Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review

. 2021 Jun 19 ; 10 (6) : . [epub] 20210619

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34205352

Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect the root growth, and thereby affecting the overall plant growth, health, and productivity. However, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere, and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts to focus on root-rhizosphere and rhizobacterial interactions under stresses, how roots respond to these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on the underlying mechanisms employed by rhizobacteria for improving root architecture and plant tolerance to abiotic stresses.

Zobrazit více v PubMed

Farooq M., Wahid A., Kobayashi N., Fujita D.B.S.M.A., Basra S.M.A. Sustainable Agriculture. Springer; Dordrecht, The Netherlands: 2009. Plant drought stress: Effects, mechanisms and management; pp. 153–188. DOI

Meena K.K., Sorty A.M., Bitla U.M., Choudhary K., Gupta P., Pareek A., Singh D.P., Prabha R., Sahu P.K., Gupta V.K., et al. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017;8:172. doi: 10.3389/fpls.2017.00172. PubMed DOI PMC

Li G., Zhao H., Liu Z., Wang H., Xu B., Guo X. The wisdom of honeybee defenses against environmental stresses. Front. Microbiol. 2018;9:722. doi: 10.3389/fmicb.2018.00722. PubMed DOI PMC

Xu K., Lee Y.S., Li J., Li C. Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses. Synth. Syst. Biotechnol. 2019;4:92–98. doi: 10.1016/j.synbio.2019.02.003. PubMed DOI PMC

Negrão S., Schmöckel S.M., Tester M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017;119:1–11. doi: 10.1093/aob/mcw191. PubMed DOI PMC

Egamberdieva D., Lugtenberg B. Use of Microbes for the Alleviation of Soil Stresses. Volume 1. Springer; New York, NY, USA: 2014. Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants; pp. 73–96.

Timmusk S., Timmusk K., Behers L. Rhizobacterial plant drought stress tolerance enhancement: Towards sustainable water resource management and food security. J. Food Secur. 2013;1:6–9.

Kaushal M., Wani S.P. Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agric. Ecosyst. Environ. 2016;231:68–78. doi: 10.1016/j.agee.2016.06.031. DOI

Kumari B., Mallick M.A., Solanki M.K., Solanki A.C., Hora A., Guo W. Plant Health under Biotic Stress. Springer; Singapore: 2019. Plant growth promoting rhizobacteria (PGPR): Modern prospects for sustainable agriculture; pp. 109–127.

Subiramani S., Ramalingam S., Muthu T., Nile S.H., Venkidasamy B. Phyto-Microbiome in Stress Regulation. Springer; Singapore: 2020. Development of abiotic stress tolerance in crops by plant growth-promoting rhizobacteria (PGPR) pp. 125–145.

Barnawal D., Bharti N., Pandey S.S., Pandey A., Chanotiya C.S., Kalra A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol. Plant. 2017;161:502–514. doi: 10.1111/ppl.12614. PubMed DOI

Morcillo R.J., Manzanera M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites. 2021;11:337. doi: 10.3390/metabo11060337. PubMed DOI PMC

Van Loon L.C. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer; Dordrecht, The Netherlands: 2007. Plant responses to plant growth-promoting rhizobacteria; pp. 243–254.

Bhat M.A., Kumar V., Bhat M.A., Wani I.A., Dar F.L., Farooq I., Bhatti F., Koser R., Rahman S., Jan A.T. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front. Microbiol. 2020;11:1952. doi: 10.3389/fmicb.2020.01952. PubMed DOI PMC

Goswami D., Thakker J.N., Dhandhukia P.C. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2016;2:1127500. doi: 10.1080/23311932.2015.1127500. DOI

Bhattacharyya P.N., Jha D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012;28:1327–1350. doi: 10.1007/s11274-011-0979-9. PubMed DOI

Zhu J.K. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–324. doi: 10.1016/j.cell.2016.08.029. PubMed DOI PMC

Kosová K., Vítámvás P., Urban M.O., Prášil I.T., Renaut J. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front. Plant Sci. 2018;9:122. doi: 10.3389/fpls.2018.00122. PubMed DOI PMC

Singhal P., Jan A.T., Azam M., Haq Q.M.R. Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Front. Life Sci. 2016;9:52–63. doi: 10.1080/21553769.2015.1077478. DOI

Pandey P., Irulappan V., Bagavathiannan M.V., Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017;8:537. doi: 10.3389/fpls.2017.00537. PubMed DOI PMC

Bechtold U., Field B. Molecular Mechanisms Controlling Plant Growth during Abiotic Stress. J. Exp. Bot. 2018;69:2753–2758. doi: 10.1093/jxb/ery157. PubMed DOI PMC

Yang J., Kloepper J.W., Ryu C.M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1–4. doi: 10.1016/j.tplants.2008.10.004. PubMed DOI

Ismail M.A., Amin M.A., Eid A.M., Hassan S.E.D., Mahgoub H.A., Lashin I., Abdelwahab A.T., Azab E., Gobouri A.A., Elkelish A., et al. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells. 2021;10:1059. doi: 10.3390/cells10051059. PubMed DOI PMC

Ahkami A.H., White R.A., III, Handakumbura P.P., Jansson C. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere. 2017;3:233–243. doi: 10.1016/j.rhisph.2017.04.012. DOI

Kohler J., Hernández J.A., Caravaca F., Roldán A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct. Plant Biol. 2008;35:141–151. doi: 10.1071/FP07218. PubMed DOI

Wang Q., Dodd I.C., Belimov A.A., Jiang F. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct. Plant Biol. 2016;43:161–172. doi: 10.1071/FP15200. PubMed DOI

Sivasakthi S., Usharani G., Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res. 2014;9:1265–1277.

