Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/E012841/1
Biotechnology and Biological Sciences Research Council - United Kingdom
G0301182
Medical Research Council - United Kingdom
BB/I020209/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
26418476
PubMed Central
PMC4982107
DOI
10.1002/stem.2220
Knihovny.cz E-zdroje
- Klíčová slova
- Induced pluripotent stem cells, KLF4, Mesenchymal-to-epithelial transition, OCT4, Reprogramming, SOX2, c-MYC, miR-145, microRNA,
- MeSH
- fibroblasty cytologie metabolismus MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- Krüppel-like faktor 4 MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- přeprogramování buněk * genetika MeSH
- regulace genové exprese MeSH
- reprodukovatelnost výsledků MeSH
- sekvence nukleotidů MeSH
- škára cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- KLF4 protein, human MeSH Prohlížeč
- Krüppel-like faktor 4 MeSH
- mikro RNA MeSH
- MIRN145 microRNA, human MeSH Prohlížeč
MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs.
Centro de Investigación Príncipe Felipe Valencia Spain
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Clancy JL, Patel HR, Hussein SMI et al. Small RNA changes en route to distinct cellular states of induced pluripotency. Nat Commun 2014;5:5522. PubMed
Henzler CM, Li Z, Dang J et al. Staged miRNA re‐regulation patterns during reprogramming. Genome Biol 2013;14:R149. PubMed PMC
Leonardo TR, Schultheisz HL, Loring JF et al. The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 2012;14:1114–1121. PubMed PMC
Dolezalova D, Mraz M, Barta T et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells 2012;30:1362–1372. PubMed
Zhao B, Yang D, Jiang J et al. Genome‐wide mapping of miRNAs expressed in embryonic stem cells and pluripotent stem cells generated by different reprogramming strategies. BMC Genomics 2014;15:488. PubMed PMC
Davis‐Dusenbery BN, Chan MC, Reno KE et al. down‐regulation of Kruppel‐like factor‐4 (KLF4) by microRNA‐143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor‐beta and bone morphogenetic protein 4. J Biol Chem 2011;286:28097–28110. PubMed PMC
Huang S, Guo W, Tang Y et al. miR‐143 and miR‐145 inhibit stem cell characteristics of PC‐3 prostate cancer cells. Oncol Rep 2012;28:1831–1837. PubMed
Hu J, Qiu M, Jiang F et al. MiR‐145 regulates cancer stem‐like properties and epithelial‐to‐mesenchymal transition in lung adenocarcinoma‐initiating cells. Tumour Biol J Int Soc Oncodev Biol Med 2014;35:8953–8961. PubMed
Sachdeva M, Zhu S, Wu F et al. p53 represses c‐Myc through induction of the tumor suppressor miR‐145. Proc Natl Acad Sci USA 2009;106:3207–3212. PubMed PMC
Shao Y, Qu Y, Dang S et al. MiR‐145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c‐Myc and Cdk6. Cancer Cell Int 2013;13:51. PubMed PMC
Xu N, Papagiannakopoulos T, Pan G et al. MicroRNA‐145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009;137:647–658. PubMed
Zhang W, Wang Q, Yu M et al. MicroRNA‐145 function as a cell growth repressor by directly targeting c‐Myc in human ovarian cancer. Technol Cancer Res Treat 2014;13:161–168. PubMed
Samavarchi‐Tehrani P, Golipour A, David L et al. Functional genomics reveals a BMP‐driven mesenchymal‐to‐epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010;7:64–77. PubMed
Unternaehrer JJ, Zhao R, Kim K et al. The epithelial‐mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Rep 2014;3:691–698. PubMed PMC
Høffding MK, Hyttel P. Ultrastructural visualization of the mesenchymal‐to‐epithelial transition during reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cell Res 2014;14:39–53. PubMed
Liao B, Bao X, Liu L et al. MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal‐to‐epithelial transition. J Biol Chem 2011;286:17359–17364. PubMed PMC
Li R, Liang J, Ni S et al. A mesenchymal‐to‐epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010;7:51–63. PubMed
Shu X, Pei D. The function and regulation of mesenchymal‐to‐epithelial transition in somatic cell reprogramming. Curr Opin Genet Dev 2014;28:32–37. PubMed
KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling
miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico