Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35371142
PubMed Central
PMC8965506
DOI
10.3389/fpls.2022.773815
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, cadmium, contamination, plant physiology and growth, remediation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Agronomic Research Institute Ayub Agricultural Research Institute Faisalabad Pakistan
College of Life Sciences Yan'an University Yan'an China
College of Resources and Environmental Sciences Gansu Agricultural University Lanzhou China
Department of Agronomy University of Agriculture Faisalabad Faisalabad Pakistan
Department of Botany University of Agriculture Faisalabad Faisalabad Pakistan
Institute for Environmental Studies Faculty of Science Charles University Prague Prague Czechia
Institute of Soil and Environmental Science University of Agriculture Faisalabad Faisalabad Pakistan
Zobrazit více v PubMed
Abbas A., Azeem M., Naveed M., Latif A., Bashir S., Ali A., et al. (2020). Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int. J. Phytoremed. 22 52–61. 10.1080/15226514.2019.1644286 PubMed DOI
Abbas T., Rizwan M., Ali S., Adrees M., Zia-ur-Rehman M., Qayyum M. F., et al. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. 25 25668–25680. 10.1007/s11356-017-8987-4 PubMed DOI
Abbas T., Rizwan M., Ali S., Adrees M., Mahmood A., Zia-ur-Rehman M., et al. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf. 148 825–833. 10.1016/j.ecoenv.2017.11.063 PubMed DOI
Abbasi S., Sadeghi A., Safaie N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Sci. Hortic. 265:109206.
Abd El-Mageed T. A., El- Samnoudi I. M., Ibrahim A. M., Abd El Tawwab A. R. (2018). Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime. Agric. Water Manage. 208 431–439.
Abdel-Latef A. A. H., Hashem A., Rasool S., Abdallah E. F., Alqarawi A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant Biol. 59 407–426.
Abd-El-Mageed T. A., El-Sherif A. M., Abd El-Mageed S. A., Abdou N. M. (2019). A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. Agric. Water Manag. 226:105831.
Abe T., Nonoue Y., Ono N., Omoteno M., Kuramata M., Fukuoka S., et al. (2013). Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. Breed. Sci. 63 284–291. 10.1270/jsbbs.63.284 PubMed DOI PMC
Abozeid A., Ying Z., Lin Y., Liu J., Zhang Z., Tang Z. (2017). Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front. Plant Sci. 8:253. PubMed PMC
AbuHammad W. A., Mamidi S., Kumar A., Pirseyedi S., Manthey F. A., Kianian S. F., et al. (2016). Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars. Mol. Breed. 36:112.
Aderholt M., Vogelien D. L., Koether M., Greipsson S. (2017). Phyto- extraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere 175 85–96. 10.1016/j.chemosphere.2017.02.022 PubMed DOI
Adil M. F., Sehar S., Chen G., Chen Z. H., Jilani G., Chaudhry A. N., et al. (2020). Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. Ecotoxicol. Environ. Saf. 190:110076. 10.1016/j.ecoenv.2019.110076 PubMed DOI
Afzal M., Yu M., Tang C., Zhang L., Muhammad N., Zhao H., et al. (2019). The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environ. Int. 129 451–460. 10.1016/j.envint.2019.05.058 PubMed DOI
Ahemad M. (2014). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab. J. Chem. 12 1365–1377. 10.1016/j.arabjc.2014.11.020 DOI
Ahmad J., Ali A. A., Baig M. A., Iqbal M., Haq I., Qureshi M. I. (2018). “Role of phytochelatins in cadmium stress tolerance in plants,” in Cadmium Toxicity and Tolerance in Plants, eds Hasanuzzaman M., Prasad M. N. V., Fujita M. (Cambridge, MA: Academic Press; ).
Ahmad M. T., Asghar H. N., Saleem M., Khan M. Y., Zahir Z. A. (2015). Synergistic effect of rhizobia and biochar on growth and physiology of maize. Agron. J. 107 1–8.