Su F., Villaume S., Rabenoelina F., Crouzet J., Clément C., Vaillant-Gaveau N., Dhondt-Cordelier S. Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans. Photosynth. Res. 2017;134:201–214. doi: 10.1007/s11120-017-0435-2. PubMed DOI

Pérez-de-Luque A., Tille S., Johnson I., Pascual-Pardo D., Ton J., Cameron D.D. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-16697-4. PubMed DOI PMC

Badri D.V., Weir T.L., Van der Lelie D., Vivanco J.M. Rhizosphere chemical dialogues: Plant–microbe interactions. Curr. Opin. Biotechnol. 2009;20:642–650. doi: 10.1016/j.copbio.2009.09.014. PubMed DOI

Zhang R., Vivanco J.M., Shen Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 2017;37:8–14. doi: 10.1016/j.mib.2017.03.008. PubMed DOI

Traxler M.F., Kolter R. Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 2015;32:956–970. doi: 10.1039/C5NP00013K. PubMed DOI

el Zahar Haichar F., Santaella C., Heulin T., Achouak W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014;77:69–80. doi: 10.1016/j.soilbio.2014.06.017. DOI

Semchenko M., Saar S., Lepik A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytol. 2014;204:631–637. doi: 10.1111/nph.12930. PubMed DOI

Neal A.L., Ahmad S., Gordon-Weeks R., Ton J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE. 2012;7:e35498. doi: 10.1371/journal.pone.0035498. PubMed DOI PMC

Basiliko N., Stewart H., Roulet N.T., Moore T.R. Do root exudates enhance peat decomposition? Geomicrobiol. J. 2012;29:374–378. doi: 10.1080/01490451.2011.568272. DOI

Korenblum E., Dong Y., Szymanski J., Panda S., Jozwiak A., Massalha H., Meir S., Rogachev I., Aharoni A. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl. Acad. Sci. USA. 2020;117:3874–3883. doi: 10.1073/pnas.1912130117. PubMed DOI PMC

Berlanas C., Berbegal M., Elena G., Laidani M., Cibriain J.F., Sagües A., Gramaje D. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front. Microbiol. 2019;10:1142. doi: 10.3389/fmicb.2019.01142. PubMed DOI PMC

Raklami A., Bechtaoui N., Tahiri A.I., Anli M., Meddich A., Oufdou K. Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front. Microbiol. 2019;10:1106. doi: 10.3389/fmicb.2019.01106. PubMed DOI PMC

Dilnashin H., Birla H., Hoat T.X., Singh H.B., Singh S.P., Keswani C. Molecular Aspects of Plant Beneficial Microbes in Agriculture. Academic Press; Cambridge, MA, USA: 2020. Applications of agriculturally important microorganisms for sustainable crop production; pp. 403–415.

Akiyama K., Hayashi H. Strigolactones: Chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot. 2006;97:925–931. doi: 10.1093/aob/mcl063. PubMed DOI PMC

Ahemad M., Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014;26:1–20. doi: 10.1016/j.jksus.2013.05.001. DOI

Baysal Ö., Lai D., Xu H.H., Siragusa M., Çalışkan M., Carimi F., Da Silva J.A.T., Tör M. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS ONE. 2013;8:e53182. doi: 10.1371/journal.pone.0053182. PubMed DOI PMC

Bona E., Massa N., Novello G., Boatti L., Cesaro P., Todeschini V., Magnelli V., Manfredi M., Marengo E., Mignone F., et al. Metaproteomic characterization of the Vitis vinifera rhizosphere. FEMS Microbiol. Ecol. 2019;95:fiy204. doi: 10.1093/femsec/fiy204. PubMed DOI

Breuillin F., Schramm J., Hajirezaei M., Ahkami A., Favre P., Druege U., Hause B., Bucher M., Kretzschmar T., Bossolini E., et al. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 2010;64:1002–1017. doi: 10.1111/j.1365-313X.2010.04385.x. PubMed DOI

De Cuyper C., Fromentin J., Yocgo R.E., De Keyser A., Guillotin B., Kunert K., Boyer F.D., Goormachtig S. From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J. Exp. Bot. 2015;66:137–146. doi: 10.1093/jxb/eru404. PubMed DOI

Peláez-Vico M.A., Bernabéu-Roda L., Kohlen W., Soto M.J., López-Ráez J.A. Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci. 2016;245:119–127. doi: 10.1016/j.plantsci.2016.01.012. PubMed DOI

Yang J.L., Fan W., Zheng S.J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. J. Zhejiang Univ. Sci. B. 2019;20:513–527. doi: 10.1631/jzus.B1900188. PubMed DOI PMC

Yang L.T., Qi Y.P., Jiang H.X., Chen L.S. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BioMed Res. Int. 2013;2013:173682. doi: 10.1155/2013/173682. PubMed DOI PMC

Wu D., Zhao M., Shen S., Fu Y., Sasaki T., Yamamoto Y., Wei W., Shen H. Al-induced secretion of organic acid, gene expression and root elongation in soybean roots. Acta Physiol. Plant. 2013;35:223–232. doi: 10.1007/s11738-012-1067-y. DOI

Li G.X., Wu X.Q., Ye J.R., Yang H.C. Characteristics of Organic Acid Secretion Associated with the Interaction between Burkholderia multivorans WS-FJ9 and Poplar Root System. BioMed. Res. Int. 2018;2018:9619724. doi: 10.1155/2018/9619724. PubMed DOI PMC

Xiang G., Ma W., Gao S., Jin Z., Yue Q., Yao Y. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO 3-induced organic acid secretion in grapevine roots. BMC Plant Biol. 2019;19:1–15. doi: 10.1186/s12870-019-1990-9. PubMed DOI PMC

Pini F., East A.K., Appia-Ayme C., Tomek J., Karunakaran R., Mendoza-Suárez M., Edwards A., Terpolilli J.J., Roworth J., Downie J.A., et al. Bacterial biosensors for in vivo spatiotemporal mapping of root secretion. Plant Physiol. 2017;174:1289–1306. doi: 10.1104/pp.16.01302. PubMed DOI PMC

