Insights into the bioluminescence systems of three sea pens (Cnidaria: Anthozoa): from de novo transcriptome analyses to biochemical assays
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Yeshiva University Start-up Fund
F.R.S.-FNRS
Fundação de Amparo à Pesquisa do Estado de São Paulo
Czech Science Foundation
European Union's Horizon 2020 research and innovation program
Czech Ministry of Education, Youth and Sports
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
PubMed
40300651
PubMed Central
PMC12040472
DOI
10.1098/rsob.240262
Knihovny.cz E-zdroje
- Klíčová slova
- Anthoptilidae, Funiculidae, Pennatulidae, bioluminescence, coelenterazine, luciferase, luciferin-binding protein, luminous system,
- MeSH
- fylogeneze MeSH
- imidazoly metabolismus MeSH
- korálnatci * genetika metabolismus MeSH
- luciferasy metabolismus genetika MeSH
- luminescentní proteiny metabolismus genetika MeSH
- luminiscence MeSH
- luminiscenční měření metody MeSH
- pyraziny metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom * MeSH
- zelené fluorescenční proteiny metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- coelenterazine MeSH Prohlížeč
- imidazoly MeSH
- luciferasy MeSH
- luminescentní proteiny MeSH
- pyraziny MeSH
- zelené fluorescenční proteiny MeSH
Bioluminescence is the production of visible light by living organisms. It occurs through the oxidation of luciferin substrates catalysed by luciferase enzymes. Auxiliary proteins, such as fluorescent proteins and luciferin-binding proteins, can modify the light emitted wavelength or stabilize reactive luciferin molecules, respectively. Additionally, calcium ions are crucial for the luminescence across various species. Despite the large phylogenetic distribution of bioluminescent organisms, only a few systems have been comprehensively studied. Notably, cnidarian species of the Renilla genus utilize a coelenterazine-dependent luciferase, a calcium-dependent coelenterazine-binding protein and a green fluorescent protein. We investigated the bioluminescence of three sea pen species: Pennatula phosphorea, Anthoptilum murrayi and Funiculina quadrangularis (Pennatuloidea, Anthozoa). Their light-emission spectra reveal peaks at 510, 513 and 485 nm, respectively. A coelenterazine-based reaction was demonstrated in all three species. Using transcriptome analyses, we identified transcripts coding for luciferases, green fluorescent proteins and coelenterazine-binding proteins for P. phosphorea and A. murrayi. Immunodetection confirmed the expression of luciferase in P. phosphorea and F. quadrangularis. We also expressed recombinant luciferase of A. murrayi, confirming its activity. We highlighted the role of calcium ions in bioluminescence, possibly associated with the mechanism of substrate release at the level of coelenterazine-binding proteins. The study proposes a model for anthozoan bioluminescence, offering new avenues for future ecological and functional research on these luminous organisms.
Biological and Environmental Sciences Goteborgs Universitet Goteborg Sweden
Cellular and Molecular Immunology GIGA Institute Université de Liège Liege Belgium
Centre for Natural and Human Sciences Universidade Federal do ABC Santo Andre Brazil
Departamento de Oceanografia Biológica Universidade de São Paulo Sao Paulo Brazil
Departamento de Oceanografia Física Química e Geológica Universidade de São Paulo Sao Paulo Brazil
Department of Chemistry and Biochemistry Yeshiva University New York NY USA
Earth and Life Institute Université catholique de Louvain Louvain la Neuve Walloon Brabant Belgium
International Atomic Energy Agency Marine Environment Laboratories Monaco Monaco
International Clinical Research Center Masaryk University Brno Czech Republic
Marine Organisms and Biomimetics Université de Mons Mons Belgium
Zobrazit více v PubMed
Shimomura O, Yampolsky I. 2019. Bioluminescence: chemical principles and methods, 3rd edn. Singapore: World Scientific Publishing.