Ahmad P., Alyemeni M. N., Vijaya L., Alam P., Ahanger M. A., Alamri S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 63 1889–1899. 10.1080/03650340.2017.1313406 DOI
Ahmad P., Nabi G., Ashraf M. (2011). Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) czern. &coss.] plants can be alleviated by salicylic acid. S. Afr. J. Bot. 77 36–44. 10.1016/j.sajb.2010.05.003 DOI
Ahmad S. H., Reshi Z., Ahmad J., Iqbal M. (2005). Morpho-anatomical responses of Trigonellafoenum graecum Linn. to induced cadmium and lead stress. J. Plant Biol. 48 64–84. 10.1007/bf03030566 DOI
Akhter Z., Bi Z., Ali K., Sun C., Fiaz S., Haider F. U., et al. (2021). In response to abiotic stress, DNA methylation confers epi-genetic changes in plants. Plants 10:1096. 10.3390/plants10061096 PubMed DOI PMC
Ali B., Gill R. A., Yang S., Gill M. B., Farooq M. A., Liu D., et al. (2015). Regulation of cadmium-induced proteomic and metabolic changes by 5- aminolevulinic acid in leaves of Brassica napus L. PLoS One 10:e0123328. 10.1371/journal.pone.0123328 PubMed DOI PMC
Alle V., Kondratovics U., Osvalde A., Vikmane M. (2016). Differences in cadmium accumulation and induced changes in root anatomical structures in plants used for food. Agron Res. 14 1249–1260.
Alyemeni M. N., Ahanger M. A., Wijaya L., Alam P., Bhardwaj R., Ahmad P. (2018). Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255 459–469. 10.1007/s00709-017-1162-4 PubMed DOI
Amirabad S. A., Behtash F., Vafaee Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environ. Sci. Pollut. Res. 27 12476–12490. 10.1007/s11356-020-07751-2 PubMed DOI
Amirahmadi E., Hojjati S. M., Kammann C., Ghorbani M., Biparva P. (2020). The potential effectiveness of biochar application to reduce soil Cd bioavailability and encourage oak seedling growth. Appl. Sci. 10:3410. 10.3390/app10103410 DOI
Anjum S. A., Tanveer M., Hussain S., Bao M., Wang L., Khan I., et al. (2015). Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ. Sci. Pollut. Res. 22 17022–17030. 10.1007/s11356-015-4882-z PubMed DOI
Anjum S. A., Tanveer M., Hussain S., Ullah E., Wang L., Khan I., et al. (2016). Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. CLEAN Soil Air Water 44 29–36. 10.1002/clen.201400905 DOI
Anuradha S., Rao S. S. R. (2009). Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica 47 317–320. 10.1007/s11099-009-0050-3 DOI
Arao T., Ae N., Sugiyama M., Takahashi M. (2003). Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251 247–253. 10.1007/s00726-010-0809-7 PubMed DOI
Asgher M., Khan M. I. R., Anjum N. A., Khan N. A. (2015). Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252 399–413. 10.1007/s00709-014-0710-4 PubMed DOI
Attinti R., Barrett K. R., Datta R., Sarkar D. (2017). Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environ. Pollut. 225 524–533. 10.1016/j.envpol.2017.01.088 PubMed DOI
Awasthi M. K., Pandey A. K., Bundela P. S., Khan J. (2015). Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresour. Technol. 182 200–207. 10.1016/j.biortech.2015.01.104 PubMed DOI
Babadi M., Zalaghi R., Taghavi M. (2019). A non-toxic polymer enhances sorghum mycorrhiza symbiosis for bioremediation of Cd. Mycorrhiza 29 375–387. 10.1007/s00572-019-00902-5 PubMed DOI
Bagheri V., Shamshiri M. H., Shirani H., Roosta H. R. (2012). Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J. Agric. Sci. Technol. 14 1591–1604.
Balestri M., Ceccarini A., Forino L. M. C., Zelko I., Martinka M., Lux A., et al. (2014). Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. Planta 239 1055–1064. 10.1007/s00425-014-2036-z PubMed DOI
Bari M. A., Akther M. S., Reza M. A., Kabir A. H. (2019). Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiol. Biochem. 136 22–33. 10.1016/j.plaphy.2019.01.007 PubMed DOI
Bashir A., Rizwan M., Zia-ur-Rehman M., Zubair M., Riaz M., Qayyum M. F., et al. (2020). Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. Chemosphere 246 1–10. 10.1016/j.chemosphere.2019.125809 PubMed DOI
Bashir S., Gulshan A. B., Iqbal J., Husain A., Alwahibi M. S., Alkahtani J., et al. (2021). Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. Saudi J. Biol. Sci. 28 2534–2539. 10.1016/j.sjbs.2021.01.057 PubMed DOI PMC
Bashir S., Rizwan M. S., Salam A., Fu Q., Zhu J., Shaaban M., et al. (2018). Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: extraction techniques and adsorption mechanism. Bull. Environ. Contam. Toxicol. 100 727–732. 10.1007/s00128-018-2310-z PubMed DOI
Bhargava A., Carmona F. F., Bhargava M., Srivastava S. (2012). Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manag. 105 103–120. 10.1016/j.jenvman.2012.04.002 PubMed DOI
Bian R. J., Li L. Q., Bao D. D., Zheng J. W., Zhang X. H., Zheng J. F., et al. (2016). Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ. Sci. Pollut. Res. 23 10028–10036. 10.1007/s11356-016-6214-3 PubMed DOI
Blanvillain R., Kim J. H., Wu S., Lima A., Ow D. W. (2009). OXIDATIVE STRESS 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. Plant J. 57 654–665. PubMed
Bloem E., Haneklaus S., Haensch R., Schnug E. (2016). EDTA application on agricultural soils affects microelement uptake of plants. Sci. Total Environ. 577 166–173. 10.1016/j.scitotenv.2016.10.153 PubMed DOI
Bojorquez C., Frias-Espericueta M. G., Voltolina D. (2016). Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Rev. Int. Contam. Ambient. 32 407–412.
Boostani H. R., Najafi-Ghiri M., Mirsoleimani A. (2019). The effect of biochars application on reducing the toxic effects of nickel and growth indices of spinach (Spinacia oleracea L.) in a calcareous soil. Environ. Sci. Pollut. Res. 26 1751–1760. 10.1007/s11356-018-3760-x PubMed DOI
Bora M. S., Sarma K. P. (2021). Anatomical and ultrastructural alterations in Ceratopterispteridoides under cadmium stress: a mechanism of cadmium tolerance. Ecotoxicol. Environ. Saf. 218:112285. 10.1016/j.ecoenv.2021.112285 PubMed DOI
Bulak P., Walkiewicz A., Brzezińska M. (2014). Plant growth regulators- assisted phytoextraction. Biol. Plant 58 1–8. 10.1007/s10535-013-0382-5 DOI
Çanakci S., Dursun B. (2012). The effect of pre-application of salicylic acid on some physiological and biochemical characteristics of tomato seedling (Lycopersicon esculentum L) growing in cadmium containing media. Afr. J. Biotechnol. 11 3173–3178. 10.5897/AJB11.2364 DOI
Cao B. I., Ma Q., Zhao Q., Wang L., Xu K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Sci. Hort. 194 53–62. 10.1016/j.scienta.2015.07.037 DOI
Chang Q., Wei D. F., Fan W. Q., Pan L., Hua D. Z., Guo W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with lanthanum and cadmium. Environ. Pollut. 241 607–615. 10.1016/j.envpol.2018.06.003 PubMed DOI
Chellaiah E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a mini-review. Appl. Water Sci. 8:154. 10.1007/s13201-018-0796-5 DOI
Chen B., Luo S., Wu Y., Ye J., Wang Q., Xu X., et al. (2017). The effects of the endophytic bacterium Pseudomonas fluorescens sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front. Microbiol. 8:253. 10.3389/fmicb.2017.02538 PubMed DOI PMC
Chen C.-T., Chen T.-H., Lo K.-F., Chiu C.-Y. (2004). Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci. 166 103–111. 10.1016/j.plantsci.2003.08.015 DOI
Chen H., Yang X., Gielen G., Mandal S., Xu S., Guo J., et al. (2019). Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils. Sci. Total Environ. 678 43–52. 10.1016/j.scitotenv.2019.04.417 PubMed DOI
Chen L., Long C., Wang D., Yang J. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere 242:125112. 10.1016/j.chemosphere.2019.125112 PubMed DOI
Chen Q., Lu X., Guo X., Pan Y., Yu B., Tang Z., et al. (2018a). Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicol. Environ. Saf. 157 266–275. 10.1016/j.ecoenv.2018.03.055 PubMed DOI
Chen H., Yang X., Wang P., Wang Z., Li M., Zhao F. J. (2018b). Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China. Sci. Total Environ. 639 271–277. 10.1016/j.scitotenv.2018.05.050 PubMed DOI
Chen H., Zhang W., Yang X., Wang P., McGrath S. P., Zhao F. J. (2018c). Effective methods to reduce cadmium accumulation in rice grain. Chemosphere 207 699–707. 10.1016/j.chemosphere.2018.05.143 PubMed DOI
Chen Z., Zhao Y., Fan L., Xing L., Yang Y. (2015). Cadmium (Cd) localization in tissues of cotton (Gossypium hirsutum L.), and its phytoremediation potential for Cd-contaminated soils. Bull. Environ. Contam. Toxicol. 95 784–789. 10.1007/s00128-015-1662-x PubMed DOI
Choppala G., Saifullah, Bolan N., Bibi S., Iqbal M., Rengel Z., et al. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit. Rev. Plant Sci. 33 374–391. 10.1016/j.ecoenv.2015.06.003 PubMed DOI
Clabeaux B. L., Navarro D. A. G., Aga D. S., Bisson M. A. (2011). Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation. Environ. Sci. Technol. 45 5332–5338. 10.1021/es200720u PubMed DOI
Clarke J. M., Norvell W. A., Clarke F. R., Buckley W. T. (2002). Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Can. J. Plant Sci. 82 27–33. 10.1021/acs.jafc.7b01946 PubMed DOI
Conolly E. L., Fett J. P., Guerinot M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14 1347–1357. 10.1105/tpc.001263 PubMed DOI PMC
Cui G., Ai S., Chen K., Wang X. (2019). Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicol. Environ. Saf. 171 231–239. 10.1016/j.ecoenv.2018.12.093 PubMed DOI
Cuypers A., Hendrix S., Amaral dos Reis R., De Smet S., Deckers J., Gielen H., et al. (2016). Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front. Plant Sci. 7:470. 10.3389/fpls.2016.00470 PubMed DOI PMC
Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., et al. (2010). Cadmium stress: an oxidative challenge. Biometals 23 927–940. 10.1007/s10534-010-9329-x PubMed DOI