Ziegler J., Schmidt S., Chutia R., Müller J., Böttcher C., Strehmel N., Scheel D., Abel S. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J. Exp. Bot. 2016;67:1421–1432. doi: 10.1093/jxb/erv539. PubMed DOI PMC

Sugiyama A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 2019;19:67–73. doi: 10.1016/j.jare.2019.03.005. PubMed DOI PMC

Clemens S., Weber M. The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signal. Behav. 2016;11:e1114197. doi: 10.1080/15592324.2015.1114197. PubMed DOI PMC

Chen Y.T., Wang Y., Yeh K.C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 2017;39:66–72. doi: 10.1016/j.pbi.2017.06.004. PubMed DOI

Pii Y., Mimmo T., Tomasi N., Terzano R., Cesco S., Crecchio C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils. 2015;51:403–415. doi: 10.1007/s00374-015-0996-1. DOI

Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014;32:429–448. doi: 10.1016/j.biotechadv.2013.12.005. PubMed DOI

Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., ISMAIL M.A.S., BABAR M. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak. J. Bot. 2020;52:355–363. doi: 10.30848/PJB2020-2(24). DOI

Chaparro J.M., Sheflin A.M., Manter D.K., Vivanco J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils. 2012;48:489–499. doi: 10.1007/s00374-012-0691-4. DOI

Hashem A., Tabassum B., Abd_Allah E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019;26:1291–1297. doi: 10.1016/j.sjbs.2019.05.004. PubMed DOI PMC

Bharti N., Pandey S.S., Barnawal D., Patel V.K., Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016;6:1–16. doi: 10.1038/srep34768. PubMed DOI PMC

Jatan R., Chauhan P.S., Lata C. Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.) Genomics. 2019;111:509–519. doi: 10.1016/j.ygeno.2018.01.007. PubMed DOI

Gontia-Mishra I., Sapre S., Sharma A., Tiwari S. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol. 2016;18:992–1000. doi: 10.1111/plb.12505. PubMed DOI

Maheshwari D.K., Dheeman S., Agarwal M. Bacterial Metabolites in Sustainable Agroecosystem. Springer; Cham, Switzerland: 2015. Phytohormone-producing PGPR for sustainable agriculture; pp. 159–182.

Prieto P., Schilirò E., Maldonado-González M.M., Valderrama R., Barroso-Albarracín J.B., Mercado-Blanco J. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb. Ecol. 2011;62:435–445. doi: 10.1007/s00248-011-9827-6. PubMed DOI PMC

Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013;4:356. doi: 10.3389/fpls.2013.00356. PubMed DOI PMC

Bishnoi U. PGPR interaction: An ecofriendly approach promoting the sustainable agriculture system. Adv. Bot. Res. 2015;75:81–113.

Reddy P.P. Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Springer; New Delhi, India: 2014. Potential role of PGPR in agriculture; pp. 17–34.

Rahimi S., Talebi M., Baninasab B., Gholami M., Zarei M., Shariatmadari H. The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings. Plant Physiol. Biochem. 2020;155:406–415. doi: 10.1016/j.plaphy.2020.07.045. PubMed DOI

Kumar A., Maurya B.R., Raghuwanshi R. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.) Biocatal. Agric. Biotechnol. 2014;3:121–128. doi: 10.1016/j.bcab.2014.08.003. DOI

Etesami H., Adl S.M. Phyto-Microbiome in Stress Regulation. Springer; Singapore: 2020. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants; pp. 147–203. DOI

Anbi A.A., Mirshekari B., Eivazi A., Yarnia M., Behrouzyar E.K. PGPRs affected photosynthetic capacity and nutrient uptake in different Salvia species. J. Plant Nutr. 2020;43:108–121. doi: 10.1080/01904167.2019.1659342. DOI

Danish S., Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-42374-9. PubMed DOI PMC

Wang D., Gao Y., Li M., Sturrock C.J., Gregory A.S., Zhang X. Change in hydraulic properties of the rhizosphere of maize under different abiotic stresses. Plant Soil. 2020;452:615–626. doi: 10.1007/s11104-020-04592-3. DOI

Saleem M., Law A.D., Sahib M.R., Pervaiz Z.H., Zhang Q. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere. 2018;6:47–51. doi: 10.1016/j.rhisph.2018.02.003. DOI

Khan N., Zandi P., Ali S., Mehmood A., Adnan Shahid M., Yang J. Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Front. Microbiol. 2018;9:2507. doi: 10.3389/fmicb.2018.02507. PubMed DOI PMC

Vescio R., Malacrinò A., Bennett A.E., Sorgonà A. Single and combined abiotic stressors affect maize rhizosphere bacterial microbiota. Rhizosphere. 2021;17:100318. doi: 10.1016/j.rhisph.2021.100318. DOI

Yadav A.N. Agriculturally important microbiomes: Biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed. J. Sci. Tech. Res. 2017;1:861–864.

Qu Q., Zhang Z., Peijnenburg W.J.G.M., Liu W., Lu T., Hu B., Chen J., Chen J., Lin Z., Qian H. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 2020;68:5024–5038. doi: 10.1021/acs.jafc.0c00073. PubMed DOI

Pérez-Jaramillo J.E., Mendes R., Raaijmakers J.M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 2016;90:635–644. doi: 10.1007/s11103-015-0337-7. PubMed DOI PMC

Vives-Peris V., de Ollas C., Gómez-Cadenas A., Pérez-Clemente R.M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 2020;39:3–17. doi: 10.1007/s00299-019-02447-5. PubMed DOI

Timmusk S., Abd El-Daim I.A., Copolovici L., Tanilas T., Kännaste A., Behers L., Nevo E., Seisenbaeva G., Stenström E., Niinemets Ü. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE. 2014;9:e96086. doi: 10.1371/journal.pone.0096086. PubMed DOI PMC

Ali M.A., Naveed M., Mustafa A., Abbas A. Probiotics and Plant Health. Springer; Singapore: 2017. The good, the bad, and the ugly of rhizosphere microbiome; pp. 253–290.