Haddock S, Moline M, Case J. 2010. Bioluminescence in the sea. Annu. Rev. Mar. Sci 2, 443–493. (10.1146/annurev-marine-120308-081028) PubMed DOI
Delroisse J, Duchatelet L, Flammang P, Mallefet J. 2021. Leaving the dark side? Insights into the evolution of luciferases. Front. Mar. Sci. 8, 673620. (10.3389/fmars.2021.673620) DOI
Fleiss A, Sarkisyan KS. 2019. A brief review of bioluminescent systems (2019). Curr. Genet. 65, 877–882. (10.1007/s00294-019-00951-5) PubMed DOI PMC
Hastings JW. 1996. Chemistries and colors of bioluminescent reactions: a review. Gene 173, 5–11. (10.1016/0378-1119(95)00676-1) PubMed DOI
Wilson T, Hastings J. 2012. Bioluminescence: living lights, lights for living. Cambridge, MA: Harvard University Press.
Kaskova ZM, Tsarkova AS, Yampolsky IV. 2016. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc. Rev. 45, 6048–6077. (10.1039/c6cs00296j) PubMed DOI
Duchatelet L, Dupont S. 2024. Marine eukaryote bioluminescence: a review of species and their functional biology. Mar. Life Sci. Technol. (10.1007/s42995-024-00250-0) DOI
Cormier MJ. 1960. Studies of the bioluminescence of Renilla reniformis. Biochim. Biophys. Acta 42, 333–343. (10.1016/0006-3002(60)90797-6) PubMed DOI
Matthews JC, Hori K, Cormier MJ. 1977. Purification and properties of Renilla reniformis luciferase. Biochemistry 16, 85–91. (10.1021/bi00620a014) PubMed DOI
Lorenz WW, McCann RO, Longiaru M, Cormier MJ. 1991. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl Acad. Sci. USA 88, 4438–4442. (10.1073/pnas.88.10.4438) PubMed DOI PMC
Schenkmayerova A, et al. . 2023. Catalytic mechanism for Renilla-type luciferases. Nat. Catal. 6, 23–38. (10.1038/s41929-022-00895-z) DOI
Inoue S, Kakoi H, Murata M, Goto T, Shimomura O. 1977. Complete structure of Renilla luciferin and luciferyl sulfate. Tetrahedron Lett. 18, 2685–2688. (10.1016/s0040-4039(01)83046-x) DOI
Loening AM, Fenn TD, Gambhir SS. 2007. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028. (10.1016/j.jmb.2007.09.078) PubMed DOI PMC
Bessho-Uehara M, Francis WR, Haddock SHD. 2020. Biochemical characterization of diverse deep-sea anthozoan bioluminescence systems. Mar. Biol. 167, 114. (10.1007/s00227-020-03706-w) DOI
DeLeo DM, Bessho-Uehara M, Haddock SHD, McFadden CS, Quattrini AM. 2024. Evolution of bioluminescence in anthozoa with emphasis on octocorallia. Proc. R. Soc. B 291, 20232626. (10.1098/rspb.2023.2626) PubMed DOI PMC
Cormier MJ, Hori K, Karkhanis YD, Anderson JM, Wampler JE, Morin JG, Hastings JW. 1973. Evidence for similar biochemical requirements for bioluminescence among the coelenterates. J. Cell. Physiol. 81, 291–297. (10.1002/jcp.1040810218) PubMed DOI
Delroisse J, Ullrich-Lüter E, Blaue S, Ortega-Martinez O, Eeckhaut I, Flammang P, Mallefet J. 2017. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 7, 160300. (10.1098/rsob.160300) PubMed DOI PMC
Tessler M, et al. . 2020. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci. Rep. 10, 17724. (10.1038/s41598-020-73446-w) PubMed DOI PMC
Lau ES, et al. . 2024. Functional characterization of luciferase in a brittle star indicates parallel evolution influenced by genomic availability of haloalkane dehalogenase. BioRxiv. (10.1101/2024.10.14.618359) PubMed DOI
Anderson J, Charbonneau H, Cormier M. 1974. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 13, 1195–1200. (10.1021/bi00703a602) PubMed DOI
Ward WW, Cormier MJ. 1979. An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J. Biol. Chem. 254, 781–788. (10.1016/s0021-9258(17)37873-0) PubMed DOI
Kumar S, Harrylock M, Walsh KA, Cormier MJ, Charbonneau H. 1990. Amino acid sequence of the Ca2+-triggered luciferin binding protein of Renilla reniformis. FEBS Lett. 268, 287–290. (10.1016/0014-5793(90)81029-n) PubMed DOI
