Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, systematický přehled
PubMed
34638870
PubMed Central
PMC8509026
DOI
10.3390/ijms221910529
PII: ijms221910529
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stresses, plant growth, plant–microbe interactions, rhizobacteria, sustainable agriculture,
- MeSH
- Bacteria růst a vývoj MeSH
- biodegradace MeSH
- fyziologický stres MeSH
- kořeny rostlin * růst a vývoj mikrobiologie MeSH
- pěstování plodin MeSH
- půdní mikrobiologie * MeSH
- rhizosféra * MeSH
- vývoj rostlin * MeSH
- zemědělské plodiny * růst a vývoj mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Agricultural Research Ltd Zahradni 400 1 664 41 Troubsko Czech Republic
Biology Center CAS SoWa RI Na Sadkach 7 370 05 České Budějovice Czech Republic
College of Life Sciences Yan'an University Yan'an 716000 China
College of Resources and Environmental Sciences Gansu Agricultural University Lanzhou 730070 China
School of Environmental and Municipal Engineering Lanzhou Jiaotong University Lanzhou 730070 China
Zobrazit více v PubMed
Bharti N., Barnawal D. Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: Singh A.K., Kumar A., Singh P.K., editors. PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing; Cambridge, UK: 2019. pp. 85–106. DOI
Barrow C. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012;34:21–28. doi: 10.1016/j.apgeog.2011.09.008. DOI
Niamat B., Naveed M., Ahmad Z., Yaseen M., Ditta A., Mustafa A., Rafique M., Bibi R., Sun N., Xu M. Calcium-Enriched Animal Manure Alleviates the Adverse Effects of Salt Stress on Growth, Physiology and Nutrients Homeostasis of Zea mays L. Plants. 2019;8:480. doi: 10.3390/plants8110480. PubMed DOI PMC
Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. Food security: The challenge of feeding 9 billion people. Science. 2010;327:812–818. doi: 10.1126/science.1185383. PubMed DOI
Saharan B.S., Nehra V. Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011;21:1–30.
Danish S., Zafar-Ul-Hye M., Mohsin F., Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE. 2020;15:e0230615. doi: 10.1371/journal.pone.0230615. PubMed DOI PMC
Ali M.A., Naveed M., Mustafa A., Abbas A. Probiotics and Plant Health. Springer; Singapore: 2017. The good, the bad, and the ugly of rhizosphere microbiome; pp. 253–290.
Ismail M.A., Amin M.A., Eid A.M., Hassan S.E.D., Mahgoub H.A., Lashin I., Abdelwahab A.T., Azab E., Gobouri A.A., Elkelish A. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells. 2021;10:1059. doi: 10.3390/cells10051059. PubMed DOI PMC
Khan N., Ali S., Shahid M.A., Mustafa A., Sayyed R.Z., Curá J.A. Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells. 2021;10:1551. doi: 10.3390/cells10061551. PubMed DOI PMC
Mustafa A., Naveed M., Saeed Q., Ashraf M.N., Hussain A., Abbas T., Kamran M., Minggang X. Sustainable Crop Production. IntechOpen; London, UK: 2019. Application potentials of plant growth promoting rhizobacteria and fungi as an alternative to conventional weed control methods.
Mustafa A., Naveed M., Abbas T., Saeed Q., Hussain A., Ashraf M.N., Minggang X. Growth response of wheat and associated weeds to plant antagonistic rhizobacteria and fungi. Ital. J. Agron. 2019;14:191–198. doi: 10.4081/ija.2019.1449. DOI
Abbas T., Zahir Z.A., Naveed M., Abbas S., Alwahibi M.S., Elshikh M.S., Mustafa A. Large scale screening of rhizospheric allelopathic bacteria and their potential for the biocontrol of wheat-associated weeds. Agronomy. 2020;10:1469. doi: 10.3390/agronomy10101469. DOI
Ray P., Lakshmanan V., Labbé J.L., Craven K.D. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front. Microbiol. 2020;11:3323. doi: 10.3389/fmicb.2020.622926. PubMed DOI PMC
Ahmad M., Naseer I., Hussain A., Zahid Mumtaz M., Mustafa A., Hilger T.H., Ahmad Zahir Z., Minggang X. Appraising endophyte–plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance: An experimental investigation with chickpea (Cicer arietinum L.) Agronomy. 2019;9:621. doi: 10.3390/agronomy9100621. DOI
Nazli F., Mustafa A., Ahmad M., Hussain A., Jamil M., Wang X., Shakeel Q., Imtiaz M., El-Esawi M.A. A Review on Practical Application and Potentials of Phytohormone-Producing Plant Growth-Promoting Rhizobacteria for Inducing Heavy Metal Tolerance in Crops. Sustainability. 2020;12:9056. doi: 10.3390/su12219056. DOI
Haider F.U., Ejaz M., Cheema S.A., Khan M.I., Zhao B., Cai L., Salim M.A., Naveed M., Khan N., Núñez-Delgado A., et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 2021;197:111031. doi: 10.1016/j.envres.2021.111031. PubMed DOI
Goudaa S., Kerryb R.G., Dasc G., Paramithiotisd S., Shine H.S., Patra J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018;206:131–140. doi: 10.1016/j.micres.2017.08.016. PubMed DOI
Umar W., Ayub M.A., ur Rehman M.Z., Ahmad H.R., Farooqi Z.U.R., Shahzad A., Rehman U., Mustafa A., Nadeem M. Resources Use Efficiency in Agriculture. Springer; Singapore: 2020. Nitrogen and phosphorus use efficiency in agroecosystems; pp. 213–257.
Pandey P., Irulappan V., Bagavathiannan M.V., Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017;8:537. doi: 10.3389/fpls.2017.00537. PubMed DOI PMC
Raza W., Ling N., Yang L., Huang Q., Shen Q. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci. Rep. 2016;6:24856. doi: 10.1038/srep24856. PubMed DOI PMC
Raza W., Yousaf S., Rajer F.U. Plant growth promoting activity of volatile organic compounds produced by Bio-control strains. Sci. Lett. 2016;4:40–43.
Bharti N., Pandey S.S., Barnawal D., Patel V.K., Kalra A. Plant growth promoting rhizobacteria Dietzianatronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016;6:34768. doi: 10.1038/srep34768. PubMed DOI PMC
Ramakrishna W., Rathore P., Kumari R., Yadav R. Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Sci. Total Environ. 2020;711:135062. doi: 10.1016/j.scitotenv.2019.135062. PubMed DOI
Olanrewaju O.S., Glick B.R., Babalola O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017;33:197. doi: 10.1007/s11274-017-2364-9. PubMed DOI PMC
Khan N., Bano A., Rahman M.A., Guo J., Kang Z., Babar M.A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in Chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 2019;9:2097. doi: 10.1038/s41598-019-38702-8. PubMed DOI PMC
Gupta A., Gopal M., Thomas G.V., Manikandan V., Gajewski J., Thomas G., Seshagiri S., Schuster S.C., Rajesh P., Gupta R. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS ONE. 2014;9:e104259. doi: 10.1371/journal.pone.0104259. PubMed DOI PMC
Verma P.P., Shelake R.M., Das S., Sharma P., Kim J.Y. Microbial Interventions in Agriculture and Environment. Springer; Singapore: 2019. Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): Potential biological control agents of diseases and pests; pp. 281–311.
Kumari A., Kumar R. Exploring phyllosphere bacteria for growth promotion and yield of potato (Solanum tuberosum L.) Int. J. Curr. Microbiol. Appl. Sci. 2018;7:1065–1071. doi: 10.20546/ijcmas.2018.704.117. DOI
Shivakumar B. Ph.D. Dissertation. UAS; Dharwad, India: 2007. Biocontrol Potential and Plant Growth Promotional Activity of Fluorescent Pseudomonads of Western Ghats.
Mohammed A.F., Oloyede A.R., Odeseye A.O. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Plant Prot. 2020;53:1–16. doi: 10.1080/03235408.2020.1715756. DOI
Larkin R.P. Biological control of soil borne diseases in organic potato production using hypovirulent strains of Rhizoctonia solani. Biol. Agric. Hortic. 2020;36:1–11. doi: 10.1080/01448765.2019.1706636. DOI
Dixon R., Kahn D. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2004;2:621–631. doi: 10.1038/nrmicro954. PubMed DOI
Kim K.Y.D., Jordan D., McDonald G.A. Solubilization of hydroxyapatite. Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils. 1997;24:347–352. doi: 10.1007/s003740050256. DOI
Ladha J.K., de Bruijn F.J., Malik K.A. Introduction: Assessing opportunities for nitrogen fixation in rice-a frontier project. Plant Soil. 1997;124:1–10. doi: 10.1023/A:1004264423436. DOI
Raymond J., Siefert J.L., Staples C.R., Blankenship R.E. The natural history of nitrogen fixation. Mol. Biol. Evol. 2004;21:541–554. doi: 10.1093/molbev/msh047. PubMed DOI
Bhattacharyya P.N., Jha D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012;28:1327–1350. doi: 10.1007/s11274-011-0979-9. PubMed DOI
Ahmad M., Khan M.S. Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J. Saudi Soc. Agric. Sci. 2012;11:63–71.
Zahran H.H. Rhizobia from wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 2001;91:143–153. doi: 10.1016/S0168-1656(01)00342-X. PubMed DOI
Giordano W., Hirsch A.M. The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium meliloti interaction. Mol. Plant Microbe Interact. 2004;17:613–622. doi: 10.1094/MPMI.2004.17.6.613. PubMed DOI
Marroquí S., Zorreguieta A., Santamaría C. Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J. Bacteriol. 2001;183:854–864. doi: 10.1128/JB.183.3.854-864.2001. PubMed DOI PMC
Glick B.R. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 1995;41:109114. doi: 10.1139/m95-015. DOI
Parray J.A., Jan S., Kamili A.N., Qadri R.A., Egamberdieva D., Ahmad P. Current perspectives on plant growth-promoting rhizobacteria. J. Plant Growth Regul. 2016;35:877–902. doi: 10.1007/s00344-016-9583-4. DOI
Ma W., Penrose D.M., Glick B.R. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can. J. Microbiol. 2002;48:947–954. doi: 10.1139/w02-100. PubMed DOI
Ma W., Charles T.C., Glick B.R. Expression of an exogenous 1 aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl. Environ. Microbiol. 2004;100:5891–5897. doi: 10.1128/AEM.70.10.5891-5897.2004. PubMed DOI PMC
Dubeikovsky A.N., Mordukhova E.A., Kochetkov V.V., Polikarpova F.Y., Boronin A.M. Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas uorescens BSP53a synthesizing an increased amount of indole3-acetic acid. Soil Biol. Biochem. 1993;25:1277–1281. doi: 10.1016/0038-0717(93)90225-Z. DOI
Ke X., Feng S., Wang J., Lu W., Zhang W., Chen M., Lin M. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 2019;42:248–260. doi: 10.1016/j.syapm.2018.10.010. PubMed DOI
Ramírez M., Valderrama B., Arredondo-Peter R., Soberón M., Mora J., Hernández G. Rhizobium etli genetically engineered for the heterologous expression of Vitreoscilla sp. hemoglobin: Effects on free-living and symbiosis. Mol. Plant-Microbe Interact. 1999;12:1008–1015. doi: 10.1094/MPMI.1999.12.11.1008. DOI
Liu D., Yan R., Fu Y., Wang X., Zhang J., Xiang W. Antifungal, Plant Growth-Promoting, and Genomic Properties of an Endophytic Actinobacterium Streptomyces sp. NEAU-S7GS2. Front. Microbiol. 2019;10:2077. doi: 10.3389/fmicb.2019.02077. PubMed DOI PMC
Rima F.S., Biswas S., Sarker P.K. Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann. Microbiol. 2018;68:525–535. doi: 10.1007/s13213-018-1358-7. DOI
Tewari S., Arora N.K. Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis. 2016;68:99–108. doi: 10.1007/s13199-016-0389-8. DOI
Patten C.L., Glick B.R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 2002;68:3795–3801. doi: 10.1128/AEM.68.8.3795-3801.2002. PubMed DOI PMC
Parmar P., Sindhu S.S. Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. J. Microbiol. Res. 2013;3:25–31.
Gururani M.A., Upadhyaya C.P., Baskar V., Venkatesh J., Nookaraju A., Park S.W. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 2013;32:245–258. doi: 10.1007/s00344-012-9292-6. DOI
Robin A., Mougel C., Siblot S., Vansuyt G., Mazurier S., Lemanceau P. Effect of ferritin overexpression in tobacco on the structure of bacterial and pseudomonad communities associated with the roots. FEMS Microbiol. Ecol. 2006;58:492–502. doi: 10.1111/j.1574-6941.2006.00174.x. PubMed DOI
Vansuyt G., Robin A., Briat J.F., Curie C., Lemanceau P. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant-Microbe Interact. 2007;20:441–447. doi: 10.1094/MPMI-20-4-0441. PubMed DOI
Mounir A.M., Osman Y.M.M., Khalil O.A. Impact of potassium solubilizing bacteria on growth and yield of garlic. Plant Arch. 2020;20:8374–8388.
Elkhatib H.A., Saed M.G., Ramadan A.M., Ahmed F.M. Impact of potassium fertilizer rates and potassium solubilizing bacteria inoculation on the growth, yield and quality of potato (Solanum tuberosum L.) Alex. Sci. Exch. J. 2019;40:127–141.
Liu D., Lian B., Dong H. Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol. J. 2012;29:413–421. doi: 10.1080/01490451.2011.576602. DOI
Tewari S., Arora N.K. Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ. Sustain. 2018;1:49–59. doi: 10.1007/s42398-018-0002-6. DOI
Egamberdieva D., Wirth S., Jabborova D., Räsänen L.A., Liao H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J. Plant Interact. 2017;12:100–107. doi: 10.1080/17429145.2017.1294212. DOI
Asari S., Danuse T., Jakub R., Ondrej N., David V.P., Sarosh B., Johan M. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta. 2017;245:15–30. doi: 10.1007/s00425-016-2580-9. PubMed DOI PMC
El-Esawi M.A., Alaraidh I.A., Alsahli A.A., Alzahrani S.A., Ali H.M., Alayafi A.A. Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. Int. J. Mol. Sci. 2018;19:3310. doi: 10.3390/ijms19113310. PubMed DOI PMC
López-Reyes L., Carcaño-Montiel M.G., Lilia T.L., Medina-de la Rosa G., Armando T.H.R. Antifungal and growth-promoting activity of Azospirillumbrasilense in Zea mays L. ssp. mexicana. Arch. Phytopathol. Plant Prot. 2017;50:727–743. doi: 10.1080/03235408.2017.1372247. DOI
Cavite H.J.M., Mactal A.G., Evangelista E.V. Growth and Yield Response of Upland Rice to Application of Plant Growth-Promoting Rhizobacteria. J. Plant Growth Regul. 2021;40:494–508. doi: 10.1007/s00344-020-10114-3. DOI
Sheng M., Jia H., Zhang G., Zeng L., Zhang L., Long Y., Lan J., Hu Z., Zeng Z., Wang B., et al. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans. J. Microbiol. Biotechnol. 2020;30:689–699. doi: 10.4014/jmb.1910.10066. PubMed DOI PMC
Ghazy N., El Nahrawy S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch. Microbiol. 2021;203:1195–1209. doi: 10.1007/s00203-020-02113-5. PubMed DOI PMC
Billah M., Khan M., Bano A., Hassan T.U., Munir A., Gurmani A.R. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 2019;36:904–916. doi: 10.1080/01490451.2019.1654043. DOI
Sharma S.B., Sayyed R.Z., Trivedi M.H., Gobi T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:587. doi: 10.1186/2193-1801-2-587. PubMed DOI PMC
Alori E.T., Glick B.R., Babalola O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017;8:971. doi: 10.3389/fmicb.2017.00971. PubMed DOI PMC
Zhu J., Li M., Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018;612:522–537. doi: 10.1016/j.scitotenv.2017.08.095. PubMed DOI
Adnan M., Fahad S., Khan I.A., Saeed M., Ihsan M.Z., Saud S., Riaz M., Wang D., Wu C. Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech. 2019;9:1–10. doi: 10.1007/s13205-019-1894-2. PubMed DOI PMC
Alaylar B., Egamberdieva D., Gulluce M., Karadayi M., Arora N.K. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J. Microbiol. Biotechnol. 2020;36:1–12. doi: 10.1007/s11274-020-02870-x. PubMed DOI
Pereira S.I., Castro P.M. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol. Eng. 2014;73:526–535. doi: 10.1016/j.ecoleng.2014.09.060. DOI
FAO . World Fertilizer Trends and Outlook to 2020. Food and Agriculture Organization of the United Nations; Rome, Italy: 2017.
Dash S., Borah S.S., Kalamdhad A.S. Study of the limnology of wetlands through a one-dimensional model for assessing the eutrophication levels induced by various pollution sources. Ecol. Model. 2020;416:108907. doi: 10.1016/j.ecolmodel.2019.108907. DOI
Younas F., Mustafa A., Farooqi Z.U.R., Wang X., Younas S., Mohy-Ud-Din W., Ashir Hameed M., Mohsin Abrar M., Maitlo A.A., Noreen S., et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water. 2021;13:215. doi: 10.3390/w13020215. DOI
Loper J.E., Schroth M.N. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology. 1986;76:386–389. doi: 10.1094/Phyto-76-386. DOI
Muleta A., Tesfaye K., Selassie T.H., Cook D.R., Assefa F. Phosphate solubilization and multiple plant growth promoting properties of Mesorhizobium species nodulating chickpea from acidic soils of Ethiopia. Arch. Microbiol. 2021;203:2129–2137. doi: 10.1007/s00203-021-02189-7. PubMed DOI
Kafle A., Cope K., Raths R., Krishna Y.J., Subramanian S., Bucking H., Garcia K. Harnessing Soil Microbes to Improve Plant Phosphate Efficiency in Cropping Systems. Agronomy. 2019;9:127. doi: 10.3390/agronomy9030127. DOI
Singh D., Prasanna R. Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agron. Sustain. Dev. 2020;40:1–21. doi: 10.1007/s13593-020-00619-2. DOI
Kalayu G. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. 2019;2019:4917256. doi: 10.1155/2019/4917256. DOI
Satyaprakash M., Nikitha T., Reddi E.U.B., Sadhana B., Vani S.S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2133–2144.
Patel S.T., Minocheherhomji F.P. Review: Plant Growth Promoting Rhizobacteria: Blessing to Agriculture. Int. J. Pure Appl. Biosci. 2018;6:481–492. doi: 10.18782/2320-7051.6383. DOI
Pradhan A., Pahari A., Mohapatra S., Mishra B.B. Advances in Soil Microbiology: Recent Trends and Future Prospects. Springer Nature Singapore Pte Ltd.; Singapore: 2017. Phosphate-Solubilizing Microorganisms in Sustainable Agriculture: Genetic Mechanism and Application; pp. 81–97. DOI
Castagno L.N., Sannazzaro A.I., Gonzalez M.E., Pieckenstain F.L., Estrella M.J. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann. Appl. Biol. 2021;178:256–267. doi: 10.1111/aab.12673. DOI
Walpola B.C., Yoon M.H. Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr. J. Microbiol. Res. 2013;7:266–275.
Kumar A., Singh V.K., Tripathi V., Singh P.P., Singh A.K. Crop Improvement through Microbial Biotechnology. Elsevier; Amsterdam, The Netherlands: 2018. Plant growth-promoting rhizobacteria (PGPR): Perspective in agriculture under biotic and abiotic stress; pp. 333–342.
Nahas E. Factors determining rock phosphate solubilization by microorganism isolated from soil. World J. Microbiol. Biotechnol. 1996;12:18–23. doi: 10.1007/BF00327716. PubMed DOI
Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by rootinduced chemical changes: A review. Plant Soil. 2001;237:173–195. doi: 10.1023/A:1013351617532. DOI
Kim J., Rees D.C. Nitrogenase and biological nitrogen fixation. Biochemistry. 1994;33:389–397. doi: 10.1021/bi00168a001. PubMed DOI
Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., Ahmad M., Anjum M.Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 2019;250:109557. doi: 10.1016/j.jenvman.2019.109557. PubMed DOI
Wang Y., Wu W.H. Regulation of potassium transport and signaling in plants. Curr. Opin. Plant Biol. 2017;39:123–128. doi: 10.1016/j.pbi.2017.06.006. PubMed DOI
Adams E., Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 2014;56:231–249. doi: 10.1111/jipb.12159. PubMed DOI
Zahoor R., Zhao W., Dong H., Snider J.L., Abid M., Iqbal B., Zhou Z. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.) Plant Physiol. Biochem. 2017;119:21–32. doi: 10.1016/j.plaphy.2017.08.011. PubMed DOI
Filho A.B.C., Dutra A.F., Da Silva G.S. Phosphate and potassium fertilization for radish grown in a latosol with a high content of these nutrients. Rev. Caatinga. 2017;30:412–419. doi: 10.1590/1983-21252017v30n216rc. DOI
Sparks D.L., Huang P.M. Potassium in Agriculture. Soil Science Society of America; Madison, WI, USA: 1985. Physical chemistry of soil potassium; pp. 201–276.
Radulov I., Berbecea A., Imbrea F., Lato A., Crista F., Mergheş P. Potassium in soil-plant-human system. Res. J. Agric. Sci. 2014;46:47–52.
Sindhu S.S., Parmar P., Phour M. Geomicrobiology and Biogeochemistry. Springer; Berlin/Heidelberg, Germany: 2014. Nutrient cycling: Potassium solubilization by microorganisms and improvement of crop growth; pp. 175–198.
Saiyad S.A., Jhala Y.K., Vyas R.V. Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Int. J. Sci. Res. 2015;5:1–6.
Archana D.S., Nandish M.S., Savalagi V.P., Alagawadi A.R. Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet-A Q. J. Life Sci. 2013;10:248–257.
Rajawat M.V.S., Singh S., Tyagi S.P., Saxena A.K. A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere. 2016;26:768–773. doi: 10.1016/S1002-0160(15)60080-7. DOI
Hu X., Chen J., Guo J. Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol. 2006;22:983–990. doi: 10.1007/s11274-006-9144-2. DOI
Sheng X.F. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol. Biochem. 2005;37:1918–1922. doi: 10.1016/j.soilbio.2005.02.026. DOI
Prajapati K., Sharma M.C., Modi H.A. Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoscus Esculantus) Int. J. Agri. Sci. Res. 2013;1:181–188.
Huang Z., He L., Sheng X., He Z. Weathering of potash feldspar by Bacillus sp. L11. Wei sheng wuxue bao. Acta Microbiol. Sin. 2013;53:1172–1178. PubMed
Meena V.S., Maurya B.R., Verma J.P. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol. Res. 2014;169:337–347. doi: 10.1016/j.micres.2013.09.003. PubMed DOI
Abou-el-Seoud I., Abdel-Megeed A. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J. Biol. Sci. 2012;19:55–63. doi: 10.1016/j.sjbs.2011.09.001. PubMed DOI PMC
Shelobolina E., Xu H., Konishi H., Kukkadapu R., Wu T., Blöthe M.E. Microbial lithotrophic oxidation of structural Fe (II) in biotite. Appl. Environ. Microbiol. 2012;78:5746–5752. doi: 10.1128/AEM.01034-12. PubMed DOI PMC
Sheng X.F., Gong J.X. Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol. Biochem. 2006;38:2587–2592. doi: 10.1016/j.soilbio.2006.03.014. DOI
Padhan D., Sen A., Adhikary S., Kundu R., Yadav V.K. Chapter-3 Potassium Solubilisation in Soils: Mechanisms, Effect on Plant Growth and Future Prospects. Curr. Res. Soil Fertil. 2019;19:37.
Spaepen S., Vanderleyden J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011;3:a001438. doi: 10.1101/cshperspect.a001438. PubMed DOI PMC
Wang J.G., Zhang F.S., Zhang X.L., Cao Y.P. Release of potassium from K-bearing minerals: Effect of plant roots under P deficiency. Nutr. Cycl. Agroecosyst. 2000;56:45–52. doi: 10.1023/A:1009894427550. DOI
Etesami H., Alikhani H.A., Hosseini H.M. Bacterial Metabolites in Sustainable Agroecosystem. Springer; Berlin/Heidelberg, Germany: 2015. Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: Bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria; pp. 183–258.
Saha M., Sarkar S., Sarkar B., Sharma B.K., Bhattacharjee S., Tribedi P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. 2016;23:3984–3999. doi: 10.1007/s11356-015-4294-0. PubMed DOI
Hider R.C., Kong X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010;27:637–657. doi: 10.1039/b906679a. PubMed DOI
Rasouli-Sadaghiani M., Malakouti M.J., Khavazi K., Miransari M. Use of Microbes for the Alleviation of Soil Stresses. Springer; New York, NY, USA: 2014. Siderophore Efficacy of Fluorescent Pseudomonades Affecting Labeled Iron (59Fe) Uptake by Wheat (Triticumaestivum L.) Genotypes Differing in Fe Efficiency; pp. 121–132.
Subramanium N., Sundaram L. Siderophore producing Pseudomonas spp. isolated from rhizospheric soil and enhancing iron content in Arachis hypogaea L. plant. J. Agric. Technol. 2020;16:429–442.
Reed S.C., Yang X., Thornton P.E. Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytol. 2015;208:324–329. doi: 10.1111/nph.13521. PubMed DOI
Hakim S., Naqqash T., Nawaz M.S., Laraib I., Siddique M.J., Zia R., Mirza M.S., Imran A. Rhizosphere Engineering with Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. Front. Sustain. Food Syst. 2021;5:617157. doi: 10.3389/fsufs.2021.617157. DOI
Grobelak A., Hiller J. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. Int. J. Phytorem. 2017;19:825–833. doi: 10.1080/15226514.2017.1290581. PubMed DOI
Sharma A., Johri B., Sharma A., Glick B. Plant growth-promoting bacterium Pseudomonas spp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck) Soil Biol. Biochem. 2003;35:887–894. doi: 10.1016/S0038-0717(03)00119-6. DOI
Braud A., Jézéquel K., Léger M.A. Lebeau T, Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb) Biotechnol. Bioeng. 2006;94:1080–1088. doi: 10.1002/bit.20937. PubMed DOI
Damam M., Kaloori K., Gaddam B., Kausar R. Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int. J. Pharm. Sci. Rev. 2016;37:130–136.
Sureshbabu K., Amaresan N., Kumar K. Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int. J. Curr. Microbiol. Appl. Sci. 2016;5:661–683. doi: 10.20546/ijcmas.2016.502.074. DOI
Spence C., Bais H. Role of plant growth regulators as chemical signals in plant–microbe interactions: A double edged sword, Curr. Opin. Plant Biol. 2015;27:52–58. doi: 10.1016/j.pbi.2015.05.028. PubMed DOI
Kumar K.V., Srivastava S., Singh N., Behl H. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J. Hazard. Mater. 2009;170:51–57. doi: 10.1016/j.jhazmat.2009.04.132. PubMed DOI
Ahemad M., Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014;26:1–20. doi: 10.1016/j.jksus.2013.05.001. DOI
Afzal I., Shinwari Z.K., Iqrar I. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. Pak. J. Bot. 2015;47:1999–2008.
Spaepen S., Bossuyt S., Engelen K., Marchal K., Vanderleyden J. Phenotypical and molecular responses of A rabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium A zospirillumbrasilense. New Phytol. 2014;201:850–861. doi: 10.1111/nph.12590. PubMed DOI
Llorente B.E., Alasia M.A., Larraburu E.E. Biofertilization with Azospirillumbrasilense improves in vitro culture of Handroanthusochraceus, a forestry, ornamental and medicinal plant. New Biotechnol. 2016;33:32–40. doi: 10.1016/j.nbt.2015.07.006. PubMed DOI
Ruzzi M., Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015;196:124–134. doi: 10.1016/j.scienta.2015.08.042. DOI
Kumar A., Vandana R.S., Singh M., Pandey K.D. Plant growth promoting rhizobacteria (PGPR). A promising approach for disease management. In: Singh J.S., Singh D.P., editors. Microbes and Environmental Management. Studium Press; New Delhi, India: 2015. pp. 195–209.
Jha C.K., Saraf M. Plant growth promoting rhizobacteria (PGPR): A review. E3 J. Agric. Res. Dev. 2015;5:108–119.
Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moenne-Loccoz Y., Muller D. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013;4:356. doi: 10.3389/fpls.2013.00356. PubMed DOI PMC
Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability–A review. Molecules. 2016;21:573. doi: 10.3390/molecules21050573. PubMed DOI PMC
Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014;32:429–448. doi: 10.1016/j.biotechadv.2013.12.005. PubMed DOI
Glick B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014;169:30–39. doi: 10.1016/j.micres.2013.09.009. PubMed DOI
Pérez-Montaño F., Alías-Villegas C., Bellogín R., Del Cerro P., Espuny M., Jiménez-Guerrero I. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014;169:325–336. doi: 10.1016/j.micres.2013.09.011. PubMed DOI
Heydarian Z., Yu M., Gruber M., Glick B.R., Zhou R., Hegedus D.D. Inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acds gene in transgenic plants increases salinity tolerance in camelina sativa. Front. Microbiol. 2016;7:1966. doi: 10.3389/fmicb.2016.01966. PubMed DOI PMC
Lugtenberg B., Kamilova F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009;63:541–556. doi: 10.1146/annurev.micro.62.081307.162918. PubMed DOI
Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014;52:347–375. doi: 10.1146/annurev-phyto-082712-102340. PubMed DOI
Zhang R., Vivanco J.M., Shen Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 2017;37:8–14. doi: 10.1016/j.mib.2017.03.008. PubMed DOI
Von Wiren N., Lauter F.R., Ninnemann O., Gillissen B., Walch-Liu P., Engels C. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J. 2000;21:167–175. doi: 10.1046/j.1365-313x.2000.00665.x. PubMed DOI
Ahn S.J., Shin R., Schachtman D.P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol. 2004;134:1135–1145. doi: 10.1104/pp.103.034660. PubMed DOI PMC
Desbrosses G.J., Stougaard J. Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe. 2011;10:348–358. doi: 10.1016/j.chom.2011.09.005. PubMed DOI
Traxler M.F., Kolter R. Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 2015;32:956–970. doi: 10.1039/C5NP00013K. PubMed DOI
Combes-Meynet E., Pothier J.F., Moënne-Loccoz Y., Prigent-Combaret C. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol. Plant-Microbe Interact. 2011;24:271–284. doi: 10.1094/MPMI-07-10-0148. PubMed DOI
Hassan M. Master’s Thesis. Auburn University; Auburn, ME, USA: 2016. The Role of Pectin Utilization in Root Colonization and Plant Growth-Promotion by Bacillus amyloliquefaciens subsp. plantarum (Bap)
Ramaekers L., Remans R., Rao I.M., Blair M.W., Vanderleyden J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res. 2010;117:169–176. doi: 10.1016/j.fcr.2010.03.001. DOI
Lakshmanan V., Castaneda R., Rudrappa T., Bais H.P. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate. Planta. 2013;238:657–668. doi: 10.1007/s00425-013-1920-2. PubMed DOI
Hiltner L. About recent experiences and problems the field of soil bacteriology with special consideration of green manure and fallow. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft. 1904;98:59–78.
Guo R.F., Yuan G.F., Wang Q.M. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ. Sci. B. 2013;14:124. doi: 10.1631/jzus.B1200096. PubMed DOI PMC
He D.C., Zhan J.S., Xie L.H. Problems, challenges and future of plant disease management: From an ecological point of view. J. Integr. Agric. 2016;15:705–715. doi: 10.1016/S2095-3119(15)61300-4. DOI
Compant S., Reiter B., Sessitsch A., Nowak J., Clément C., Barka E.A. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 2005;71:1685–1693. doi: 10.1128/AEM.71.4.1685-1693.2005. PubMed DOI PMC
Glick B.R., Cheng Z., Czarny J., Duan J. Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur. J. Plant Pathol. 2007;119:329–339. doi: 10.1007/s10658-007-9162-4. DOI
Dobereiner J. Review article History and New Perspectives of Diazotrophs in Association with Non-Leguminous Plants. Symbiosis. 1992;13:1–13.
Podile A.R., Kishore G.K. Plant-Associated Bacteria. Springer; Dordrecht, The Netherlands: 2007. Plant growth-promoting rhizobacteria; pp. 195–230.
Gray E.J., Smith D.L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem. 2005;37:395–412. doi: 10.1016/j.soilbio.2004.08.030. DOI
Cook R.J., Weller D.M., El-Banna A.Y., Vakoch D., Zhang H. Yield responses of direct-seeded wheat to rhizobacteria and fungicide seed treatments. Plant Dis. 2002;86:780–784. doi: 10.1094/PDIS.2002.86.7.780. PubMed DOI
Amein T., Omer Z., Welch C. Application and evaluation of Pseudomonas strains for biocontrol of wheat seedling blight. Crop Prot. 2008;27:532–536. doi: 10.1016/j.cropro.2007.08.007. DOI
Ryder M.H., Yan Z., Terrace T.E., Rovira A.D., Tang W., Correll R.L. Use of strains of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 1999;31:19–29. doi: 10.1016/S0038-0717(98)00095-9. DOI
Cavaglieri L., Orlando J.R.M.I., Rodríguez M.I., Chulze S., Etcheverry M. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res. Microbiol. 2005;156:748–754. doi: 10.1016/j.resmic.2005.03.001. PubMed DOI
Moustafa H.E., Abo-Zaid G.A., Abd-Elsalam H.E., Hafez E.E. Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi, I. Biotechnology. 2009;8:53–61.
Das A.J., Lal S., Kumar R., Verma C. Bacterial biosurfactants can be an ecofriendly and advanced technology for remediation of heavy metals and co-contaminated soil. Int. J. Environ. Sci. Technol. 2016;14:1343–1354. doi: 10.1007/s13762-016-1183-0. DOI
Khan M.R., Fischer S., Egan D., Doohan F.M. Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology. 2006;96:386–394. doi: 10.1094/PHYTO-96-0386. PubMed DOI
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017;8:34. doi: 10.3389/fmicb.2017.00034. PubMed DOI PMC
Singh V.K., Singh A.K., Kumar A. Disease management of tomato through PGPB: Current trends and future perspective. 3 Biotech. 2017;7:255. doi: 10.1007/s13205-017-0896-1. PubMed DOI PMC
Singh M., Kumar A., Singh R., Pandey K.D. Endophytic bacteria: A new source of bioactive compounds. 3 Biotech. 2017;7:315. doi: 10.1007/s13205-017-0942-z. PubMed DOI PMC
Kumar A., Verma H., Singh V.K., Singh P.P., Singh S.K., Ansari W.A., Yadav A., Singh P.K., Pandey K.D. Role of Pseudomonas sp. in sustainable agriculture and disease management. In: Meena V., Mishra P., Bisht J., Pattanayak A., editors. Agriculturally Important Microbes for Sustainable Agriculture. Springer; Singapore: 2017. pp. 195–215.
Kumar A., Singh A.K., Kaushik M.S., Mishra S.K., Raj P., Singh P.K., Pandey K.D. Interaction of turmeric (Curcuma longa L.) with beneficial microbes: A review. 3 Biotech. 2017;7:1–8. doi: 10.1007/s13205-017-0971-7. PubMed DOI PMC
Singh R., Pandey D.K., Kumar A., Singh M. PGPR isolates from the rhizosphere of vegetable crop Momordica charantia: Characterization and application as biofertilizer. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:1789–1802.
Haas D., Keel C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 2003;41:117–153. doi: 10.1146/annurev.phyto.41.052002.095656. PubMed DOI
Dowling D.N., O’Gara F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 1994;12:133–141. doi: 10.1016/0167-7799(94)90091-4. DOI
Whipps J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001;52:487–511. doi: 10.1093/jxb/52.suppl_1.487. PubMed DOI
Duffy B. Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annu. Rev. Phytopathol. 2003;41:501–538. doi: 10.1146/annurev.phyto.41.052002.095606. PubMed DOI
Haas D., Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005;3:307–319. doi: 10.1038/nrmicro1129. PubMed DOI
de Bruijn I., de Kock M.J.D., Yang M., de Waard P., van Beek T.A., Raaijmakers J.M. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 2007;63:417–428. doi: 10.1111/j.1365-2958.2006.05525.x. PubMed DOI
Raaijmakers J.M., de Bruijn I., Nybroe O., Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev. 2010;34:1037–1062. doi: 10.1111/j.1574-6976.2010.00221.x. PubMed DOI
Abbas T., Zahir Z.A., Naveed M., Kremer R.J. Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Adv. Agron. 2018;147:239–280.
Maksimov I.V., Abizgil’dina R.R., Pusenkova L.I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review) Appl. Biochem. Microbiol. 2011;47:333–345. doi: 10.1134/S0003683811040090. PubMed DOI
Hill D.S., Stein J.I., Torkewitz N.R., Morse A.M., Howell C.R., Pachlatko J.P., Becker J.O., Ligon J.M. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 1994;60:78–85. doi: 10.1128/aem.60.1.78-85.1994. PubMed DOI PMC
Silo-Suh L.A., Lethbridge B.J., Raffel S.J., He H., Clardy J., Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 1994;60:2023–2030. doi: 10.1128/aem.60.6.2023-2030.1994. PubMed DOI PMC
He H., Silo-Suh L.A., Handelsman J., Clardy J. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 1994;35:2499–2502. doi: 10.1016/S0040-4039(00)77154-1. DOI
Emmert E.A., Handelsman J. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 1999;171:1–9. doi: 10.1111/j.1574-6968.1999.tb13405.x. PubMed DOI
Kokalis-Burelle N., Kloepper J.W., Reddy M.S. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl. Soil Ecol. 2005;31:91–100. doi: 10.1016/j.apsoil.2005.03.007. DOI
Van Loon L.C., Bakker P.A.H.M., Pieterse C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998;36:453–483. doi: 10.1146/annurev.phyto.36.1.453. PubMed DOI
Van Peer R., Niemann G.J., Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology. 1991;81:728–734. doi: 10.1094/Phyto-81-728. DOI
Wei G., Kloepper J.W., Tuzun S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 1991;81:1508–1512. doi: 10.1094/Phyto-81-1508. DOI
Durrant W.E., Dong X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004;42:185–209. doi: 10.1146/annurev.phyto.42.040803.140421. PubMed DOI
Beneduzi A., Ambrosini A., Passaglia L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012;35:1044–1051. doi: 10.1590/S1415-47572012000600020. PubMed DOI PMC
Van der Ent S., Verhagen B.W., Van Doorn R., Bakker D., Verlaan M.G., Pel M.J., Joosten R.G., Proveniers M.C., Van Loon L.C., Ton J., et al. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 2008;146:1293–1304. doi: 10.1104/pp.107.113829. PubMed DOI PMC
Somers E., Vanderleyden J., Srinivasan M. Rhizosphere bacterial signalling: A love parade beneath our feet. Crit. Rev. Microbiol. 2004;30:205–240. doi: 10.1080/10408410490468786. PubMed DOI
Kloepper J.W., Ryu C.M., Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 2004;94:1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259. PubMed DOI
Van Wees S.C., Van der Ent S., Pieterse C.M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 2008;11:443–448. doi: 10.1016/j.pbi.2008.05.005. PubMed DOI
Vleesschauwer D., Höfte M. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 2009;51:223–281.
Van Loon L.C. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer; Dordrecht, The Netherlands: 2007. Plant responses to plant growth-promoting rhizobacteria; pp. 243–254.
Van Peer R., Schippers B. Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth. J. Plant Pathol. 1992;98:129–139. doi: 10.1007/BF01996325. DOI
Leeman M., Van Pelt J.A., Den Ouden F.M., Heinsbroek M., Bakker P.A.H.M., Schippers B. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 1995;101:655–664. doi: 10.1007/BF01874869. DOI
Silva H.S.A., Romeiro R.D.S., Mounteer A. Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. J. Phytopathol. 2003;151:42–46. doi: 10.1046/j.1439-0434.2003.00678.x. DOI
Handelsman J., Stabb E.V. Biocontrol of soilborne plant pathogens. Plant Cell. 1996;8:1855. doi: 10.2307/3870235. PubMed DOI PMC
Benizri E., Baudoin E., Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci. Technol. 2001;11:557–574. doi: 10.1080/09583150120076120. DOI
Montealegre J.R., Reyes R., Pérez L.M., Herrera R., Silva P., Besoain X. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron. J. Biotechnol. 2003;6:115–127. doi: 10.2225/vol6-issue2-fulltext-8. DOI
Rangarajan S., Saleena L.M., Vasudevan P., Nair S. Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil. 2003;251:73–82. doi: 10.1023/A:1022950811520. DOI
Bloemberg G.V., Lugtenberg B.J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 2001;4:343–350. doi: 10.1016/S1369-5266(00)00183-7. PubMed DOI
Beattie G.A. Plant-Associated Bacteria. Springer; Dordrecht, The Netherlands: 2007. Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances; pp. 1–56.
Neeraja C., Anil K., Purushotham P., Suma K., Sarma P.V.S.R.N., Moerschbacher B.M., Podile A.R. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit. Rev. Biotechnol. 2010;30:231–241. doi: 10.3109/07388551.2010.487258. PubMed DOI
Stephens P.M., Crowley J.J., O’Connell C. Selection of pseudomonad strains inhibiting Pythium ultimum on sugarbeet seeds in soil. Soil Biol. Biochem. 1993;25:1283–1288. doi: 10.1016/0038-0717(93)90226-2. DOI
Kamilova F., Validov S., Azarova T., Mulders I., Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 2005;7:1809–1817. doi: 10.1111/j.1462-2920.2005.00889.x. PubMed DOI
Glick B.R., Bashan Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 1997;15:353–378. doi: 10.1016/S0734-9750(97)00004-9. PubMed DOI
Dakora F.D. Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol. 2003;158:39–49. doi: 10.1046/j.1469-8137.2003.00725.x. DOI
Campanoni P., Blasius B., Nick P. Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol. 2003;133:1251–1260. doi: 10.1104/pp.103.027953. PubMed DOI PMC
Chabot R., Antoun H., Cescas M.P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil. 1996;184:311–321. doi: 10.1007/BF00010460. DOI
Yanni Y.G., Rizk R.Y., Corich V., Squartini A., Ninke K., Philip-Hollingsworth S., Orgambide G., De Bruijn F., Stoltzfus J., Buckley D., et al. Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Springer; Dordrecht, The Netherlands: 1997. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth; pp. 99–114.
Validov S. Ph.D. Thesis. Leiden University; Leiden, The Netherlands: 2007. Biocontrol of Tomato Foot and Root Rot by Pseudomonas bacteria in Stonewool.
Thomashow L.S., Weller D.M. Plant-Microbe Interactions. Springer; Boston, MA, USA: 1996. Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites; pp. 187–235.
Dekkers L.C., Mulders I.H., Phoelich C.C., Chin-A-Woeng T.F., Wijfjes A.H., Lugtenberg B.J. The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol. Plant Microbe Interact. 2000;13:1177–1183. doi: 10.1094/MPMI.2000.13.11.1177. PubMed DOI
Lugtenberg B.J., Dekkers L., Bloemberg G.V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 2001;39:461–490. doi: 10.1146/annurev.phyto.39.1.461. PubMed DOI
Kremer R.J., Souissi T. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 2001;43:182–186. doi: 10.1007/s002840010284. PubMed DOI
Chet I., Ordentlich A., Shapira R., Oppenheim A. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil. 1990;129:85–92. doi: 10.1007/BF00011694. DOI
Kobayashi D.Y., Reedy R.M., Bick J., Oudemans P.V. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 2002;68:1047–1054. doi: 10.1128/AEM.68.3.1047-1054.2002. PubMed DOI PMC
Sadfi N., Cherif M., Fliss I., Boudabbous A., Antoun H. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J. Plant Pathol. 2001;83:101–117.
Neiendam Nielsen M., Sørensen J. Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol. Ecol. 1999;30:217–227. doi: 10.1111/j.1574-6941.1999.tb00650.x. PubMed DOI
Budi S.W., van Tuinen D., Arnould C., Dumas-Gaudot E., Gianinazzi-Pearson V., Gianinazzi S. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 2000;15:191–199. doi: 10.1016/S0929-1393(00)00095-0. DOI
Someya N., Kataoka N., Komagata T., Hirayae K., Hibi T., Akutsu K. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis. 2000;84:334–340. doi: 10.1094/PDIS.2000.84.3.334. PubMed DOI
Kurek E., Jaroszuk-Ściseł J. Rye (Secale cereale) growth promotion by Pseudomonas fluorescens strains and their interactions with Fusarium culmorum under various soil conditions. Biol. Control. 2003;26:48–56. doi: 10.1016/S1049-9644(02)00115-9. DOI
Mulla S.I., Bharagava R.N., Belhaj D., Saratale G.D., Kumar A., Rajasekar A., Tallur P.N., Edalli V.A., Hu A., Yu C.P. Microbial degradation of phenolic compounds. In: Kumar A., Sharma S., editors. Microbes and Enzymes in Soil Health and Bioremediation. Volume 16. Springer; Singapore: 2019. Microorganisms for sustainability. DOI
Phulpoto A.H., Maitlo M.A., Kanhar N.A. Culture dependent to culture independent approaches for the bioremediation of paints: A review. Int. J. Environ. Sci. Technol. 2021;18:241–262. doi: 10.1007/s13762-020-02801-1. DOI
Muratova A.Y., Turkovskaya O.V., Antonyuk L.P., Makarov O.E., Pozdnyakova L.I., Ignatov V.V. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology. 2005;74:210–215. doi: 10.1007/s11021-005-0053-4. PubMed DOI
Ali M.H., Sattar M.T., Khan M.I., Naveed M., Rafique M., Alamri S., Siddiqui M.H. Enhanced Growth of Mungbean and Remediation of Petroleum Hydrocarbons by Enterobacter sp. MN17 and Biochar Addition in Diesel Contaminated Soil. Appl. Sci. 2020;10:8548
Ejaz M., Zhao B., Wang X., Bashir S., Haider F.U., Aslam Z., Khan M.I., Shabaan M., Naveed M., Mustafa A. Isolation and characterization of oil degrading Enterobacter sp. from naturally hydrocarbon contaminated soils and their potential against bioremediation of crude oil. Appl. Sci. 2021;11:3504. doi: 10.3390/app11083504. DOI
Haider F.U., Liqun C., Coulter J.A., Alam Cheema S., Wu J., Zhang R., Wenjun M., Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021;211:111887. doi: 10.1016/j.ecoenv.2020.111887. PubMed DOI
Varjani S., Kumar G., Rene E.R. Developments in biochar application for pesticide remediation: Current knowledge and future research directions. J. Environ. Manag. 2019;232:505–513. doi: 10.1016/j.jenvman.2018.11.043. PubMed DOI
Mahjoubi M., Cappello S., Souissi Y., Jaouani A., Cherif A. Microbial bioremediation of petroleum hydrocarbon–contaminated marine environments. In: Zoveidavianpoor M., editor. Recent Insights in Petroleum Science and Engineering. IntechOpen; London, UK: 2017. DOI
Lu L., Zhang J., Peng C. Shift of Soil Polycyclic Aromatic Hydrocarbons (PAHs) dissipation pattern and microbial community composition due to rhamnolipid supplementation. Water Air Soil Pollut. 2019;230:107. doi: 10.1007/s11270-019-4118-9. DOI
Kumar V., Chandra R. Microbes for Sustainable Development and Bioremediation. CRC Press; Boca Raton, FL, USA: 2020. Bacterial-assisted phytoextraction mechanism of heavy metals by native hyperaccumulator plants from distillery waste–contaminated site for eco-restoration. DOI
Macías-Almazán A., Lois-Correa J.A., Domínguez-Crespo M.A., López-Oyama A.B., Torres-Huerta A.M., Brachetti-Sibaja S.B., Rodríguez-Salazar A.E. Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: Sugarcane bagasse and pinewood sawdust. Carbohydr. Polym. 2020;238:116171. doi: 10.1016/j.carbpol.2020.116171. PubMed DOI
Russo F., Ceci A., Pinzari F., Siciliano A., Guida M., Malusà E., Tartanus M., Miszczak A., Maggi O., Persiani A.M. Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: Potential of two autochthonous saprotrophic fungal strains. Appl. Environ. Microbiol. 2019;85:01720-19. doi: 10.1128/AEM.01720-19. PubMed DOI PMC
Chandra R., Kumar V. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environ. Sci. Pollut. Res. 2017;24:2605–2619. doi: 10.1007/s11356-016-8022-1. PubMed DOI
Chouychai W., Thongkukiatkul A., Upatham S., Pokethitiyook P., Kruatrachue M., Lee H. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14Lr in two soils. Int. J. Phytoremediat. 2012;14:585–595. doi: 10.1080/15226514.2011.587478. PubMed DOI
Malik Z.A., Ahmed S. Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr. J. Biotechnol. 2012;11:650–658.
Thomas F., Cébron A. Short-term rhizosphere effect on available carbon sources, phenanthrene degradation, and active microbiome in an aged contaminated industrial soil. Front. Microbiol. 2016;7:92. doi: 10.3389/fmicb.2016.00092. PubMed DOI PMC
Ahmad I., Akhtar M.J., Zahir Z.A., Naveed M., Mitter B., Sessitsch A. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. 2014;21:11054–11065. doi: 10.1007/s11356-014-3010-9. PubMed DOI
Lata S., Kaur H.P., Mishra T. Cadmium bioremediation: A review. Int. J. Pharm. Sci. Res. 2019;10:4120–4128. doi: 10.13040/IJPSR.0975-8232. DOI
Yaghoubian Y., Siadat S.A., Telavat M.R.M., Pirdashti H., Yaghoubia I. Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environ. Sci. Pollut. Res. 2019;26:7863–7872. doi: 10.1007/s11356-019-04255-6. PubMed DOI
Zhang F., Liu M., Li Y., Che Y., Xiao Y. Effects of arbuscularmycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 2019;655:1150–1158. doi: 10.1016/j.scitotenv.2018.11.317. PubMed DOI
Panchenko L., Muratova A., Dubrovskaya E., Golubev S., Turkovskaya O. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands. Environ. Sci. Pollut. Res. 2018;25:3260–3274. doi: 10.1007/s11356-017-0710-y. PubMed DOI
Kumar A., Sharma G., Naushad M., Ala’a H., Kumar A., Hira I., Ahamad T., Ghfar A.A., Stadler F.J. Visible photodegradation of ibuprofen and 2, 4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar. J. Environ. Manag. 2019;231:1164–1175. doi: 10.1016/j.jenvman.2018.11.015. PubMed DOI
Valderrama J.A., Durante-Rodríguez G., Blázquez B., García J.L., Carmona M., Díaz E. Bacterial Degradation of Benzoate cross-regulation between aerobic and anaerobic pathways. J. Biol. Chem. 2012;287:10494–10508. doi: 10.1074/jbc.M111.309005. PubMed DOI PMC
Johnson D.L., Maguire K.L., Anderson D.R., McGrath S.P. Enhanced dissipation of chrysene in planted soil: The impact of a rhizobial inoculum. Soil Biol. Biochem. 2004;36:33–38. doi: 10.1016/j.soilbio.2003.07.004. DOI
Al-Wasify R.S., Hamed S.R. Bacterial biodegradation of crude oil using local isolates. Int. J. Bacteriol. 2014;2014:863272. doi: 10.1155/2014/863272. PubMed DOI PMC
Ichor T., Okerentugba P.O., Okpokwasili G.C. Biodegradation of total petroleum hydrocarbon by aerobic heterotrophic bacteria isolated from crude oil contaminated brackish waters of Bodo Creek. J. Bioremed. Biodeg. 2014;5:1000236. doi: 10.4172/2155-6199.1000236. DOI
Jilani S. Bioremediation application for textile effluent treatment. Middle East J. Sci. Res. 2015;23:26–34. doi: 10.5829/idosi.mejsr.2015.23.01.9227. DOI
Verma J.P., Jaiswal D.K., Sagar R. Pesticide relevance and their microbial degradation: A-state-of-art. Rev. Environ. Sci. Biotechnol. 2014;13:429–466. doi: 10.1007/s11157-014-9341-7. DOI
Koksoy H., Aslim B. Determination of herbicide resistance in aquatic cyanobacteria by probit analysis. J. Appl. Biol. Sci. 2013;7:37–41.
Begum S.S., Arundhati A. A study of bioremediation of methyl parathion in vitro India. Int. J. Curr. Microbiol. App. Sci. 2016;5:464–474. doi: 10.20546/ijcmas.2016.502.052. DOI
Baraldi E.A., Damianovic M., Manfio G.R., Foresti E., Vazoller R.F. Performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor and dynamics of the microbial community during degradation of pentachlorophenol (PCP) Anaerobe. 2008;14:268–274. doi: 10.1016/j.anaerobe.2008.09.004. PubMed DOI
Tripathi A., Dixit S. Bioremediation of phenolic compounds by higher fungi—A review. Int. J. Curr. Adv. Res. 2016;4:14–35. doi: 10.21474/IJAR01/1035. DOI
Thakurta G.S., Aakula M., Chakrabarty J., Dutta S. Bioremediation of phenol from synthetic and real wastewater using Leptolyngbya sp.: A comparison and assessment of lipid production. 3 Biotech. 2018;8:206. doi: 10.1007/s13205-018-1229-8. PubMed DOI PMC
Sheng X.F., He L.Y. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can. J. Microbiol. 2006;52:66–72. doi: 10.1139/w05-117. PubMed DOI
Li J.H., Gao Y., Wu S.C., Cheung K.C., Wang X.R., Wong M.H. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. Int. J. Phytorem. 2008;10:106–118. doi: 10.1080/15226510801913587. PubMed DOI
Chouychai W., Thongkukiatkul A., Upatham S., Lee H., Pokethitiyook P., Kruatrachue M. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J. Environ. Biol. 2009;30:139–144. PubMed
Lechner U., Turkowsky D., Dinh T.T.H., Al-Fathi H., Schwoch S., Franke S., Gerlach M.S., Koch M., Bergen M.V., Jehmlich N., et al. Desulfitobacterium contributes to the microbial transformation of 2,4,5-T by methanogenic enrichment cultures from a Vietnamese active landfill. Microb. Biotechnol. 2018;11:1137–1156. doi: 10.1111/1751-7915.13301. PubMed DOI PMC
Mulligan C.N., Yong R.N., Gibbs B.F. Surfactant enhanced remediation of contaminated soil: A review. Eng. Geol. 2001;60:371–380. doi: 10.1016/S0013-7952(00)00117-4. DOI
Kaczorek E., Chrzanowski Ł., Pijanowska A., Olszanowski A. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: Rhamnolipides and saponins. Bioresour. Technol. 2008;99:4285–4291. doi: 10.1016/j.biortech.2007.08.049. PubMed DOI
Mohanty S., Mukherji S. Surfactant-aided biodegradation of NAPLs by Burkholderia multivorans: Comparison between Triton X-100 and rhamnolipid JBR 515. Colloids Surf. B. 2012;102:644–652. doi: 10.1016/j.colsurfb.2012.08.064. PubMed DOI
Selberg A., Juuram K., Budashova J., Tenno T. Biodegradation and leaching of surfactants during surfactant-amended bioremediation of oil-polluted soil. In: Patil Y.B., Rao P., editors. Applied Bioremediation—Active and Passive Approaches. IntechOpen; London, UK: 2013. DOI
Babu A.G., Shim J., Shea P.J., Oh B.T. Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudan grass. Ecol. Eng. 2014;69:186–191. doi: 10.1016/j.ecoleng.2014.03.055. DOI
Mahajan P., Kaushal J. Role of phytoremediation in reducing cadmium toxicity in soil and water. Hindawi J. Toxicol. 2018;2018:4864365. doi: 10.1155/2018/4864365. PubMed DOI PMC
Belimov A.A., Hontzeas N., Safronova V.I., Demchinskaya S.V., Piluzza G., Bullitta S., Glick B.R. Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol. Biochem. 2005;37:241–250. doi: 10.1016/j.soilbio.2004.07.033. DOI
Robinson B., Russell C., Hedley M.J., Clothier B. Cadmium adsorption by rhizobacteria: Implications for New Zealand Pastureland. Agric. Ecosyst. Environ. 2001;87:315–321. doi: 10.1016/S0167-8809(01)00146-3. DOI
Gupta A., Meyer J.M., Goel R. Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Curr. Microbiol. 2002;45:323–332. doi: 10.1007/s00284-002-3762-1. PubMed DOI
Marques G.C., Moreira H., Franco A.R., Rangel A.O.S.S., Castro P.M.L. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria—Effects on phytoremediation strategies. Chemosphere. 2013;92:74–83. doi: 10.1016/j.chemosphere.2013.02.055. PubMed DOI
Prapagdee B., Khonsue N. Bacterial-assisted cadmium phytoremediation by Ocimum gratissimum L. in polluted agricultural soil: A field trial experiment. Int. J. Environ. Sci. Technol. 2015;12:3843–3852. doi: 10.1007/s13762-015-0816-z. DOI
Yuan Z., Yi H., Wang T., Zhang Y., Zhu X., Yao J. Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ. Sci. Pollut. Res. 2017;27:21877–21884. doi: 10.1007/s11356-017-9832-5. PubMed DOI
Martín-González A., Díaz S., Borniquel S., Gallego A., Gutiérrez J.C. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res. Microbiol. 2006;157:108–118. doi: 10.1016/j.resmic.2005.06.005. PubMed DOI
Saranya K., Sundaramanickam A., Shekhar S., Meena M., Sathishkumar R.S., Balasubramanian T. Biosorption of multiheavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. J. Environ. Manag. 2018;222:396–401. doi: 10.1016/j.jenvman.2018.05.083. PubMed DOI
Choińska-Pulit A., Sobolczyk-Bednarek J., Łaba W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ Saf. 2018;149:275–283. doi: 10.1016/j.ecoenv.2017.12.008. PubMed DOI
Vishan I., Saha B., Sivaprakasam S., Kalamdhad A. Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: Biosorption kinetics, thermodynamics and mechanism. Environ. Technol. Innov. 2019;14:100323. doi: 10.1016/j.eti.2019.100323. DOI
Wu S.C., Cheung K.C., Luo Y.M., Wong M.H. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 2006;140:124–135. doi: 10.1016/j.envpol.2005.06.023. PubMed DOI
Arunakumara K.K., Walpola B.C., Song J.S., Shin M., Lee C., Yoon M. Phytoextraction of heavy metals induced by bioaugmentation of a phosphate solubilising bacterium. Korean J. Environ. Agric. 2014;33:220–230. doi: 10.5338/KJEA.2014.33.3.220. DOI
Faisal M., Hasnain S. Bacterial Cr (VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol. Lett. 2005;27:943–947. doi: 10.1007/s10529-005-7188-2. PubMed DOI
Abou-Shanab R.A., Ghanem K., Ghanem N., Al-Kolaibe A. The role of bacteria on heavy metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J. Microbiol. Biotechnol. 2008;24:253–262. doi: 10.1007/s11274-007-9464-x. DOI
Oves M., Khan M.S., Zaidi A. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur. J. Soil Biol. 2013;56:72–83. doi: 10.1016/j.ejsobi.2013.02.002. DOI
Naseem H., Bano A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 2014;9:689–701. doi: 10.1080/17429145.2014.902125. DOI
Khan M.U., Sessitsch A., Harris M., Fatima K., Imran A., Arslan M., Shabir G., Khan Q.M., Afzal M. Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front. Plant Sci. 2015;5:755. doi: 10.3389/fpls.2014.00755. PubMed DOI PMC
Srinath T., Verma T., Ramteke P., Garg S. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 2002;48:427–435. doi: 10.1016/S0045-6535(02)00089-9. PubMed DOI
Ksheminska H., Fedorovych D., Babyak L., Yanovych D., Kaszycki P., Koloczek H. Chromium (III) and (VI) tolerance and bioaccumulation in yeast: A survey of cellular chromium content in selected strains of representative genera. Process Biochem. 2005;40:1565–1572. doi: 10.1016/j.procbio.2004.05.012. DOI
Li K., Ramakrishna W. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard. Mater. 2011;189:531–539. doi: 10.1016/j.jhazmat.2011.02.075. PubMed DOI
Jing Y.D., He Z.L., Yang X.E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. Sci. B. 2007;8:192–207. doi: 10.1631/jzus.2007.B0192. PubMed DOI PMC
Wenzel W.W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil. 2009;321:385–408. doi: 10.1007/s11104-008-9686-1. DOI
Płociniczak T., Sinkkonen A., Romantschuk M., Sułowicz S., Piotrowska-Seget Z. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Front. Plant Sci. 2016;16:101. doi: 10.3389/fpls.2016.00101. PubMed DOI PMC
Lin M., Jin M., Xu K., He L., Cheng D. Phosphate solubilising bacteria improve the phytoremediation efficiency of Wedeliatrilobata for Cu-contaminated soil. Int. J. Phytoremediat. 2018;20:813–822. doi: 10.1080/15226514.2018.1438351. PubMed DOI
Iram S., Shabbir R., Zafar H., Javaid M. Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab. J. Sci. Eng. 2015;40:1867–1873. doi: 10.1007/s13369-015-1702-1. DOI
De-Silóniz M.-I., Balsalobre L., Alba C., Valderrama M.-J., Peinado J.M. Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res. Microbiol. 2002;153:173–180. doi: 10.1016/S0923-2508(02)01303-7. PubMed DOI
Ma Y., Rajkumar M., Rocha I., Oliveira R., Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis growing in multi-pollute soils. Front. Plant Sci. 2015;5:1–10. doi: 10.3389/fpls.2014.00757. PubMed DOI PMC
Zaidi S., Usmani S., Singh B.R., Musarrat J. Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere. 2006;64:991–997. doi: 10.1016/j.chemosphere.2005.12.057. PubMed DOI
Becerra-Castro C., Prieto-Fernandez A., Alvarez-Lopez V., Monterroso C., Cabello-Conejo M.I., Acea M.J. Nickel solubilising capacity of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium. Int. J. Phytoremediat. 2011;13:229–244. doi: 10.1080/15226514.2011.568545. PubMed DOI
Aboudrar W., Schwartz C., Morel J.L., Boularbah A. Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. J. Soils Sediments. 2013;13:501–507. doi: 10.1007/s11368-012-0614-x. DOI
Hassan M.U., Chattha M.U., Khan I., Chattha M.B., Aamer M., Nawaz M., Ali A., Khan M.A.U., Khan T.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A review. Environ. Sci. Pollut. Res. 2019;26:12673–12688. doi: 10.1007/s11356-019-04892-x. PubMed DOI
Burd G.I. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 2000;46:237–245. doi: 10.1139/w99-143. PubMed DOI
Govarthanan M., Mythili R., Selvakumar T., Kamala-Kannan S., Kim H. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. Ecotoxicol. Environ. Saf. 2018;151:279–284. doi: 10.1016/j.ecoenv.2018.01.020. PubMed DOI
Mohapatra R.K., Parhi P.K., Pandey S., Bindhani B.K., Thatoi H., Panda C.R. Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. J. Environ. Manag. 2019;247:121–134. doi: 10.1016/j.jenvman.2019.06.073. PubMed DOI
Zhang X., Chen Z., Ma Y., Zhou Y., Zhao S., Wang L., Zhai H. Influence of elevated Zn (II) on Anammox system: Microbial variation and zinc tolerance. Bioresour. Technol. 2018;251:108–113. doi: 10.1016/j.biortech.2017.12.035. PubMed DOI
Kramer J., Özkaya Ö., Kümmerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020;18:152–163. doi: 10.1038/s41579-019-0284-4. PubMed DOI PMC
Prabhu N., Borkar S., Garg S. Advances in Biological Science Research. Academic Press; Cambridge, MA, USA: 2019. Phosphate solubilization by microorganisms; pp. 161–176. DOI
Rajkumar M., Ae N., Prasad M.N., Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010;28:142–149. doi: 10.1016/j.tibtech.2009.12.002. PubMed DOI
Gaonkar T., Bhosle S. Effect of metals on a siderophore producing isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere. 2013;93:9. doi: 10.1016/j.chemosphere.2013.06.036. PubMed DOI
Chandra R., Saxena G., Kumar V. Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In: Chandra R., editor. Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press; Boca Raton, FL, USA: 2015. pp. 1–29.
Ma Y., Prasad M.N.V., Rajkumar M., Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011;29:248–258. doi: 10.1016/j.biotechadv.2010.12.001. PubMed DOI
Gamalero E., Glick B.R. Mechanisms used by plant growth-promoting bacteria. In: Maheshwari D.K., editor. Bacteria in Agrobiology: Plant Nutrient Management. Springer; Berlin/Heidelberg, Germany: 2011. pp. 17–46.
Violante A., Zhu J., Pigna M., Jara A., Cozzolino V., Mora M.L. Molecular Environmental Soil Science. Springer; Dordrecht, The Netherlands: 2013. Role of Biomolecules in Influencing Transformation Mechanisms of Metals and Metalloids in Soil Environments; pp. 167–191.
Meyer J.M. Pyoverdines: Pigments siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol. 2000;174:135–142. doi: 10.1007/s002030000188. PubMed DOI
Jing Y.X., Yan J.L., He H.D., Yang D.J., Xiao L. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int. J. Phytoremediat. 2014;16:321–333. doi: 10.1080/15226514.2013.773283. PubMed DOI
Sifour M., Al-Jilawi M.H., Aziz G.M. Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pak. J. Biol. Sci. 2007;10:1331–1335. doi: 10.3923/pjbs.2007.1331.1335. PubMed DOI
Reddy M.S., Naresh B., Leela T., Prashanthi M., Madhusudhan N.C., Dhanasri G. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour. Technol. 2010;101:79807983. doi: 10.1016/j.biortech.2010.04.054. PubMed DOI
Geys R., Soetaert W., Bogaer I.V. Biotechnological opportunities in biosurfactant production. Curr. Opin. Biotechnol. 2014;30:66–72. doi: 10.1016/j.copbio.2014.06.002. PubMed DOI
Ławniczak Ł., Marecik R., Chrzanowski Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 2013;97:2327–2339. doi: 10.1007/s00253-013-4740-1. PubMed DOI PMC
Patil S.N., Aglave B.A., Pethkar A.V., Gaikwad V.B. Stenotrophomonas koreensis a novel biosurfactant producer for abatement of heavy metals from the environment. Afr. J. Microbiol. Res. 2012;6:51735178.
Lima T.M.S., Procopio L.C., Brandao F.D., Carvalho A.M.X., Totola M.R., Borges A.C. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution. Biodegradation. 2011;22:10071015. doi: 10.1007/s10532-011-9459-z. PubMed DOI
Qazi M.A., Malik Z.A., Qureshi G.D., Hameed A., Ahmed S. Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. J. Bioremed. Biodeg. 2013;4:2.
Tambekar D.H., Gadakh P.V. Biochemical and molecular detection of biosurfactant producing bacteria from soil. Int. J. Life Sci. Biotech. Pharma Res. 2013;2:204–211.
Juwarkar A.A., Nair A., Dubey K.V., Singh S.K., Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere. 2007;68:1996–2002. doi: 10.1016/j.chemosphere.2007.02.027. PubMed DOI
Chakraborty J., Das S. Microbial Biodegradation and Bioremediation. Elsevier; Amsterdam, The Netherlands: 2014. Biosurfactant-based bioremediation of toxic metals; pp. 167–201. DOI
Miller R.M. Biosurfactant facilitated remediation of contaminated soil. Environ. Health Perspect. 1995;103:59–62. PubMed PMC
Kang S.W., Kim Y.B., Shin J.D., Kim E.K. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl. Biochem. Biotechnol. 2010;160:780790. doi: 10.1007/s12010-009-8580-5. PubMed DOI
Kapadia S.G., Yagnik B.N. Current trend and potential for microbial biosurfactants. Asian J. Exp. Biol. Sci. 2013;4:1–8.
Mrvčić J., Stanzer D., Šolić E., Stehlik-Tomas V. Interaction of lactic acid bacteria with metal ions: Opportunities for improving food safety and quality. World J. Microbiol. Biotechnol. 2012;28:2771–2782. doi: 10.1007/s11274-012-1094-2. PubMed DOI
Ahalya N., Ramachandra T.V., Kanamadi R.D. Biosorption of heavy metals. Res. J. Chem. Environ. 2003;7:71–79.
Escudero L.B., Quintas P.Y., Wuilloud R.G., Dotto G.L. Recent advances on elemental biosorption. Environ. Chem. Lett. 2019;17:409–427. doi: 10.1007/s10311-018-0816-6. DOI
Davis T.A., Volesky B., Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37:4311–4330. doi: 10.1016/S0043-1354(03)00293-8. PubMed DOI
Volesky B. Process Metallurgy. Volume 9. Elsevier; Amsterdam, The Netherlands: 1999. Biosorption for the next century; pp. 161–170. DOI
Chojnacka K. Biosorption and bioaccumulation–the prospects for practical applications. Environ. Int. 2010;36:299–307. doi: 10.1016/j.envint.2009.12.001. PubMed DOI
Yilmazer P., Saracoglu N. Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stipitis yeast. J. Chem. Technol. Biotechnol. 2009;84:604–610. doi: 10.1002/jctb.2088. DOI
Ramrakhiani L., Majumder R., Khowala S. Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomycesclypeatus: Surface characterization and mechanism of biosorption. Chem. Eng. J. 2011;171:1060–1068. doi: 10.1016/j.cej.2011.05.002. DOI
Ding Y., Jing D., Gong H., Zhou L., Yang X. Biosorption of aquatic cadmium (II) by unmodified rice straw. Bioresour. Technol. 2012;114:20–25. doi: 10.1016/j.biortech.2012.01.110. PubMed DOI
Chojnacka K. Biosorption and Bioaccumulation in Practice. Nova Science Publishers; Hauppauge, New York, USA: 2009. p. 137.