Zerrouk I.Z., Benchabane M., Khelifi L., Yokawa K., Ludwig-Müller J., Baluska F. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J. Plant Physiol. 2016;191:111–119. doi: 10.1016/j.jplph.2015.12.009. PubMed DOI

Nihorimbere V., Ongena M., Smargiassi M., Thonart P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Société Environ. 2011;15:327–337.

Grover M., Ali S.Z., Sandhya V., Rasul A., Venkateswarlu B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microbiol. Biotechnol. 2011;27:1231–1240. doi: 10.1007/s11274-010-0572-7. DOI

Zia R., Nawaz M.S., Siddique M.J., Hakim S., Imran A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2020;242:126626. doi: 10.1016/j.micres.2020.126626. PubMed DOI

Dessaux Y., Grandclément C., Faure D. Engineering the rhizosphere. Trends Plant Sci. 2016;21:266–278. doi: 10.1016/j.tplants.2016.01.002. PubMed DOI

Sharma S., Chandra D., Sharma A.K. Rhizosphere Biology: Interactions between Microbes and Plants. Springer; Singapore: 2021. Rhizosphere Plant–Microbe Interactions under Abiotic Stress; pp. 195–216.

Mommer L., Hinsinger P., Prigent-Combaret C., Visser E.J. Advances in the rhizosphere: Stretching the interface of life. Plant Soil. 2016;407:1–8. doi: 10.1007/s11104-016-3040-9. DOI

Li S., Fu Q., Chen L., Huang W., Yu D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta. 2011;233:1237–1252. doi: 10.1007/s00425-011-1375-2. PubMed DOI

Asseng S., Foster I.A.N., Turner N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011;17:997–1012. doi: 10.1111/j.1365-2486.2010.02262.x. DOI

Boo H.O., Heo B.G., Gorinstein S., Chon S.U. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 2011;181:479–484. doi: 10.1016/j.plantsci.2011.07.013. PubMed DOI

Asati A., Pichhode M., Nikhil K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016;5:56–66.

Halušková L.U., Valentovičová K., Huttová J., Mistrík I., Tamás L. Effect of heavy metals on root growth and peroxidase activity in barley root tip. Acta Physiol. Plant. 2010;32:59. doi: 10.1007/s11738-009-0377-1. DOI

Pavel V.L., Sobariu D.L., Diaconu M., Stătescu F., Gavrilescu M. Effects of heavy metals on Lepidium sativum germination and growth. Environ. Eng. Manag. J. (EEMJ) 2013;12:727–733. doi: 10.30638/eemj.2013.089. DOI

Samardakiewicz S., Woźny A. Cell division in Lemna minor roots treated with lead. Aquat. Bot. 2005;83:289–295. doi: 10.1016/j.aquabot.2005.06.007. DOI

Prasad M.N.V., editor. Heavy Metal Stress in Plants: From Biomolecules to Ecosystems. Springer Science & Business Media; Berlin, Germany: 2013.

Rahman Z., Singh V.P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019;191:1–21. doi: 10.1007/s10661-019-7528-7. PubMed DOI

Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010;8:199–216. doi: 10.1007/s10311-010-0297-8. DOI

Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014;7:60. doi: 10.2478/intox-2014-0009. PubMed DOI PMC

Nazir R., Khan M., Masab M., Rehman H.U., Rauf N.U., Shahab S., Ameer N., Sajed M., Ullah M., Rafeeq M., et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 2015;7:89.

Benáková M., Ahmadi H., Dučaiová Z., Tylová E., Clemens S., Tůma J. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ. Sci. Pollut. Res. 2017;24:20705–20716. doi: 10.1007/s11356-017-9697-7. PubMed DOI

Castillo-Lorenzo E., Pritchard H.W., Finch-Savage W.E., Seal C.E. Comparison of seed and seedling functional traits in native Helianthus species and the crop H. annuus (sunflower) Plant Biol. 2019;21:533–543. doi: 10.1111/plb.12928. PubMed DOI

Ruíz-Sánchez M., Armada E., Muñoz Y., de Salamone I.E.G., Aroca R., Ruíz-Lozano J.M., Azcón R. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol. 2011;168:1031–1037. doi: 10.1016/j.jplph.2010.12.019. PubMed DOI

Saravanakumar D., Kavino M., Raguchander T., Subbian P., Samiyappan R. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol. Plant. 2011;33:203–209. doi: 10.1007/s11738-010-0539-1. DOI

El-Meihy R.M. Evaluation of pgpr as osmoprotective agents for squash (Cucurbita pepo L.) growth under drought stress. Middle East J. 2016;5:583–595.

Gou W., Tian L., Ruan Z., Zheng P.E.N.G., Chen F.U.C.A.I., Zhang L., Cui Z., Zheng P., Li Z., Gao M., et al. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak. J. Bot. 2015;47:581–586.

Lim J.H., Ahn C.H., Jeong H.Y., Kim Y.H., Kim S.D. Genetic monitoring of multi-functional plant growth promoting rhizobacteria Bacillus subtilis AH18 and Bacillus licheniformis K11 by multiplex and real-time polymerase chain reaction in a pepper farming field. J. Korean Soc. Appl. Biol. Chem. 2011;54:221–228. doi: 10.3839/jksabc.2011.036. DOI

Gupta S., Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front. Microbiol. 2019;10:1506. doi: 10.3389/fmicb.2019.01506. PubMed DOI PMC

Tolba S.T., Ibrahim M., Amer E.A., Ahmed D.A. First insights into salt tolerance improvement of Stevia by plant growth-promoting Streptomyces species. Arch. Microbiol. 2019;201:1295–1306. doi: 10.1007/s00203-019-01696-y. PubMed DOI

Habib S.H., Kausar H., Saud H.M. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed. Res. Int. 2016;2016:6284547. doi: 10.1155/2016/6284547. PubMed DOI PMC

Ke T., Guo G., Liu J., Zhang C., Tao Y., Wang P., Xu Y., Chen L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 2021;271:116314. doi: 10.1016/j.envpol.2020.116314. PubMed DOI

Awan S.A., Ilyas N., Khan I., Raza M.A., Rehman A.U., Rizwan M., Rastogi A., Tariq R., Brestic M. Bacillus siamensis Reduces Cadmium Accumulation and Improves Growth and Antioxidant Defense System in Two Wheat (Triticum aestivum L.) Varieties. Plants. 2020;9:878. doi: 10.3390/plants9070878. PubMed DOI PMC

Akhtar N., Ilyas N., Yasmin H., Sayyed R.Z., Hasnain Z., A Elsayed E., El Enshasy H.A. Role of Bacillus cereus in Improving the Growth and Phytoextractability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules. 2021;26:1569. doi: 10.3390/molecules26061569. PubMed DOI PMC

Belimov A.A., Safronova V.I., Tsyganov V.E., Borisov A.Y., Kozhemyakov A.P., Stepanok V.V., Martenson A.M., Gianinazzi-Pearson V., Tikhonovich I.A. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.) Euphytica. 2003;131:25–35. doi: 10.1023/A:1023048408148. DOI

He X., Xu M., Wei Q., Tang M., Guan L., Lou L., Xu X., Hu Z., Chen Y., Shen Z., et al. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2020;205:111333. doi: 10.1016/j.ecoenv.2020.111333. PubMed DOI

Zafar-ul-Hye M., Tahzeeb-ul-Hassan M., Wahid A., Danish S., Khan M.J., Fahad S., Brtnicky M., Hussain G.S., Battaglia M.L., Datta R. Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci. Rep. 2021;11:1–20. doi: 10.1038/s41598-021-86082-9. PubMed DOI PMC

Ashraf A., Bano A., Ali S.A. Characterisation of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant. Plant Biol. 2019;21:762–769. doi: 10.1111/plb.12972. PubMed DOI

Abd El-Daim I.A., Bejai S., Meijer J. Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci. Rep. 2019;9:1–18. doi: 10.1038/s41598-019-52567-x. PubMed DOI PMC

Khan M.A., Asaf S., Khan A.L., Jan R., Kang S.M., Kim K.M., Lee I.J. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS ONE. 2020;15:e0232228. doi: 10.1371/journal.pone.0232228. PubMed DOI PMC

Gururani M.A., Upadhyaya C.P., Baskar V., Venkatesh J., Nookaraju A., Park S.W. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 2013;32:245–258. doi: 10.1007/s00344-012-9292-6. DOI

Marulanda A., Azcón R., Chaumont F., Ruiz-Lozano J.M., Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 2010;232:533–543. doi: 10.1007/s00425-010-1196-8. PubMed DOI

Khan N., Bano A. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Springer; Singapore: 2019. Rhizobacteria and abiotic stress management; pp. 65–80.

Ghosh P.K., De T.K., Maiti T.K. Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review. Role of Rhizospheric Microbes in Soil. Springer; Singapore: 2018. pp. 57–106. DOI

Niu X., Song L., Xiao Y., Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 2018;8:2580. doi: 10.3389/fmicb.2017.02580. PubMed DOI PMC

Batool T., Ali S., Seleiman M.F., Naveed N.H., Ali A., Ahmed K., Abid M., Rizwan M., Shahid M.R., Alotaibi M., et al. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 2020;10:1–19. doi: 10.1038/s41598-020-73489-z. PubMed DOI PMC

Kumar A., Patel J.S., Meena V.S., Srivastava R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal. Agric. Biotechnol. 2019;20:101271. doi: 10.1016/j.bcab.2019.101271. DOI

Shultana R., Tan Kee Zuan A., Yusop M.R., Mohd Saud H., Ayanda A.F. Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy. 2020;10:1030. doi: 10.3390/agronomy10071030. DOI

Kechid M., Desbrosses G., Rokhsi W., Varoquaux F., Djekoun A., Touraine B. The NRT 2.5 and NRT 2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM 196. New Phytol. 2013;198:514–524. doi: 10.1111/nph.12158. PubMed DOI

Bresson J., Vasseur F., Dauzat M., Labadie M., Varoquaux F., Touraine B., Vile D. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery. PLoS ONE. 2014;9:e107607. doi: 10.1371/journal.pone.0107607. PubMed DOI PMC

Galland M., Gamet L., Varoquaux F., Touraine B., Touraine B., Desbrosses G. The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci. 2012;190:74–81. doi: 10.1016/j.plantsci.2012.03.008. PubMed DOI

Islam F., Yasmeen T., Ali Q., Ali S., Arif M.S., Hussain S., Rizvi H. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 2014;104:285–293. doi: 10.1016/j.ecoenv.2014.03.008. PubMed DOI

Sultana S., Paul S.C., Parveen S., Alam S., Rahman N., Jannat B., Hoque S., Rahman M.T., Karim M.M. Isolation and identification of salt-tolerant plant growth-promoting rhizobacteria and its application for rice cultivation under salt stress. Can. J. Microbiol. 2019 doi: 10.1139/cjm-2019-0323. PubMed DOI

Rajput L.U.B.N.A., Imran A., Mubeen F., Hafeez F.Y. Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak. J. Bot. 2013;45:1955–1962.

Damodaran T., Sah V., Rai R.B., Sharma D.K., Mishra V.K., Jha S.K., Kannan R. Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr. J. Microbiol. Res. 2013;7:5082–5089.