Inouye S. 2007. Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis. Protein Expr. Purif. 52, 66–73. (10.1016/j.pep.2006.07.028) PubMed DOI
Titushin MS, Markova SV, Frank LA, Malikova NP, Stepanyuk GA, Lee J, Vysotski ES. 2008. Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem. Photobiol. Sci. 7, 189–196. (10.1039/b713109g) PubMed DOI
Ogoh K, Kinebuchi T, Murai M, Takahashi T, Ohmiya Y, Suzuki H. 2013. Dual‐color‐emitting green fluorescent protein from the sea cactus Cavernularia obesa and its use as a pH indicator for fluorescence microscopy. Luminescence 28, 582–591. (10.1002/bio.2497) PubMed DOI PMC
Henry JP, Ninio M. 1978. Control of the Ca2+-triggered bioluminescence of Veretillum cynomorium lumisomes. Biochim. Biophys. Acta 504, 40–59. (10.1016/0005-2728(78)90005-1) PubMed DOI
Charbonneau H, Cormier MJ. 1979. Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J. Biol. Chem. 254, 769–780. (10.1016/s0021-9258(17)37872-9) PubMed DOI
Stepanyuk GA, Liu ZJ, Vysotski ES, Lee J, Rose JP, Wang BC. 2009. Structure based mechanism of the Ca2+‐induced release of coelenterazine from the Renilla binding protein. Proteins 74, 583–593. (10.1002/prot.22173) PubMed DOI
Nicol JAC. 1955. Observations on luminescence in Renilla (Pennatulacea). J. Exp. Biol. 32, 32. (10.1242/jeb.32.2.299) DOI
Davenport D, Nicol J. 1956. Observations on luminescence in sea pens (Pennatulacea). Proc. R. Soc. B 144, 480–496. (10.1098/rspb.1956.0005) DOI
Wampler JE, Karkhanis YD, Morin JG, Cormier MJ. 1973. Similarities in the bioluminescence from the Pennatulacea. Biochim. Biophys. Acta 314, 104–109. (10.1016/0005-2728(73)90068-6) PubMed DOI
Satterlie RA, Anderson PAV, Case JF. 1980. Colonial coordination in anthozoans: Pennatulacea. Mar. Behav. Physiol. 7, 25–46. (10.1080/10236248009386969) DOI
Germain G, Anctil M. 1988. Luminescent activity and ultrastructural characterization of photocytes dissociated from the coelenterate Renilla köllikeri. Tissue Cell 20, 701–720. (10.1016/0040-8166(88)90017-1) PubMed DOI
Anctil M, Boulay D, Larivière L. 1982. Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla köllikeri. J. Exp. Zool. 223, 11–24. (10.1002/jez.1402230103) DOI
Duchatelet L, Coubris C, Pels C, Dupont ST, Mallefet J. 2023. Catecholamine involvement in the bioluminescence control of two species of anthozoans. Life 13, 1798. (10.3390/life13091798) PubMed DOI PMC
Morin JG. 1976. Probable functions of bioluminescence in the Pennatulacea (Cnidaria, Anthozoa). In Coelenterate ecology and behavior (ed. Mackie GO), pp. 629–638. Boston, MA: Springer. (10.1007/978-1-4757-9724-4_65) DOI
Delroisse J, Mallefet J, Flammang P. 2016. De novo adult transcriptomes of two European brittle stars: spotlight on opsin-based photoreception. PLoS ONE 11, e0152988. (10.1371/journal.pone.0152988) PubMed DOI PMC
Delroisse J, Duchatelet L, Flammang P, Mallefet J. 2018. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS ONE 13, e0209767. (10.1371/journal.pone.0209767) PubMed DOI PMC
Delroisse J, Duchatelet L, Flammang P, Mallefet J. 2021. Photophore distribution and enzymatic diversity within the photogenic integument of the cookie-cutter shark Isistius brasiliensis (Chondrichthyes: Dalatiidae). Front. Mar. Sci. 8, 627045. (10.3389/fmars.2021.627045) DOI
Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38, 1767–1771. (10.1093/nar/gkp1137) PubMed DOI PMC
Grabherr MG, et al. . 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. (10.1038/nbt.1883) PubMed DOI PMC