da Silva Cunha L. F., de Oliveira V. P., do Nascimento A. W. S., da Silva B. R. S., Batista B. L., Alsahli A. A., et al. (2020). Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. Physiol. Plant 173 67–87. 10.1111/ppl.13182 PubMed DOI
Dad F. P., Khan W. U. D., Tanveer M., Ramzani P. M. A., Shaukat R., Muktadir A. (2020). Influence of iron-enriched biochar on Cd sorption, its ionic concentration and redox regulation of radish under cadmium toxicity. Agriculture 11:1. 10.3390/agriculture11010001 DOI
Das N., Bhattacharya S., Maiti M. K. (2016). Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytore mediation. Plant Physiol. Biochem. 105 297–309. 10.1016/j.plaphy.2016.04.049 PubMed DOI
Das R., Jayalekshmy V. G. (2015). Mechanism of heavy metal tolerance and improvement of tolerance in crop plants. J. Glob. Biosci. 4 2678–2698.
Da-wei H., Zhong-hua S., Qian-long L., Wei C., Xiang-jin W., et al. (2018). Identification of QTLs associated with cadmium concentration in rice grains. J. Integr. Agric. 17, 60345–60347.
Dobrikova A. G., Apostolova E. L., Hanć A., Yotsova E., Borisova P., Sperdouli I., et al. (2021). Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol. Environ. Saf. 209:111851. 10.1016/j.ecoenv.2020.111851 PubMed DOI
Eissa M. A. (2019). Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [Atriplex nummularia Lindl]. Soil Sediment. Contam. 28 135–147. 10.1080/15320383.2018.1551325 DOI
Elhiti M., Yang C., Chan A., Durnin D. C., Belmonte M. F., Ayele B. T., et al. (2012). Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. J. Exp. Bot. 63 4447–4461. 10.1093/jxb/ers125 PubMed DOI
Elias E. M., Manthey F. (2016). Registration of ‘Joppa’ durum wheat. J. Plant Regist. 10 139–144. 10.3198/jpr2015.11.0071crc DOI
Elias E. M., Manthey F., AbuHammad W. (2015). Registration of ‘Carpio’ durum wheat. J. Plant Regist. 9 78–82. 10.3198/jpr2014.05.0030crc DOI
Elobeid M., Göbel C., Feussner I., Polle A. (2012). Cadmium interferes with auxin physiology and lignification in poplar. J. Exp. Bot. 63 1413–1421. 10.1093/jxb/err384 PubMed DOI PMC
Elyamine A. M., Moussa M. G., Afzal J., Rana M. S., Imran M., Zhao X., et al. (2019). Modified rice straw enhanced cadmium (ii) immobilization in soil and promoted the degradation of phenanthrene in co-contaminated soil. Int. J. Mol. Sci. 20:2189. 10.3390/ijms20092189 PubMed DOI PMC
Erdem H. (2021). The effects of biochars produced in different pyrolysis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi J. Biol. Sci. 28 3965–3971. 10.1016/j.sjbs.2021.04.016 PubMed DOI PMC
Evangelou M. W. H., Ebel M., Schaeffer A. (2007). Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68 989–1003. 10.1016/j.chemosphere.2007.01.062 PubMed DOI
Farooq H., Asghar H. N., Khan M. Y., Saleem M., Zahir Z. A. (2015). Auxin-mediated growth of rice in cadmium-contaminated soil. Turk. J. Agric. For. 39 272–276. 10.3906/tar-1405-54 PubMed DOI
Farooq M., Ullah A., Usman M., Siddique K. H. M. (2020). Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere 260:127652. 10.1016/j.chemosphere.2020.127652 PubMed DOI
Farooq M. A., Niazi A. K., Akhtar J., Farooq M., Souri Z., Karimi N., et al. (2019). Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 141 353–369. 10.1016/j.plaphy.2019.04.039 PubMed DOI
French K. E. (2017). Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Front. Microbiol. 8:1403. 10.3389/fmicb.2017.01403 PubMed DOI PMC
Gallego S. M., Pena L. B., Barcia R. A., Azpilicueta C. E., Iannone M. F., Rosales E. P., et al. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ. Exp. Bot. 83 33–46. 10.1016/j.jhazmat.2017.04.058 PubMed DOI
García A. C., Tavares O. C. H., de Oliveira D. F. (2020). Biochar as agricultural alternative to protect the rice plant growth in fragile sandy soil contaminated with cadmium. Biocatal. Agric. Biotechnol. 29:101829. 10.1016/j.bcab.2020.101829 DOI
Garg N., Chandel S. (2015). Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul. 75 521–534. 10.1007/s10725-014-0016-8 DOI
Genchi G., Sinicropi M. S., Lauria G., Carocci A., Catalano A. (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17:3782. PubMed PMC
Gerszberg A., Hnatuszko-Konka K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul. 83 175–198. 10.1007/s10725-017-0251-x DOI
Ghani A. (2011). Varietal differences in canola (Brassica napus L.) for the growth, yield and yield components exposed to cadmium stress. J. Anim. Plant Sci. 21 57–59.
Ghassemi H. R., Mostajeran A. (2018). TASOS1 and TATM20 genes expression and nutrient uptake in wheat seedlings may be altered via excess cadmium exposure and inoculation with Azospirillumbrasilense sp7 under saline condition. Appl. Ecol. Environ. Res. 16 1797–1817. 10.15666/aeer/1602_17971817 DOI
Gill S. S., Khan N. A., Tuteja N. (2011). Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal. Behav. 6 293–300. 10.4161/psb.6.2.15049 PubMed DOI PMC
Glick B. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169 30–39. 10.1016/j.micres.2013.09.009 PubMed DOI
Goel S., Gautam A. (2010). Effect of chelating agents on mobilization of metal from waste catalyst. Hydrometallurgy 101 120–125.
Goix S., Lévêque T., Xiong T. T., Schreck E., Baeza-Squiban A., Geret F., et al. (2014). Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ. Res. 133 185–194. 10.1016/j.envres.2014.05.015 PubMed DOI
Goncalves J. F., Nicoloso F. T., Becker A. G., Pereira L. B., Tabaldi L. A., Cargnelutti D., et al. (2009). Photosynthetic pigments content, δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed Cucumis sativus L. J. Biol. 64 310–318. 10.2478/s11756-009-0034-6 DOI
Gondor O. K., Pál M., Darkó É, Janda T., Szalai G. (2016). Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11:e0160157. 10.1371/journal.pone.0160157 PubMed DOI PMC
Gong X., Yin L., Chen J., Gu C. (2015). Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. Plant Cell Rep. 34 1963–1973. 10.1007/s00299-015-1843-4 PubMed DOI
Goswami D., Thakker J. N., Dhandhukia P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent. Food Agric. 2:1127500.
Gothberg A., Greger E., Holm K., Bengtsson B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J. Environ. Qual. 33 1247–1255. 10.2134/jeq2004.1247 PubMed DOI
Gouia H., Suzuki A., Brulfert J., Ghorbal M. H. (2003). Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J. Plant Physiol. 160 367–376. 10.1078/0176-1617-00785 PubMed DOI
Gruznova K. A., Bashmakov D. I., Miliauskiene J., Vastakaite V., Duchovskis P., Lukatkin A. S. (2018). The effect of a growth regulator Ribav-Extra on winter wheat seedlings exposed to heavy metals. Zemdirbyste 105 227–234. 10.13080/z-a.2018.105.029 DOI
Gul S., Naz A., Khan A., Nisa S., Irshad M. (2016). Phytoavailability and leachability of heavy metals from contaminated soil treated with composted livestock manure. Soil Sediment. Contam. 25 181–194. 10.1080/15320383.2016.1112361 DOI
Guo B., Liu C., Liang Y., Li N., Fu Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. Int. J. Mol. Sci. 20:2960. 10.3390/ijms20122960 PubMed DOI PMC
Guo H., Hong C., Chen X., Xu Y., Liu Y., Jiang D., et al. (2016). Different growth and physiological responses to cadmium of the three Miscanthus species. PLoS One 11:e0153475. 10.1371/journal.pone.0153475 PubMed DOI PMC
Guo Z. H., Miao X. F. (2010). Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J. Central S. Univ. Technol. 17 770–777. 10.1007/s11771-010-0555-8 DOI
Gusiatin Z. M., Klimiuk E. (2012). Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 86 383–391. 10.1016/j.chemosphere.2011.10.027 PubMed DOI
Habiba U., Ali S., Farid M., Shakoor M. B., Rizwan M., Ibrahim M., et al. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ. Sci. Pollut. Res. 22 1534–1544. 10.1007/s11356-014-3431-5 PubMed DOI
Hafeez F., Rizwan M., Saqib M., Yasmeen T., Ali S., Abbas T., et al. (2019). Residual effect of biochar on growth, antioxidant defense and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil. Pak. J. Agric. Sci. 56 197–204.
Haider F. U., Coulter J. A., Liqun C., Hussain S., Cheema S. A., Wu J., et al. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere 32 107–130. 10.1016/S1002-0160(20)60094-7 DOI
Haider F. U., Liqun C., Coulter J. A., Cheema S. A., Wu J., Zhang R., et al. (2021a). Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211:111887. 10.1016/j.ecoenv.2020.111887 PubMed DOI
Haider F. U., Coulter J. A., Cheema S. A., Farooq M., Wu J., Zhang R., et al. (2021b). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicol. Environ. Saf. 214:112112. 10.1016/j.ecoenv.2021.112112 PubMed DOI
Hajeb P., Sloth J. J., Shakibazadeh S., Mahyudin N. A., Afsah-Hejri L. (2014). Toxic elements in food: occurrence, binding, and reduction approaches. Compr. Rev. Food Sci. Food Saf. 13 457–472. 10.1111/1541-4337.12068 PubMed DOI
Hakmaoui A., Ater M., Boka K., Baron M. (2007). Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on Salix purpurea and Phragmites australis. Z. Naturforschung C 62 417–426. 10.1515/znc-2007-5-616 PubMed DOI
Halim M. A., Majumder R. K., Zaman M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab. J. Geosci. 8 3391–3401. 10.1007/s12517-014-1480-1 DOI
Hamid Y., Tang L., Hussain B., Usman M., Gurajala H. K., Rashid M. S., et al. (2019). Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ. Pollut. 257:113609. 10.1016/j.envpol.2019.113609 PubMed DOI
Hamid Y., Tang L., Hussain B., Usman M., Lin Q., Rashid M. S., et al. (2020a). Organic soil additives for the remediation of cadmium contaminated soil sand their impact on the soil-plant system: a review. Sci. Total Environ. 707:136121. 10.1016/j.scitotenv.2019.136121 PubMed DOI
Hamid Y., Tang L., Hussain B., Usman M., Gurajala H. K., Rashid M. S., et al. (2020b). Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ. Pollut. 257:113609. PubMed
Han R. M., Lefèvre I., Albacete A., Pérez-Alfocea F., Barba-Espín G., Díaz-Vivancos P., et al. (2013). Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol. Plant. 147 352–368. 10.1111/j.1399-3054.2012.01667.x PubMed DOI
Hasan M., Uddin M., Ara-Sharmeen F., I, Alharby H., Alzahrani Y., Hakeem K. R., et al. (2019). Assisting phytoremediation of heavy metals using chemical amendments. Plants 8:295. 10.3390/plants8090295 PubMed DOI PMC
Hasanuzzaman M., Alhaithloul H., Parvin K., Bhuyan M., Tanveer M., Mohsin S. M., et al. (2019). Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions. Int. J. Mol. Sci. 20:3215. 10.3390/ijms20133215 PubMed DOI PMC
Hasanuzzaman M., Bhuyan M., Zulfiqar F., Raza A., Mohsin S. M., Mahmud J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. 10.3390/antiox9080681 PubMed DOI PMC
Hashem A., Abdallah E. F., Alqarawi A. A., Al-Huqail A. A., Egamberdieva D., Wirth S. (2016). Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J. Biol. Sci. 23 272–281. 10.1016/j.sjbs.2015.11.002 PubMed DOI PMC
Hassan W., Bano R., Bashir S., Aslam Z. (2015). Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Res. 54 460–468.
Hayat S., Ali B., Hasan S. A., Ahmad A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 60 33–41. 10.1016/j.envexpbot.2006.06.002 DOI
Hayat S., Alyemeni M. N., Hasan S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J. Biol. Sci. 19 325–335. 10.1016/j.sjbs.2012.03.005 PubMed DOI PMC
Hayat S., Hasan S. A., Hayat Q., Ahmad A. (2010). Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239 3–14. 10.1007/s00709-009-0075-2 PubMed DOI
Hayat S., Hayat Q., Alyemeni M. N., Ahmad A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot. Croatica 72 323–335. 10.2478/v10184-012-0019-3 DOI
He D., Cui J., Gao M., Wang W., Zhou J., Yang J., et al. (2019). Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Sci. Total Environ. 654 1364–1371. 10.1016/j.scitotenv.2018.11.059 PubMed DOI
He J., Zhu C., Ren Y., Yan Y., Jiang D. (2006). Genotypic variation in grain cadmium concentration of lowland rice. J. Plant Nutr. Soil Sci. 169 711–716. 10.1002/jpln.200525101 DOI
He L., Ma X., Li Z. (2016). Maize oxidative stress 2 homologs enhance cadmium tolerance in Arabidopsis through activation of a putative SAM-dependent methyltransferase gene. Plant Physiol. 171 1675–1685. 10.1104/pp.16.00220 PubMed DOI PMC
He S., Wu Q., He Z. (2014). Synergetic effects of DA-6/GA3 with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne. Chemosphere 117 132–138. 10.1016/j.chemosphere.2014.06.015 PubMed DOI
Hong K., Tokunaga S., Kajiuchi T. (2002). Evaluation of remediation process with plant derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49 379–387. 10.1016/S0045-6535(02)00321-1 PubMed DOI
Hossain M. A., Piyatida P., da Silva J. A. T., Fujita M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012:872875.
Hu W., Zhang Y., Huang B., Teng Y. (2017). Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170 183–195. 10.1016/j.chemosphere.2016.12.047 PubMed DOI
Hu X., Liu X., Zhang X., Cao L., Chen J., Yu H. (2017). Increased accumulation of Pb and Cd from contaminated soil with Scirpustriqueter by the combined application of NTA and APG. Chemosphere 188 397–402. 10.1016/j.chemosphere.2017.08.173 PubMed DOI
Huang X., Han B. (2014). Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 65 531–551. 10.1146/annurev-arplant-050213-035715 PubMed DOI
Huang D. F., Ling-Lin X., Li-Nian Y., Zhi-Qin W., Jian-Chang Y. (2008). Comparison of agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. Acta Agron. Sin. 34 809–817. 10.3724/sp.j.1006.2008.00809 DOI
Huang H., Luo L., Huang L., Zhang J., Gikas P., Zhou Y. (2020). Effect of manure compost on distribution of Cu and Zn in rhizosphere soil and heavy metal accumulation by Brassica juncea. Water Air Soil Pollut. 231 1–10.
Huang J., Liu Z., Li S., Xu B., Gong Y., Yang Y., et al. (2016). Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. J. Gen. Appl. Microbiol. 62 258–265. 10.2323/jgam.2016.04.007 PubMed DOI
Huang Q., Yu Y., Wan Y., Wang Q., Luo Z., Qiao Y., et al. (2018). Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). J. Environ. Manag. 215 13–21. 10.1016/j.jenvman.2018.03.036 PubMed DOI
Huang X., Ho S. H., Zhu S., Ma F., Wu J., Yang J., et al. (2017). Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J. Environ. Manag. 197 448–455. 10.1016/j.jenvman.2017.04.014 PubMed DOI
Hussain A., Ali S., Rizwan M., ur Rehman M. Z., Javed M. R., Imran M., et al. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 242 1518–1526. PubMed
Hussain B., Ashraf M. N., Abbas A., Li J., Farooq M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci. Total Environ. 754:142188. 10.1016/j.scitotenv.2020.142188 PubMed DOI
Huybrechts M., Hendrix S., Bertels J., Beemster G. T. S., Vandamme D., Cuypers A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environ. Exp. Bot. 177:104120. 10.1016/j.envexpbot.2020.104120 DOI
Ibrahim M., Li G., Chan F. K. S., Kay P., Liu X. X., Firbank L., et al. (2019). Biochar effects potentially toxic elements and antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environ. Technol. Innov. 15:100427.
Ijaz M., Rizwan M. S., Sarfraz M., Ul-Allah S., Sher A., Sattar A., et al. (2020). Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. Int. J. Agric. Biol. 24 1633–1640. 10.17957/IJAB/15.1605 PubMed DOI
Ishikawa S., Abe T., Kuramata M., Yamaguchi M., Ando T., Yamamoto T., et al. (2010). A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J. Exp. Bot. 61 923–934. 10.1093/jxb/erp360 PubMed DOI PMC
Ishikawa S., Ae N., Yano M. (2005). Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). N. Phytol. 168 345–350. 10.1111/j.1469-8137.2005.01516.x PubMed DOI
Ishizaki T. (2016). CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation. Mol. Breed. 36:165.
Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7:60. 10.2478/intox-2014-0009 PubMed DOI PMC
Jan S. U., Jamal A., Sabar M. A., Ortas I., Isik M., Aksahin V., et al. (2020). Impact of Zea mays L. waste derived biochar on cadmium immobilization and wheat plant growth. Pak. J. Agri. Sci. 57 1201–1210.