Chojnacka K., Chojnacki A., Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005;59:75–84. doi: 10.1016/j.chemosphere.2004.10.005. PubMed DOI
Kanamarlapudi S.L.R.K., Chintalpudi V.K., Muddada S. Application of biosorption for removal of heavy metals from wastewater. Biosorption. 2018;18:69. doi: 10.5772/intechopen.77315. DOI
Calderón O.A.R., Abdeldayem O.M., Pugazhendhi A., Rene E.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep. 2020;6:8–27. doi: 10.1007/s40726-020-00135-7. DOI
Ahemad M., Kibret M. Recent trends in microbial biosorption of heavy metals: A review. Biochem. Mol. Biol. 2013;1:19–26. doi: 10.12966/bmb.06.02.2013. DOI
Villen-Guzman M., Gutierrez-Pinilla D., Gomez-Lahoz C., Vereda-Alonso C., Rodriguez-Maroto J.M., Arhoun B. Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environ. Res. 2019;179:108849. doi: 10.1016/j.envres.2019.108849. PubMed DOI
El-Naggar N.E.A., Hamouda R.A., Mousa I.E., Abdel-Hamid M.S., Rabei N.H. Biosorption optimization, characterization, immobilization and application of Gelidiumamansii biomass for complete Pb2+ removal from aqueous solutions. Sci. Rep. 2018;8:13456. doi: 10.1038/s41598-018-31660-7. PubMed DOI PMC
Carlos M.H.J., Stefani P.V.Y., Janette A.M., Melani M.S.S., Gabriela P.O. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol. Res. 2016;188:53–61. doi: 10.1016/j.micres.2016.05.001. PubMed DOI
Belimov A.A., Safronova V.I., Sergeyeva T.A., Egorova T.N., Matveyeva V.A., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A., Kluge C., Preisfeld A., et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2001;47:642–652. doi: 10.1139/w01-062. PubMed DOI
Rodriguez H., Vessely S., Shah S., Glick B.R. Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of non transformed and transgenic canola plants. Curr. Microbiol. 2008;57:170–174. doi: 10.1007/s00284-008-9181-1. PubMed DOI
Vu B., Chen M., Crawford R.J., Ivanova E.P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009;14:2535–2554. doi: 10.3390/molecules14072535. PubMed DOI PMC
Strong P.J., Xie S., Clarke W.P. Methane as a resource: Can the methanotrophs add value? Environ. Sci. Technol. 2015;49:4001–4018. doi: 10.1021/es504242n. PubMed DOI
Wilshusen J.H., Hettiaratchi J.P., De Visscher A., Saint-Fort R. Methane oxidation and formation of EPS in compost: Effect of oxygen concentration. Environ. Pollut. 2004;129:305–314. doi: 10.1016/j.envpol.2003.10.015. PubMed DOI
Glick B. Plant growth-promoting bacteria: Mechanisms and applications. [(accessed on 1 October 2012)];Scientifica. 2012 2012:1–15. doi: 10.6064/2012/963401. Available online: https://www.scielo.br/scielo.php?script=sci_nlinks&pid=S1415-4757201500040040100093&lng=en. PubMed DOI PMC
Etesami H., Emami S., Alikhani H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects: A review. J. Soil Sci. Plant Nutr. 2017;17:897–911. doi: 10.4067/S0718-95162017000400005. DOI
Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018;147:175–191. doi: 10.1016/j.ecoenv.2017.08.032. PubMed DOI
Kaushal M., Wani S.P. Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol. 2016;66:35–42. doi: 10.1007/s13213-015-1112-3. DOI
Etesami H., Maheshwari D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018;156:225–246. doi: 10.1016/j.ecoenv.2018.03.013. PubMed DOI
Gupta P., Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017;13:58–71. doi: 10.1016/j.btre.2016.12.006. PubMed DOI PMC
Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016;184:13–24. doi: 10.1016/j.micres.2015.12.003. PubMed DOI
Rolli E., Marasco R., Vigani G., Ettoumi B., Mapelli F., Deangelis M.L., Gandolfi C., Casati E., Previtali F., Gerbino R. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 2015;17:316–331. doi: 10.1111/1462-2920.12439. PubMed DOI
Sandhya V., Grover M., Reddy G., Venkateswarlu B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertil. Soils. 2009;46:17–26. doi: 10.1007/s00374-009-0401-z. DOI
Bhaskar P.V., Bhosle N.B. Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain. Environ. Int. 2006;32:191–198. doi: 10.1016/j.envint.2005.08.010. PubMed DOI
Artyszak A., Gozdowski D. The effect of growth activators and plant growth-promoting rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet. Agronomy. 2020;10:1262. doi: 10.3390/agronomy10091262. DOI
Mącik M., Gryta A., Frąc M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. In: Sparks D.L., editor. Advances in Agronomy. Volume 162. Academic Press Inc.; Cambridge, MA, USA: 2020. pp. 31–87.
Uribe D., Sánchez-Nieves J., Vanegas J. Role of microbial biofertilizers in the development of a sustainable agriculture in the Tropics. In: Dion P., editor. Soil Biology and Agriculture in the Tropics. Springer; Berlin/Heidelberg, Germany: 2010. pp. 235–250.
Mehnaz S. An overview of globally available bioformulations. In: Arora N., Mehnaz S., Balestrini R., editors. Bioformulations: For Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 268–281.
García-Fraile P., Menéndez E., Celador-Lera L., Díez-Méndez A., Jiménez-Gómez A., Marcos-García M., Cruz-González X.A., Martínez-Hidalgo P., Mateos P.F., Rivas R. Bacterial probiotics: A truly green revolution. In: Kumar V., Kumar M., Sharma S., Prasad R., editors. Probiotics and Plant Health. Springer; Singapore: 2017. pp. 131–162.
Adeleke R.A., Raimi A.R., Roopnarain A., Mokubedi S.M. Status and prospects of bacterial inoculants for sustainable management of agroecosystems. In: Giri B., Prasad R., Wu Q.-S., Varma A., editors. Biofertilizers for Sustainable Agriculture and Environment. Springer; Cham, Switzerland: 2019. pp. 137–172.
Aloo B.N., Makumba B.A., Mbega E.R. Plant growth promoting rhizobacterial biofertilizers for sustainable crop production: The past, present, and future. Preprints. 2020:2020090650. doi: 10.20944/preprints202009.0650.v1. PubMed DOI PMC
Dal Cortivo C., Ferrari M., Visioli G., Lauro M., Fornasier F., Barion G., Panozzo A., Vamerali T. Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Front. Plant Sci. 2020;11:72. doi: 10.3389/fpls.2020.00072. PubMed DOI PMC
Mahajan A., Gupta R.D. Bio-fertilizers: Their kinds and requirement in India. In: Mahajan A., Gupta R.D., editors. Integrated Nutrient Management (INM) in a Sustainable Rice—Wheat Cropping System. Springer; Dordrecht, The Netherlands: 2009. pp. 75–100.
Malathi S., Sriramulu M. Laboratory efficacy of biotic insecticides against lepidopterous pests fed on treated cabbage leaves. Shashpa. 2000;7:63–66.
Apurva K., Singh C., Kumar V., Jha V.B. Biofertilizers and Biopesticides in Sustainable Agriculture. Apple Academic Press; London, UK: 2019. Bacterial biopesticides and their use in agricultural production; pp. 23–42.
Schwenk V., Riegg J., Lacroix M., Märtlbauer E., Jessberger N. Enteropathogenic potential of Bacillus thuringiensis isolates from soil, animals, food and biopesticides. Foods. 2020;9:1484. doi: 10.3390/foods9101484. PubMed DOI PMC
Cardinale M., Ratering S., Suarez C., Zapata Montoya A.M., Geissler-Plaum R., Schnell S. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol. Res. 2015;181:22–32. doi: 10.1016/j.micres.2015.08.002. PubMed DOI
Bashan Y., de-Bashan L.E., Prabhu S.R., Hernandez J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013) Plant Soil. 2014;378:1–33. doi: 10.1007/s11104-013-1956-x. DOI
Peiffer J.A., Spor O., Koren A., Jin Z., Tringe S.G., Dangl J.L., Buckler E.S., Ley R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA. 2013;110:6548–6553. doi: 10.1073/pnas.1302837110. PubMed DOI PMC
Bender S.F., Wagg C., van der Heijden M.G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evolut. 2016;31:440–452. doi: 10.1016/j.tree.2016.02.016. PubMed DOI
Khatoon Z., Huang S., Rafique M., Fakhar A., Kamran M.A., Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020;273:111118. doi: 10.1016/j.jenvman.2020.111118. PubMed DOI
Kumar S.S., Kadier A., Malyan S.K., Ahmad A., Bishnoi N.R. Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer; New Delhi, India: 2017. Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants; pp. 367–394.
Kour D., Rana K.L., Yadav A.N., Yadav N., Kumar M., Kumar V., Vyas P., Dhaliwal H.S., Saxena A.K. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. Biotechnol. 2020;23:101487. doi: 10.1016/j.bcab.2019.101487. DOI
Raj S.N., Shetty H.S., Reddy M.S. PGPR: Biocontrol and Biofertilization. Springer; Dordrecht, The Netherlands: 2005. Plant growth promoting rhizobacteria: Potential green alternative for plant productivity; pp. 197–216.
Son J.S., Sumayo M., Hwang Y.J., Kim B.S., Ghim S.Y. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 2014;73:1–8. doi: 10.1016/j.apsoil.2013.07.016. DOI
Liu J., Dang P., Gao Y., Zhu H., Zhu H., Zhao F., Zhao Z. Effects of tree species and soil properties on the composition and diversity of the soil bacterial community following afforestation. For. Ecol. Manag. 2018;427:342–349. doi: 10.1016/j.foreco.2018.06.017. DOI
Bhattacharjee R.B., Singh A., Mukhopadhyay S.N. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: Prospects and challenges. Appl. Microbiol. Biotechnol. 2008;80:199–209. doi: 10.1007/s00253-008-1567-2. PubMed DOI
Chen J.H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility; Proceedings of the International Workshop on Sustained Management of the Soilrhizosphere System for Efficient Crop Production and Fertilizer Use, Land Development Department; Bangkok, Thailand. 16–20 October 2006; p. 20.
Kumawat N., Kumar R., Kumar S., Meena V.S. Agriculturally Important Microbes for Sustainable Agriculture. Springer; Singapore: 2017. Nutrient solubilizing microbes (NSMs): Its role in sustainable crop production; pp. 25–61.
Ortiz-Castro R., López-Bucio J. Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci. 2019;284:135–142. doi: 10.1016/j.plantsci.2019.04.010. PubMed DOI
Meena M., Swapnil P., Divyanshu K., Kumar S., Tripathi Y.N., Zehra A., Marwal A., Upadhyay R.S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J. Basic Microbiol. 2020;60:828–861. PubMed
Zandi P., Basu S.K. Role of plant growth-promoting rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems. Org. Farming Sustain. Agric. 2016:71–87. doi: 10.1007/978-3-319-26803-3_3. DOI
Mahanty T., Bhattacharjee S., Goswami M., Bhattacharyya P., Das B., Ghosh A., Tribedi P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2017;24:3315–3335. doi: 10.1007/s11356-016-8104-0. PubMed DOI
Aka R.J.N., Babalola O.O. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int. J. Phytoremediat. 2016;18:200–209. PubMed
Dangi S.R., Tirado-Corbalá R., Gerik J., Hanson B.D. Effect of long-term continuous fumigation on soil microbial communities. Agronomy. 2017;7:37. doi: 10.3390/agronomy7020037. DOI
Dupuy L.X., Mimault M., Patko D., Ladmiral V., Ameduri B., MacDonald M.P., Ptashnyk M. Micromechanics of root development in soil. Curr. Opin. Genet. Dev. 2018;51:18–25. doi: 10.1016/j.gde.2018.03.007. PubMed DOI
Gundel P.E., Omacini M., Sadras V.O., Ghersa C.M. The interplay between the effectiveness of the grass-endophyte mutualism and the genetic variability o the host plant. Evol. Appl. 2010;3:538–546. doi: 10.1111/j.1752-4571.2010.00152.x. PubMed DOI PMC