016. Jul 8;44(W1):W160–5. doi: 10.1093/nar/gkw257 PubMed DOI PMC

Calvo IA, Gabrielli N, Iglesias-Baena I, García-Santamarina S, Hoe KL, Kim DU, et al.. Genome-wide screen of genes required for caffeine tolerance in fission yeast. PLoS One. 2009. Aug 12;4(8):e6619. doi: 10.1371/journal.pone.0006619 PubMed DOI PMC

Degols G, Shiozaki K, Russell P. Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cell Biol. 1996. Jun;16(6):2870–7. doi: 10.1128/MCB.16.6.2870 PubMed DOI PMC

Mutoh N, Kawabata M, Kitajima S. Effects of four oxidants, menadione, 1-chloro-2,4-dinitrobenzene, hydrogen peroxide and cumene hydroperoxide, on fission yeast Schizosaccharmoyces pombe. J Biochem. 2005. Dec;138(6):797–804. doi: 10.1093/jb/mvi179 PubMed DOI

Prevorovský M, Grousl T, Stanurová J, Rynes J, Nellen W, Půta F, et al.. Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division. Exp Cell Res. 2009. May 1;315(8):1533–47. doi: 10.1016/j.yexcr.2008.12.001 PubMed DOI

Han TX, Xu XY, Zhang MJ, Peng X, Du LL. Global fitness profiling of fission yeast deletion strains by barcode sequencing. Genome Biol. 2010;11(6):R60. doi: 10.1186/gb-2010-11-6-r60 PubMed DOI PMC

Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos AP, Ayté J, et al.. Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J. 2010. Mar 3;29(5):981–91. doi: 10.1038/emboj.2009.407 PubMed DOI PMC

Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N. Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 1998. May 15;12(10):1453–63. doi: 10.1101/gad.12.10.1453 PubMed DOI PMC

Kudo N, Taoka H, Toda T, Yoshida M, Horinouchi S. A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J Biol Chem. 1999. May 21;274(21):15151–8. doi: 10.1074/jbc.274.21.15151 PubMed DOI

Pancaldi V, Saraç OS, Rallis C, McLean JR, Převorovský M, Gould K, et al.. Predicting the fission yeast protein interaction network. G3 (Bethesda). 2012. Apr;2(4):453–67. doi: 10.1534/g3.111.001560 PubMed DOI PMC

Saitoh S, Takahashi K, Nabeshima K, Yamashita Y, Nakaseko Y, Hirata A, et al.. Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase. J Cell Biol. 1996. Aug;134(4):949–61. doi: 10.1083/jcb.134.4.949 PubMed DOI PMC

Matias AC, Pedroso N, Teodoro N, Marinho HS, Antunes F, Nogueira JM, et al.. Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radic Biol Med. 2007. Nov 15;43(10):1458–65. doi: 10.1016/j.freeradbiomed.2007.08.003 PubMed DOI

Sansó M, Vargas-Pérez I, Quintales L, Antequera F, Ayté J, Hidalgo E. Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe. Nucleic Acids Res. 2011. Aug;39(15):6369–79. doi: 10.1093/nar/gkr255 PubMed DOI PMC

Johnsson A, Xue-Franzén Y, Lundin M, Wright AP. Stress-specific role of fission yeast Gcn5 histone acetyltransferase in programming a subset of stress response genes. Eukaryot Cell. 2006. Aug;5(8):1337–46. doi: 10.1128/EC.00101-06 PubMed DOI PMC

Nakamura T, Pluskal T, Nakaseko Y, Yanagida M. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA. Open Biol. 2012. Sep;2(9):120117. doi: 10.1098/rsob.120117 PubMed DOI PMC

Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 2015. Jun 2;21(6):805–21. doi: 10.1016/j.cmet.2015.05.014 PubMed DOI

Sivanand S, Viney I, Wellen KE. Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation. Trends Biochem Sci. 2018. Jan;43(1):61–74. doi: 10.1016/j.tibs.2017.11.004 PubMed DOI PMC

Zhang M, Galdieri L, Vancura A. The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol Cell Biol. 2013. Dec;33(23):4701–17. doi: 10.1128/MCB.00198-13 PubMed DOI PMC

Fernández-Vázquez J, Vargas-Pérez I, Sansó M, Buhne K, Carmona M, Paulo E, et al.. Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet. 2013;9(7):e1003647. doi: 10.1371/journal.pgen.1003647 PubMed DOI PMC

Bauer F, Matsuyama A, Candiracci J, Dieu M, Scheliga J, Wolf DA, et al.. Translational control of cell division by Elongator. Cell Rep. 2012. May 31;1(5):424–33. doi: 10.1016/j.celrep.2012.04.001 PubMed DOI PMC

Villahermosa D, Fleck O. Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNALysUUU modifications. Sci Rep. 2017. Aug 3;7(1):7225. doi: 10.1038/s41598-017-07647-1 PubMed DOI PMC

Nugent RL, Johnsson A, Fleharty B, Gogol M, Xue-Franzén Y, Seidel C, et al.. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation. BMC Genomics. 2010. Jan 22;11:59. doi: 10.1186/1471-2164-11-59 PubMed DOI PMC

Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015. Jan 16;10(1):95–108. doi: 10.1021/cb500846u PubMed DOI PMC