Pertea G, et al. . 2003. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19, 651–652. (10.1093/bioinformatics/btg034) PubMed DOI
Das S, Shyamal S, Durica DS. 2016. Analysis of annotation and differential expression methods used in RNA-seq studies in crustacean systems. Integr. Comp. Biol. 56, 1067–1079. (10.1093/icb/icw117) PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. (10.1016/s0022-2836(05)80360-2) PubMed DOI
Buchfink B, Xie C, Huson DH. 2014. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. (10.1038/nmeth.3176) PubMed DOI
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. (10.1093/bioinformatics/bti610) PubMed DOI
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120. (10.1093/nar/gki442) PubMed DOI PMC
Haas BJ, et al. . 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. (10.1038/nprot.2013.084) PubMed DOI PMC
Kearse M, et al. . 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. (10.1093/bioinformatics/bts199) PubMed DOI PMC
Woo J, Howell MH, von Arnim AG. 2009. Structure–function studies on the active site of the coelenterazine‐dependent luciferase from Renilla. Protein Sci. 17, 725–735. (10.1110/ps.073355508) PubMed DOI PMC
McFadden CS, Ofwegen LP, Quattrini AM. 2022. Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Bull. Soc. Syst. Biol. 1, 8735. (10.18061/bssb.v1i3.8735) DOI
Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV. 2002. Diversity and evolution of the green fluorescent protein family. Proc. Natl Acad. Sci. USA 99, 4256–4261. (10.1073/pnas.062552299) PubMed DOI PMC
Alieva NO, et al. . 2008. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680. (10.1371/journal.pone.0002680) PubMed DOI PMC
Li G, Zhang QJ, Zhong J, Wang YQ. 2009. Evolutionary and functional diversity of green fluorescent proteins in cephalochordates. Gene 446, 41–49. (10.1016/j.gene.2009.07.003) PubMed DOI
Shagin DA, et al. . 2004. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850. (10.1093/molbev/msh079) PubMed DOI
Schnitzler CE, et al. . 2012. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol. 10, 107. (10.1186/1741-7007-10-107) PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. (10.1093/bioinformatics/btp348) PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. (10.1093/molbev/msu300) PubMed DOI PMC
Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818. (10.1093/bioinformatics/14.9.817) PubMed DOI
Nicol J. 1958. Observations on the luminescence of Pennatula phosphorea, with a note on the luminescence of Virgularia mirabilis. J. Mar. Biol. Assoc. UK 37, 551–563. (10.1017/S0025315400005610) DOI
Rahnama S, Saffar B, Kahrani ZF, Nazari M, Emamzadeh R. 2017. Super RLuc8: a novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission. Enzym. Microb. Technol. 96, 60–66. (10.1016/j.enzmictec.2016.09.009) PubMed DOI
Khoshnevisan G, Emamzadeh R, Nazari M, Rasa SMM, Sariri R, Hassani L. 2018. Kinetics, structure, and dynamics of Renilla luciferase solvated in binary mixtures of glycerol and water and the mechanism by which glycerol obstructs the enzyme emitter site. Int. J. Biol. Macromol. 117, 617–624. (10.1016/j.ijbiomac.2018.05.160) PubMed DOI
Mallefet J, Duchatelet L, Coubris C. 2020. Bioluminescence induction in the ophiuroid Amphiura filiformis (Echinodermata). J. Exp. Biol. 223, jeb218719. (10.1242/jeb.218719) PubMed DOI
Mallefet J, Martinez-Soares P, Eléaume M, O’Hara T, Duchatelet L. 2023. New insights on crinoid (Echinodermata; Crinoidea) bioluminescence. Front. Mar. Sci. 10, 1136138. (10.3389/fmars.2023.1136138) DOI
Loening AM. 2006. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 19, 391–400. (10.1093/protein/gzl023) PubMed DOI
