Efficacy of biological agents and fillers seed coating in improving drought stress in anise
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35937352
PubMed Central
PMC9355580
DOI
10.3389/fpls.2022.955512
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas fluorescent, Trichoderma harzianum, anise, drought stress, seed coating,
- Publikační typ
- časopisecké články MeSH
Many plants, including anise, have tiny, non-uniform seeds with low and light nutrient reserves. The seeds also show a weak establishment, especially under stressful conditions where their accurate planting in the soil and optimal yield are tough. This study sought to improve anise seeds' physical and physiological characteristics under drought stress. To this end, two factorial experiments under laboratory and greenhouse conditions were performed in a completely randomized design with 4 and 3 replications, respectively. Five levels of seed inoculation (inoculation with T36 and T43 of Trichoderma harzianum, and CHA0 and B52 of Pseudomonas fluorescent, and non-inoculation which means that control seeds were not treated with microbial inoculant), three levels of coating (K10P20, K10P10V5, and non-coating), and three levels of drought stress (0, -3, and -6 bars) were considered as the factorial experiment [vermiculite (V), kaolin (K), and perlite (P) numbers refer to the amount of material used in grams]. The laboratory experiment revealed that the combined treatments of bio-agents with coating increased the physical and germination characteristics of anise seeds compared to the control treatment. The greenhouse experiment showed that drought stress reduced the initial growth indices. Still, the combination treatments of biological agents and coating (fillers) could alleviate the destructive effects of drought stress to some extent and improve these indices. The best treatment was provided by T36 and K10P20 in both experiments, which significantly increased morphological indices.
Department of Agronomy and Plant Breeding Faculty of Agriculture University of Tehran Tehran Iran
Department of Agronomy and Plant Breeding Yasouj University Yasouj Iran
Department of Botany and Microbiology College of Science King Saud University Riyadh Saudi Arabia
Department of Botany Hindu College Moradabad India
Department of Geology and Pedology Mendel University in Brno Brno Czechia
Finnish Museum of Natural History University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Abdul-Baki A. A., Anderson J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 13 630–633. 10.2135/cropsci1973.0011183X001300060013x DOI
Aćimović M., Korać J., Jaćimović G., Oljača S., ETHukanović L., Vuga-Janjatov V. (2014). Influence of ecological conditions on seeds traits and essential oil contents in anise (Pimpinella anisum L.). Not. Bot. Horti Agrobot. Cluj Napoca 42 232–238.
Ahmed F., Baloch D., Sadiq S., Ahmed S., Hanan A., Taran S., et al. (2014). Plant growth regulators induced drought tolerance in sunflower (Helianthus annuus L.) hybrids. JAPS: J. Anim. Plant Sci. 24 886–890.
Bakhit M., Moradi A. (2017). The effect of bio-priming on germination and deteriora tion control of flax seeds (Linum usitatissimum). Seed Sci. Technol. 45 398–410. 10.15258/sst.2017.45.2.03 DOI
Bargamadi R. (2013). The Effect of Seed Coating with Trichoderma spp. and Bacteria spp. and Seed Storage Conditions on Growth Components and Control of Soybean Rhizoctonia. Master Thesis. Tehran: University of Tehran.
Bettaieb Rebey I., Bourgou S., Aidi Wannes W., Hamrouni Selami I., Saidani Tounsi M., Marzouk B., et al. (2018). Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds. Plant Biosyst. Int. J. Dealing Aspects Plant Biol. 152 971–978. 10.1080/11263504.2017.1403394 DOI
Bodsworth S., Bewley J. (1981). Osmotic priming of seeds of crop species with polyethylene glycol as a means of enhancing early and synchronous germination at cool temperatures. Can. J. Bot. 59 672–676. 10.1139/b81-094 DOI
Bright J. P., Karunanadham K., Maheshwari H. S., Karuppiah E. A. A., Thankappan S., Nataraj R., et al. (2022). Seed-borne probiotic yeasts foster plant growth and elicit health protection in black gram (Vigna mungo L.). Sustainability 14:4618. 10.3390/su14084618 DOI
Caverzan A., Giacomin R., Müller M., Biazus C., Lângaro N. C., Chavarria G. (2018). How does seed vigor affect soybean yield components? Agron. J. 110 1318–1327. 10.2134/agronj2017.11.0670 DOI
Contreras-Cornejo H. A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149 1579–1592. 10.1104/pp.108.130369 PubMed DOI PMC
Egli D., Tekrony D. (1995). Soybean seed germination, vigor and field emergence. Seed Sci. Technol. 23 595–607.
Ellis R., Roberts E. (1981). The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9 373–409.
Farhoudi R., Khordahampour Z. (2017). Effect of salt and drought stresses on germination, seedling growth and cell membrane stability of anise (Pimpinella anisum) and fennel (Foeniculum vulgare). Iran. J. Seed Res. 4 103–110. 10.29252/yujs.4.1.103 DOI
Fazeli-Nasab B., Sayyed R. Z. (2019). “Plant growth-promoting rhizobacteria and salinity stress: a journey into the soil,” in Plant Growth Promoting Rhizobacteria for Sustainable Stress Management : Volume 1: Rhizobacteria in Abiotic Stress Management, eds Sayyed R. Z., Arora N. K., Reddy M. S. (Singapore: Springer Singapore; ), 21–34. 10.1007/978-981-13-6536-2_2 DOI
Fazeli-Nasab B., Sayyed R., Mojahed L. S., Rahmani A. F., Ghafari M., Antonius S. (2022a). Biofilm production: a strategic mechanism for survival of microbes under stress conditions. Biocatal. Agric. Biotechnol. 42:102337.
Fazeli-Nasab B., Shahraki-Mojahed L., Piri R., Sobhanizadeh A. (2022b). “Trichoderma: improving growth and tolerance to biotic and abiotic stresses in plants,” in Trends of Applied Microbiology for Sustainable Economy, (Amsterdam: Elsevier; ), 525–564. 10.1016/B978-0-323-91595-3.00004-5 DOI
Finch-Savage W. E., Bassel G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. J. Exp. Bot. 67 567–591. 10.1093/jxb/erv490 PubMed DOI
Guler N. S., Pehlivan N., Karaoglu S. A., Guzel S., Bozdeveci A. (2016). Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol. Plant. 38 1–9. 10.1007/s11738-016-2153-3 DOI
Hafeez F. Y., Safdar M. E., Chaudhry A., Malik K. (2004). Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Aust. J. Exp. Agric. 44 617–622. 10.1071/EA03074 DOI
Harman G. E., Björkman T., Ondik K., Shoresh M. (2008). Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlooks Pest Manag. 19 24–29. 10.1564/19feb08 PubMed DOI
Hojjat S. S. (2020). Effects of TiO2 nanoparticles on germination and growth characteristics of grass pea (Lathyrus sativus L.) Seed under drought stress. Nanotechnol. Russ. 15 204–211. 10.1134/S199507802002010X DOI
Howard R. M. (2010). Hydroponic Cultivation (Trans. Jafarnia, S., Khosroshahi, A., Safaei Khorram, M.). Iran: Mashhad Publications.
Ilyas N., Mumtaz K., Akhtar N., Yasmin H., Sayyed R., Khan W., et al. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 12:8876. 10.3390/su12218876 DOI
Javed T., Afzal I., Shabbir R., Ikram K., Zaheer M. S., Faheem M., et al. (2022). Seed coating technology: an innovative and sustainable approach for improving seed quality and crop performance. J. Saudi Soc. Agric. Sci. in press., 10.1016/j.jssas.2022.03.003 DOI
Kalam S., Basu A., Ahmad I., Sayyed R., El-Enshasy H. A., Dailin D. J., et al. (2020). Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front. Microbiol. 11:580024. 10.3389/fmicb.2020.580024 PubMed DOI PMC
Kapadia C., Sayyed R., El Enshasy H. A., Vaidya H., Sharma D., Patel N., et al. (2021). Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability 13:8369. 10.3390/su13158369 DOI
Kasim W. A., Osman M. E., Omar M. N., El-Daim A., Islam A., Bejai S., et al. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. J. Plant Growth Regul. 32 122–130. 10.1007/s00344-012-9283-7 DOI
Kavusi E., Shahi Khalaf, Ansar B., Dehghanian Z., Asgari Lajayer B., Nobaharan K., et al. (2022). Delivery of beneficial microbes via seed coating for medicinal and aromatic plant production: a critical review. J. Plant Growth Regul. 2022 1–23. 10.1007/s00344-022-10597-2 DOI
Khan M. N., Zhang J., Luo T., Liu J., Ni F., Rizwan M., et al. (2019). Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiol. Plant. 41 1–13. 10.1007/s11738-019-2812-2 DOI
Khan N., Ali S., Shahid M. A., Mustafa A., Sayyed R., Curá J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10:1551. 10.3390/cells10061551 PubMed DOI PMC
Khan N., Bano A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PloS One 14:e0222302. 10.1371/journal.pone.0222302 PubMed DOI PMC
Kour D., Rana K. L., Yadav A. N., Yadav N., Kumar V., Kumar A., et al. (2019). “Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants,” in Plant Growth Promoting Rhizobacteria for Sustainable Stress Management : Volume 1: Rhizobacteria in Abiotic Stress Management, eds Sayyed R. Z., Arora N. K., Reddy M. S. (Singapore: Springer Singapore; ), 255–308. 10.1007/978-981-13-6536-2_13 DOI
Ma Y., Látr A., Rocha I., Freitas H., Vosátka M., Oliveira R. S. (2019). Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy 9:33. 10.3390/agronomy9010033 DOI
Mahpara S., Zainab A., Ullah R., Kausar S., Bilal M., Latif M. I., et al. (2022). The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PloS One 17:e0262937. 10.1371/journal.pone.0262937 PubMed DOI PMC
Michel B. E., Kaufmann M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51 914–916. 10.1104/pp.51.5.914 PubMed DOI PMC
Moghaddam M., Moradi A., Salehi A., Rezaei R. (2018). The effect of various biological treatments on germination and some seedling indices of fennel (Foeniculum vulgare L.) under drought stress. Iran. J. Seed Sci. Technol. 7 e59–e74. 10.22034/IJSST.2019.110904.1100 DOI
Naseem H., Ahsan M., Shahid M. A., Khan N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol. 58 1009–1022. 10.1002/jobm.201800309 PubMed DOI
Nithyapriya S., Lalitha S., Sayyed R., Reddy M., Dailin D. J., El Enshasy H. A., et al. (2021). Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 13:5394. 10.3390/su13105394 DOI
Okoth S. A., Otadoh J. A., Ochanda J. O. (2011). Improved seedling emergence and growth of maize and beans by Trichoderma harziunum. Trop. Subtrop. Agroecosyst. 13 65–71.
Osiewacz H. D. (2002). Molecular Biology of Fungal Development. Boca Raton, FL: CRC Press.
Patel P., Shaikh S., Sayyed R. (2018). Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ. Sustain. 1 81–87. 10.1007/s42398-018-0005-3 DOI
Piri R., Moradi A., Balouchi H. (2020). Improvement of salinity stress in cumin (Cuminum cyminum) seedling by inoculation with Rhizobacteria. Indian J. Agric. Sci. 90 371–375.
Piri R., Moradi A., Balouchi H., Salehi A. (2019). Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Sci. Hortic. 257:108667. 10.1016/j.scienta.2019.108667 DOI
Reddy Y., Khan M. (2001). Effect of osmopriming on germination, seedling growth and vigour of khirni (Mimusops hexandra) seeds. Seed Res. 29 24–27.
Rezayian M., Niknam V., Ebrahimzadeh H. (2018). Effects of drought stress on the seedling growth, development, and metabolic activity in different cultivars of canola. Soil Sci. Plant Nutr. 64 360–369. 10.1080/00380768.2018.1436407 DOI
Rocha I., Ma Y., Carvalho M. F., Magalhães C., Janoušková M., Vosátka M., et al. (2019). Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Arch. Agron. Soil Sci. 65 31–43. 10.1080/03650340.2018.1479061 DOI
Sandhya V., Sk Z. A., Grover M., Reddy G., Venkateswarlu B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertil. Soils 46 17–26. 10.1007/s00374-009-0401-z DOI
Sayyed R., Seifi S., Patel P., Shaikh S., Jadhav H., Enshasy H. E. (2019). Siderophore production in groundnut rhizosphere isolate. Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environ. Sustain. 2 117–124. 10.1007/s42398-019-00070-4 DOI
Shatpathy P., Kar M., Dwibedi S. K., Dash A. (2018). Seed priming with salicylic acid improves germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 induced water stress. Int. J. Curr. Microbiol. Appl. Sci. 7 907–924. 10.20546/ijcmas.2018.710.101 DOI
Sheikh T., Hamid B., Baba Z., Iqbal S., Yatoo A., Fatima S., et al. (2022). Extracellular polymeric substances in psychrophilic cyanobacteria: a potential bioflocculant and carbon sink to mitigate cold stress. Biocatal. Agric. Biotechnol. 42:102375. 10.1016/j.bcab.2022.102375 DOI
Su L.-Q., Li J.-G., Xue H., Wang X.-F. (2017). Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought. J. Zhejiang Univ. Sci. B 18 696–706. 10.1631/jzus.B1600350 PubMed DOI PMC
Sun W., Shahrajabian M. H., Cheng Q. (2019). Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 5:1673688. 10.1080/23312025.2019.1673688 DOI
Verma S., Bajpai G., Tewari S., Singh J. (2005). Seedung index and yield as influenced by seed size in pigeonpea. Legum. Res. Int. J. 28 143–145.
Voigt E. L., Almeida T. D., Chagas R. M., Ponte L. F. A., Viégas R. A., Silveira J. A. G. (2009). Source–sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. J. Plant Physiol. 166 80–89. 10.1016/j.jplph.2008.02.008 PubMed DOI
Weller D., Cook R. (1983). Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology 73 463–469.
Yan M. (2015). Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S. Afr. J. Bot. 99 88–92. 10.1016/j.sajb.2015.03.195 DOI
Zhang C., Shi S., Liu Z., Yang F., Yin G. (2019). Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J. Plant Physiol. 232 226–240. 10.1016/j.jplph.2018.10.023 PubMed DOI