Vimal S.R., Singh J.S. Salt tolerant PGPR and FYM application in saline soil paddy agriculture sustainability. Clim. Chang. Environ. Sustain. 2019;7:61–71. doi: 10.5958/2320-642X.2019.00008.5. DOI

Nawaz A., Shahbaz M., Asadullah A.I., Marghoob M.U., Imtiaz M., Mubeen F. Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Front. Microbiol. 2020;11:2019. doi: 10.3389/fmicb.2020.02019. PubMed DOI PMC

Bal H.B., Nayak L., Das S., Adhya T.K. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 2013;366:93–105. doi: 10.1007/s11104-012-1402-5. DOI

Egamberdieva D., Wirth S., Bellingrath-Kimura S.D., Mishra J., Arora N.K. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front. Microbiol. 2019;10:2791. doi: 10.3389/fmicb.2019.02791. PubMed DOI PMC

Silambarasan S., Logeswari P., Cornejo P., Kannan V.R. Role of plant growth–promoting rhizobacterial consortium in improving the Vigna radiata growth and alleviation of aluminum and drought stresses. Environ. Sci. Pollut. Res. 2019;26:27647–27659. doi: 10.1007/s11356-019-05939-9. PubMed DOI

Khan M.A., Asaf S., Khan A.L., Adhikari A., Jan R., Ali S., Imran M., Kim K.M., Lee I.J. Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. BioMed Res. Int. 2019;2019:9530963. doi: 10.1155/2019/9530963. PubMed DOI PMC

Zhu X., Song F., Xu H. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza. 2010;20:325–332. doi: 10.1007/s00572-009-0285-7. PubMed DOI

Li L., Ye Y., Pan L., Zhu Y., Zheng S., Lin Y. The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochem. Biophys. Res. Commun. 2009;387:778–783. doi: 10.1016/j.bbrc.2009.07.113. PubMed DOI

Paulucci N.S., Gallarato L.A., Reguera Y.B., Vicario J.C., Cesari A.B., de Lema M.B.G., Dardanelli M.S. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol. Res. 2015;173:1–9. doi: 10.1016/j.micres.2014.12.012. PubMed DOI

Kang C.H., So J.S. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecol. Eng. 2016;97:304–312. doi: 10.1016/j.ecoleng.2016.10.016. DOI

Issa A., Esmaeel Q., Sanchez L., Courteaux B., Guise J.F., Gibon Y., Ballias P., Clément C., Jacquard C., Vaillant-Gaveau N., et al. Impacts of Paraburkholderia phytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature. Front. Plant Sci. 2018;9:1397. doi: 10.3389/fpls.2018.01397. PubMed DOI PMC

Rodriguez R.J., Henson J., Van Volkenburgh E., Hoy M., Wright L., Beckwith F., Kim Y.O., Redman R.S. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2008;2:404–416. doi: 10.1038/ismej.2007.106. PubMed DOI

Ali S.Z., Sandhya V., Grover M., Kishore N., Rao L.V., Venkateswarlu B. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils. 2009;46:45–55. doi: 10.1007/s00374-009-0404-9. DOI

Ali S.Z., Sandhya V., Grover M., Linga V.R., Bandi V. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant Interact. 2011;6:239–246. doi: 10.1080/17429145.2010.545147. DOI

Chang C.H., Yang S.S. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour. Technol. 2009;100:1648–1658. doi: 10.1016/j.biortech.2008.09.009. PubMed DOI

Desoky E.S.M., Merwad A.R.M., Semida W.M., Ibrahim S.A., El-Saadony M.T., Rady M.M. Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant. Ecotox. Environ. Safety. 2020;198:110685. doi: 10.1016/j.ecoenv.2020.110685. PubMed DOI

Ullah S., Ashraf M., Asghar H.N., Iqbal Z., Ali R. Review Plant growth promoting rhizobacteria-mediated amelioration of drought in crop plants. Soil Environ. 2019;38:1–20. doi: 10.25252/SE/19/71760. DOI

Ghosh D., Gupta A., Mohapatra S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J. Microbiol. Biotechnol. 2019;35:1–15. doi: 10.1007/s11274-019-2659-0. PubMed DOI

Tiwari S., Muthamilarasan M., Lata C. Genome-wide identification and expression analysis of Arabidopsis GRAM-domain containing gene family in response to abiotic stresses and PGPR treatment. J. Biotechnol. 2021;325:7–14. doi: 10.1016/j.jbiotec.2020.11.021. PubMed DOI

Merdy P., Gharbi L.T., Lucas Y. Pb, Cu and Cr interactions with soil: Sorption experiments and modelling. Colloids Surf. A Physicochem. Eng. Asp. 2009;347:192–199. doi: 10.1016/j.colsurfa.2009.04.004. DOI

Kang S.M., Shahzad R., Khan M.A., Hasnain Z., Lee K.E., Park H.S., Kim L.R., Lee I.J. Ameliorative effect of indole-3-acetic acid-and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress. J. Plant Interact. 2021;16:30–41. doi: 10.1080/17429145.2020.1864039. DOI

Javaherdashti R. Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl. Microbiol. Biotechnol. 2011;91:1507–1517. doi: 10.1007/s00253-011-3455-4. PubMed DOI

Khanna K., Jamwal V.L., Gandhi S.G., Ohri P., Bhardwaj R. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-019-41899-3. PubMed DOI PMC

Gadd G.M., Bahri-Esfahani J., Li Q., Rhee Y.J., Wei Z., Fomina M., Liang X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014;28:36–55. doi: 10.1016/j.fbr.2014.05.001. DOI

Khan N., Ali S., Tariq H., Latif S., Yasmin H., Mehmood A., Shahid M.A. Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress. Agronomy. 2020;10:1683. doi: 10.3390/agronomy10111683. DOI

Etesami H., Maheshwari D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018;156:225–246. doi: 10.1016/j.ecoenv.2018.03.013. PubMed DOI

Arora N.K., Fatima T., Mishra J., Mishra I., Verma S., Verma R., Verma M., Bhattacharya A., Verma P., Mishra P., et al. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J. Adv. Res. 2020;26:69–82. doi: 10.1016/j.jare.2020.07.003. PubMed DOI PMC

Khan N., Bano A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE. 2019;14:e0222302. doi: 10.1371/journal.pone.0222302. PubMed DOI PMC