Nandi A, Zhang A, Chu ZT, Xie WJ, Xu Z, Dong S, Warshel A. 2024. Exploring the light-emitting agents in Renilla luciferases by an effective QM/MM approach. J. Am. Chem. Soc. 146, 13875–13885. (10.1021/jacs.4c00963) PubMed DOI PMC
Tsuji FI, Ohmiya Y, Fagan TF, Toh H, Inouye S. 1995. Molecular evolution of the Ca2+‐binding photoproteins of the Hydrozoa. Photochem. Photobiol. 62, 657–661. (10.1111/j.1751-1097.1995.tb08713.x) PubMed DOI
Powers ML, McDermott AG, Shaner NC, Haddock SHD. 2013. Erratum to ‘Expression and characterization of the calcium-activated photoprotein from the ctenophore Bathocyroe fosteri: insights into light-sensitive photoproteins’. Biochem. Biophys. Res. Commun. 435, 751. (10.1016/j.bbrc.2008.07.166) PubMed DOI PMC
Burakova LP, Stepanyuk GA, Eremeeva EV, Vysotski ES. 2016. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca2+-regulated photoprotein berovin. Photochem. Photobiol. Sci. 15, 691–704. (10.1039/c6pp00050a) PubMed DOI
Burakova LP, Vysotski ES. 2019. Recombinant Ca2+-regulated photoproteins of ctenophores: current knowledge and application prospects. Appl. Microbiol. Biotechnol. 103, 5929–5946. (10.1007/s00253-019-09939-0) PubMed DOI
Jumper J, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. (10.1038/s41586-021-03819-2) PubMed DOI PMC
Abramson J, et al. . 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500. (10.1038/s41586-024-07487-w) PubMed DOI PMC
Stepanyuk GA, Liu ZJ, Markova SS, Frank LA, Lee J, Vysotski ES, Wang BC. 2008. Crystal structure of coelenterazine-binding protein from Renilla muelleri at 1.7 Å: why it is not a calcium-regulated photoprotein. Photochem. Photobiol. Sci. 7, 442–447. (10.1039/b716535h) PubMed DOI
Buskey EJ, Stearns DE. 1991. The effects of starvation on bioluminescence potential and egg release of the copepod Metridia longa. J. Plankton Res. 13, 885–893. (10.1093/plankt/13.4.885) DOI
Thomson CM, Herring PJ, Campbell AK. 1995. Evidence for de novo biosynthesis of coelenterazine in the bioluminescent midwater shrimp, Systellaspis debilis C. J. Mar. Biol. Assoc. UK 75, 165–171. (10.1017/s0025315400015277) DOI
Oba Y, Kato S ichi, Ojika M, Inouye S. 2009. Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica. Biochem. Biophys. Res. Commun. 390, 684–688. (10.1016/j.bbrc.2009.10.028) PubMed DOI
Bessho-Uehara M, Huang W, Patry WL, Browne WE, Weng JK, Haddock SHD. 2020. Evidence for de novo biosynthesis of the luminous substrate coelenterazine in ctenophores. iScience 23, 101859. (10.1016/j.isci.2020.101859) PubMed DOI PMC
Francis WR, Shaner NC, Christianson LM, Powers ML, Haddock SHD. 2015. Occurrence of isopenicillin-N-synthase homologs in bioluminescent ctenophores and implications for coelenterazine biosynthesis. PLoS ONE 10, e0128742. (10.1371/journal.pone.0128742) PubMed DOI PMC
Haddock SH, Rivers TJ, Robison BH. 2001. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc. Natl Acad. Sci. USA 98, 11148–11151. (10.1073/pnas.201329798) PubMed DOI PMC
Herring PJ. 1991. Observations on bioluminescence in some deep-water anthozoans. In Coelenterate biology: recent research on Cnidaria and Ctenophora (eds Williams RB, Cornelius PFS, Hughes RG, Robson EA), pp. 573–579. Dordrecht, The Netherlands: Springer. (10.1007/978-94-011-3240-4_80) DOI
Coubris C, Duchatelet L, Delroisse J, Bayaert WS, Parise L, Eloy MC, Pels C, Mallefet J. 2024. Maintain the light, long-term seasonal monitoring of luminous capabilities in the brittle star Amphiura filiformis. Sci. Rep. 14, 13238. (10.1038/s41598-024-64010-x) PubMed DOI PMC
Herring PJ. 1978. Bioluminescence of invertebrates other than insects. In Bioluminescence in action (ed Herring PJ), pp. 199–240. London, UK: Academic Press.