Święciło A. Cross-stress resistance in Saccharomyces cerevisiae yeast—new insight into an old phenomenon. Cell Stress Chaperones. 2016. Mar;21(2):187–200. doi: 10.1007/s12192-016-0667-7 PubMed DOI PMC

Lee J, Dawes IW, Roe JH. Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology (Reading). 1995. Dec;141 (Pt 12):3127–32. doi: 10.1099/13500872-141-12-3127 PubMed DOI

Crawford DR, Davies KJ. Adaptive response and oxidative stress. Environ Health Perspect. 1994. Dec;102 Suppl 10(Suppl 10):25–8. doi: 10.1289/ehp.94102s1025 PubMed DOI PMC

Wirén M, Silverstein RA, Sinha I, Walfridsson J, Lee HM, Laurenson P, et al.. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 2005. Aug 17;24(16):2906–18. doi: 10.1038/sj.emboj.7600758 PubMed DOI PMC

Du Y, Liu Z, Cao X, Chen X, Chen Z, Zhang X, et al.. Nucleosome eviction along with H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment. Cell Death Differ. 2017. Jun;24(6):1121–1131. doi: 10.1038/cdd.2017.62 PubMed DOI PMC

Gates LA, Shi J, Rohira AD, Feng Q, Zhu B, Bedford MT, et al.. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J Biol Chem. 2017. Sep 1;292(35):14456–14472. doi: 10.1074/jbc.M117.802074 PubMed DOI PMC

Mitchell L, Huard S, Cotrut M, Pourhanifeh-Lemeri R, Steunou AL, Hamza A, et al.. mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci U S A. 2013. Apr 23;110(17):E1641–50. doi: 10.1073/pnas.1218515110 PubMed DOI PMC

Pillus L. MYSTs mark chromatin for chromosomal functions. Curr Opin Cell Biol. 2008. Jun;20(3):326–33. doi: 10.1016/j.ceb.2008.04.009 PubMed DOI PMC

Ferreira R, Eberharter A, Bonaldi T, Chioda M, Imhof A, Becker PB. Site-specific acetylation of ISWI by GCN5. BMC Mol Biol. 2007. Aug 30;8:73. doi: 10.1186/1471-2199-8-73 PubMed DOI PMC

Kim JH, Saraf A, Florens L, Washburn M, Workman JL. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev. 2010. Dec 15;24(24):2766–71. doi: 10.1101/gad.1979710 PubMed DOI PMC

Park JM, Jo SH, Kim MY, Kim TH, Ahn YH. Role of transcription factor acetylation in the regulation of metabolic homeostasis. Protein Cell. 2015. Nov;6(11):804–13. doi: 10.1007/s13238-015-0204-y PubMed DOI PMC

Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, et al.. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol. 2008. Apr;28(7):2244–56. doi: 10.1128/MCB.01653-07 PubMed DOI PMC

Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci. 2017. Nov;42(11):850–861. doi: 10.1016/j.tibs.2017.09.001 PubMed DOI PMC

Helmlinger D, Marguerat S, Villén J, Swaney DL, Gygi SP, Bähler J, et al.. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J. 2011. Jun 3;30(14):2843–52. doi: 10.1038/emboj.2011.181 PubMed DOI PMC

McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, Grimsrud PA, Hirschey MD. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation. Cell Rep. 2016. Nov 1;17(6):1463–1472. doi: 10.1016/j.celrep.2016.10.012 PubMed DOI PMC

Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017. Jun 15;546(7658):381–386. doi: 10.1038/nature22405 PubMed DOI PMC

Malecki M, Bitton DA, Rodríguez-López M, Rallis C, Calavia NG, Smith GC, et al.. Functional and regulatory profiling of energy metabolism in fission yeast. Genome Biol. 2016. Nov 25;17(1):240. doi: 10.1186/s13059-016-1101-2 PubMed DOI PMC

Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci. 2008. Jan 1;13:2408–20. doi: 10.2741/2854 PubMed DOI PMC

Quijano C, Trujillo M, Castro L, Trostchansky A. Interplay between oxidant species and energy metabolism. Redox Biol. 2016. Aug;8:28–42. doi: 10.1016/j.redox.2015.11.010 PubMed DOI PMC

Horikawa M, Sakamoto K. Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochem Biophys Res Commun. 2009. Dec 25;390(4):1402–7. doi: 10.1016/j.bbrc.2009.11.006 PubMed DOI

Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, et al.. NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell. 2018. Jun;17(3):e12743. doi: 10.1111/acel.12743 PubMed DOI PMC

Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al.. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013. Jan 11;339(6116):211–4. doi: 10.1126/science.1227166 PubMed DOI PMC

Lei I, Tian S, Gao W, Liu L, Guo Y, Tang P, et al.. Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation. Elife. 2021. Dec 23;10:e60311. doi: 10.7554/eLife.60311 PubMed DOI PMC

Nelson ME, Lahiri S, Chow JD, Byrne FL, Hargett SR, Breen DS, et al.. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat Commun. 2017. Mar 14;8:14689. doi: 10.1038/ncomms14689 PubMed DOI PMC

Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, et al.. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 2010. Oct 15;70(20):8117–26. doi: 10.1158/0008-5472.CAN-09-3871 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...