Kumar K., Amaresan N., Madhuri K. Alleviation of the adverse effect of salinity stress by inoculation of plant growth promoting rhizobacteria isolated from hot humid tropical climate. Ecol. Eng. 2017;102:361–366. doi: 10.1016/j.ecoleng.2017.02.023. DOI

ALKahtani M.D., Fouda A., Attia K.A., Al-Otaibi F., Eid A.M., Ewais E.E.D., Hijri M., St-Arnaud M., Hassan S.E.D., Khan N., et al. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy. 2020;10:1325. doi: 10.3390/agronomy10091325. DOI

Tiwari S., Lata C. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front. Plant Sci. 2018;9:452. doi: 10.3389/fpls.2018.00452. PubMed DOI PMC

He Z.L., Yang X.E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. Sci. B. 2007;8:192–207. PubMed PMC

Moreira H., Pereira S.I., Marques A.P., Rangel A.O., Castro P.M. Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil—Effect of the inoculum size. Geoderma. 2016;278:1–11. doi: 10.1016/j.geoderma.2016.05.003. DOI

Hartman K., Tringe S.G. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 2019;476:2705–2724. doi: 10.1042/BCJ20180615. PubMed DOI PMC

Chen Y., Palta J.A., Wu P., Siddique K.H. Crop root systems and rhizosphere interactions. Plant Soil. 2019;439:1–5. doi: 10.1007/s11104-019-04154-2. DOI

Naylor D., Coleman-Derr D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 2018;8:2223. doi: 10.3389/fpls.2017.02223. PubMed DOI PMC

Liang J.G., Tao R.X., Hao Z.N., Wang L., Zhang X. Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. Afr. J. Biotechnol. 2011;10:6920–6927.

Rahmoune B., Morsli A., Khelifi-Slaoui M., Khelifi L., Strueh A., Erban A., Kopka J., Prell J., van Dongen J.T. Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. J. Plant Interact. 2017;12:1–6. doi: 10.1080/17429145.2016.1269215. DOI

Turan M., Gulluce M., Cakmakci R., Oztas T., Sahin F., Gilkes R.J., Prakongkep N. The effect of PGPR strain on wheat yield and quality parameters; Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World; Brisbane, Australia. 1–6 August 2010; pp. 209–212.

Erturk Y., Ercisli S., Haznedar A., Cakmakci R. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol. Res. 2010;43:91–98. doi: 10.4067/S0716-97602010000100011. PubMed DOI

Curá J.A., Franz D.R., Filosofía J.E., Balestrasse K.B., Burgueño L.E. Inoculation with Azospirillum sp.; Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms. 2017;5:41. doi: 10.3390/microorganisms5030041. PubMed DOI PMC

Almaghrabi O.A., Massoud S.I., Abdelmoneim T.S. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 2013;20:57–61. doi: 10.1016/j.sjbs.2012.10.004. PubMed DOI PMC

Jones P., Garcia B.J., Furches A., Tuskan G.A., Jacobson D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 2019;10:862. doi: 10.3389/fpls.2019.00862. PubMed DOI PMC

De-la-Peña C., Loyola-Vargas V.M. Biotic interactions in the rhizosphere: A diverse cooperative enterprise for plant productivity. Plant Physiol. 2014;166:701–719. doi: 10.1104/pp.114.241810. PubMed DOI PMC

De la Fuente Canto C., Simonin M., King E., Moulin L., Bennett M.J., Castrillo G., Laplaze L. An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. Plant J. 2020;103:951–964. doi: 10.1111/tpj.14781. PubMed DOI

Jochum M.D., McWilliams K.L., Borrego E.J., Kolomiets M.V., Niu G., Pierson E.A., Jo Y.K. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front. Microbiol. 2019;10:2106. doi: 10.3389/fmicb.2019.02106. PubMed DOI PMC

Mishra J., Fatima T., Arora N.K. Plant Microbiome: Stress Response. Springer; Singapore: 2018. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress; pp. 127–163.

Gamez R., Cardinale M., Montes M., Ramirez S., Schnell S., Rodriguez F. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla) Microbiol. Res. 2019;220:12–20. doi: 10.1016/j.micres.2018.11.006. PubMed DOI

Kousar B., Bano A., Khan N. PGPR modulation of secondary metabolites in tomato infested with Spodoptera litura. Agronomy. 2020;10:778. doi: 10.3390/agronomy10060778. DOI

Vílchez J.I., Yang Y., He D., Zi H., Peng L., Lv S., Kaushal R., Wang W., Huang W., Liu R., et al. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nat. Plants. 2020;6:983–995. doi: 10.1038/s41477-020-0707-2. PubMed DOI

Zhou D., Huang X.F., Chaparro J.M., Badri D.V., Manter D.K., Vivanco J.M., Guo J. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil. 2016;401:259–272. doi: 10.1007/s11104-015-2743-7. DOI

Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016;184:13–24. doi: 10.1016/j.micres.2015.12.003. PubMed DOI

Naseem H., Ahsan M., Shahid M.A., Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol. 2018;58:1009–1022. doi: 10.1002/jobm.201800309. PubMed DOI

Singh B.N., Hidangmayum A., Singh A., Shera S.S., Dwivedi P. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer; Berlin, Germany: 2019.

Bakka K., Challabathula D. Plant Microbe Symbiosis. Springer; Cham, Switzerland: 2020. Amelioration of Salt Stress Tolerance in Plants by Plant Growth-Promoting Rhizobacteria: Insights from “Omics” Approaches; pp. 303–330.