Inouye S, Watanabe K, Nakamura H, Shimomura O. 2000. Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett. 481, 19–25. (10.1016/s0014-5793(00)01963-3) PubMed DOI
Kobilka B. 1992. Adrenergic receptors as models for G protein-coupled receptors. Annu. Rev. Neurosci. 15, 87–114. (10.1146/annurev.ne.15.030192.000511) PubMed DOI
Caron MG, Lefkowitz RJ. 1993. Catecholamine receptors: structure, function, and regulation. Recent Prog. Horm. Res. 1993, 277–290. (10.1016/b978-0-12-571148-7.50014-2) PubMed DOI
Neves SR, Ram PT, Iyengar R. 2002. G protein pathways. Science 296, 1636–1639. (10.1126/science.1071550) PubMed DOI
Brown AM, Birnbaumer L. 1988. Direct G protein gating of ion channels. Am. J. Physiol. Heart Circ. Physiol. 254, H401–H410. (10.1152/ajpheart.1988.254.3.h401) PubMed DOI
Hille B. 1994. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 17, 531–536. (10.1016/0166-2236(94)90157-0) PubMed DOI
Dolphin AC. 2003. G protein modulation of voltage-gated calcium channels. Pharmacol. Rev. 55, 607–627. (10.1124/pr.55.4.3) PubMed DOI
Tedford HW, Zamponi GW. 2006. Direct G protein modulation of Cav2 calcium channels. Pharmacol. Rev. 58, 837–862. (10.1124/pr.58.4.11) PubMed DOI
Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M. 2004. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol. 22, 295–303. (10.1016/j.tibtech.2004.03.011) PubMed DOI
Kirkpatrick A, Xu T, Ripp S, Sayler G, Close D. 2019. Biotechnological advances in luciferase enzymes. In Bioluminescence: analytical applications and basic biology (ed. Hirobumi S), pp. 1–23. London, UK: IntechOpen. (10.5772/intechopen.85313) DOI
Welsh DK, Kay SA. 2005. Bioluminescence imaging in living organisms. Curr. Opin. Biotechnol. 16, 73–78. (10.1016/j.copbio.2004.12.006) PubMed DOI
Kudryavtsev AN, Krasitskaya VV, Efremov MK, Zangeeva SV, Rogova AV, Tomilin FN, Frank LA. 2023. Ca2+-triggered coelenterazine-binding protein Renilla expected and unexpected features. Int. J. Mol. Sci. 24, 2144. (10.3390/ijms24032144) PubMed DOI PMC
Duchatelet L, Galeazzo GA, Coubris C, Bridoux L, Rezsohazy R, Melo MRSet al. . 2025. Supplementary material from: Insights into the bioluminescence systems of three sea pens (Cnidaria: Anthozoa): from de novo transcriptome analyses to biochemical assays. Figshare. (10.6084/m9.figshare.c.7735482) PubMed DOI PMC