Lim J.H., Kim S.D. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol. J. 2013;29:201. doi: 10.5423/PPJ.SI.02.2013.0021. PubMed DOI PMC

Abbas R., Rasul S., Aslam K., Baber M., Shahid M., Mubeen F., Naqqash T. Halotolerant PGPR: A hope for cultivation of saline soils. J. King Saud Univ. Sci. 2019;31:1195–1201. doi: 10.1016/j.jksus.2019.02.019. DOI

Upadhyay S.K., Singh D.P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol. 2015;17:288–293. doi: 10.1111/plb.12173. PubMed DOI

Kumar A., Verma J.P. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018;207:41–52. doi: 10.1016/j.micres.2017.11.004. PubMed DOI

Li H., Qiu Y., Yao T., Ma Y., Zhang H., Yang X. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res. 2020;199:104577. doi: 10.1016/j.still.2020.104577. DOI

Khan M.N.N., Ahmad Z., Ghafoor A. Genetic diversity and disease response of rust in bread wheat collected from Waziristan Agency, Pakistan. Int. J. Biodivers. Conserv. 2011;3:10–18.

Dimkpa C., Weinand T., Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009;32:1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x. PubMed DOI

Pare P.W., Farag M.A., Krishnamachari V., Zhang H., Ryu C.M., Kloepper J.W. Elicitors and priming agents initiate plant defense responses. Photosynth. Res. 2005;85:149–159. doi: 10.1007/s11120-005-1001-x. PubMed DOI

Yu P., Hochholdinger F. The role of host genetic signatures on root–microbe interactions in the rhizosphere and endosphere. Front. Plant Sci. 2018;9:1896. doi: 10.3389/fpls.2018.01896. PubMed DOI PMC

Barea J.M., Pozo M.J., Azcon R., Azcon-Aguilar C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005;56:1761–1778. doi: 10.1093/jxb/eri197. PubMed DOI

Nanjundappa A., Bagyaraj D.J., Saxena A.K., Kumar M., Chakdar H. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol. Biotechnol. 2019;6:1–10. doi: 10.1186/s40694-019-0086-5. PubMed DOI PMC

Ivanov V.B., Bystrova E.I., Seregin I.V. Comparative impacts of heavy metals on root growth as related to their specificity and selectivity. Russ. J. Plant Physiol. 2003;50:398–406. doi: 10.1023/A:1023838707715. DOI

Sandhya V.S.K.Z., Ali S.Z., Grover M., Reddy G., Venkateswarlu B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 2010;62:21–30. doi: 10.1007/s10725-010-9479-4. DOI

Misra J., Pandey V., Singh N. Effects of some heavy metals on root growth of germinating seeds of Vicia faba. J. Environ. Sci. Health Part A. 1994;29:2229–2234.

Luo H., Xu H., Chu C., He F., Fang S. High temperature can change root system architecture and intensify root interactions of plant seedlings. Front. Plant Sci. 2020;11:160. doi: 10.3389/fpls.2020.00160. PubMed DOI PMC

Doty S.L., Oakley B., Xin G., Kang J.W., Singleton G., Khan Z., Vajzovic A., Staley J.T. Diazotrophic endophytes of native black cottonwood and willow. Symbiosis. 2009;47:23–33. doi: 10.1007/BF03179967. DOI

Santos F., Peñaflor M.F.G., Paré P.W., Sanches P.A., Kamiya A.C., Tonelli M., Nardi C., Bento J.M.S. A novel interaction between plant-beneficial rhizobacteria and roots: Colonization induces corn resistance against the root herbivore Diabrotica speciosa. PLoS ONE. 2014;9:e113280. doi: 10.1371/journal.pone.0113280. PubMed DOI PMC

Desbrosses G., Contesto C., Varoquaux F., Galland M., Touraine B. PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signal. Behav. 2009;4:319–321. doi: 10.4161/psb.4.4.8106. PubMed DOI PMC

Hassan M.K., McInroy J.A., Kloepper J.W. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A review. Agriculture. 2019;9:142. doi: 10.3390/agriculture9070142. DOI

Rosier A., Medeiros F.H., Bais H.P. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil. 2018;428:35–55. doi: 10.1007/s11104-018-3679-5. DOI

Paredes-Páliz K., Rodríguez-Vázquez R., Duarte B., Caviedes M.A., Mateos-Naranjo E., Redondo-Gómez S., Caçador M.I., Rodríguez-Llorente I.D., Pajuelo E. Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress. Plant Biol. 2018;20:497–506. doi: 10.1111/plb.12693. PubMed DOI

Mhlongo M.I., Piater L.A., Madala N.E., Labuschagne N., Dubery I.A. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 2018;9:112. doi: 10.3389/fpls.2018.00112. PubMed DOI PMC

Igiehon N.O., Babalola O.O. Below-ground-above-ground plant-microbial interactions: Focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol. J. 2018;12:261. doi: 10.2174/1874285801812010261. PubMed DOI PMC

Parmar N., Dufresne J. Bioaugmentation, Biostimulation and Biocontrol. Springer; Berlin/Heidelberg, Germany: 2011. Beneficial interactions of plant growth promoting rhizosphere microorganisms; pp. 27–42.

Castro-Sowinski S., Herschkovitz Y., Okon Y., Jurkevitch E. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 2007;276:1–11. doi: 10.1111/j.1574-6968.2007.00878.x. PubMed DOI

Liu F.C., Xing S.J., Ma H.L., Du Z.Y., Ma B.Y. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2014;25:1475–1482. PubMed

Majeed A., Abbasi M.K., Hameed S., Imran A., Rahim N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 2015;6:198. doi: 10.3389/fmicb.2015.00198. PubMed DOI PMC

Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016;6:1143. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC

Yadav S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 2010;76:167–179. doi: 10.1016/j.sajb.2009.10.007. DOI

Fahr M., Laplaze L., Bendaou N., Hocher V., El Mzibri M., Bogusz D., Smouni A. Effect of lead on root growth. Front. Plant Sci. 2013;4:175. doi: 10.3389/fpls.2013.00175. PubMed DOI PMC

Chibuike G.U., Obiora S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014;2014:752708. doi: 10.1155/2014/752708. DOI

Ahmed S., Choudhury A.R., Chatterjee P., Samaddar S., Kim K., Jeon S., Sa T. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Springer; Singapore: 2019. The role of plant growth-promoting rhizobacteria to modulate proline biosynthesis in plants for salt stress alleviation; pp. 1–20.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...