Janeczko A., Koscielniak J., Pilipowicz M., Szarek-Lukaszewska G., Skoczowski A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43 293–298. 10.1007/s11099-005-0048-4 DOI
Janeeshma E., Puthur J. T. (2020). Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch. Microbiol. 202 1–16. 10.1007/s00203-019-01730-z PubMed DOI
Janoušková M., Pavlíková D., Vosátka M. (2006). Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65 1959–1965. 10.1016/j.chemosphere.2006.07.007 PubMed DOI
Januškaitienė I. (2010). Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ. Res. Engg. Manage. 53 24–29.
Jebara S. H., Chiboub M., Jebara M. (2018). “Antioxidant responses and gene level expressions of Sulla coronaria inoculated by heavy metals resistant plant growth promoting bacteria under cadmium stress,” in Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, Advances in Science, Technology & Innovation, eds Kallel A., Ksibi M., Dhia H. B., Khélifi N. (Cham: Springer International Publishing; ).
Jegadeesan S., Yu K., Povsa V., Gawalko E., Morrison M. J., Shi C., et al. (2010). Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor. Appl. Genet. 121 283–294. 10.1007/s00122-010-1309-6 PubMed DOI
Jha U. C., Bohra A. (2016). Genomics enabled breeding approaches for improving cadmium stress tolerance in plants. Euphytica 208 1–31.
Jianfeng W., Zhang Y., Jin J., Li Q., Chenzhou Z., Wenbin N., et al. (2017). An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture alteration in Arabidopsis thaliana seedlings. Plant Growth Regul. 84 507–518. 10.1007/s10725-017-0357-1 DOI
Jiang M., Liu S., Li Y., Li X., Luo Z., Song H., et al. (2019). EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicol. Environ. Saf. 170 502–512. PubMed
Jiang Q. Y., Zhuo F., Long S. H., Di-Zhao H., Yang D. J., Ye Z. H., et al. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci. Rep. 6:21805. 10.1038/srep21805 PubMed DOI PMC
Jianv L., Qixing Z., Song W. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int. J. Phytoremediat. 12 503–515. 10.1080/15226510903353112 PubMed DOI
Joshi P. M., Juwarkar A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ. Sci. Technol. 43 5884–5889. 10.1021/es900063b PubMed DOI
Jung M. C. (2008). Heavy metal concentration in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu–W mine. Sensors 8 2413–2423. 10.3390/s8042413 PubMed DOI PMC
Jung C., Capistrano-Gossmann G., Braatz J., Sashidhar N., Melzer S. (2018). Recent developments in genome editing and applications in plant breeding. Plant Breed. 137 1–9.
Kabata-Pendias A. (1993). Behavioural properties of trace metals in soils. Appl. Geochem. 8 3–9. 10.1016/S0883-2927(09)80002-4 DOI
Kabata-Pendias A., Sadurski W. (2004). “Trace elements and compounds in soil,” in Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, eds Merian E., Anke M., Ihnat M., Stoeppler M. (Hoboken, NJ: Wiley; ), 79–99.
Kamran M., Malik Z., Parveen A., Huang L., Riaz M., Bashir S., et al. (2020). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 39 266–281.
Kamran M., Malik Z., Parveen A., Zong Y., Abbasi G. H., Rafiq M. T., et al. (2019). Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. J. Environ. Manag. 250:109500. 10.1016/j.jenvman.2019.109500 PubMed DOI
Kapoor D., Sharma R., Handa N., Kaur H., Rattan A., Yadav P., et al. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13. 10.3389/fenvs.2015.00013 DOI
Kapoor D., Singh S., Kumar V., Romero R., Prasad R., Singh J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182.
Ke T., Guo G., Liu J., Zhang C., Tao Y., Wang P., et al. (2021). Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 271:116314. 10.1016/j.envpol.2020.116314 PubMed DOI
Khan M. A., Khan S., Khan A., Alam M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total Environ. 601 1591–1605. 10.1016/j.scitotenv.2017.06.030 PubMed DOI
Khan N., Samiullah, Singh S., Nazar R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci. 193 435–444.
Khanna K., Jamwal V. L., Kohli S. K., Gandhi S. G., Ohri P., Bhardwaj R., et al. (2019). Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere 217 463–474. 10.1016/j.chemosphere.2018.11.005 PubMed DOI
Kirkham M. B. (2006). Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137 19–32. 10.1016/j.geoderma.2006.08.024 DOI
Kloepper J. W. (1994). “Plant growth-promoting rhizobacteria,” in Plant Growth and Health Promoting Bacteria, ed. Maheshwari D. K. (Cham: Springer Science & Business Media; ), 137–166.
Knox R. E., Pozniak C. J., Clarke F. R., Clarke J. M., Houshmand S., Singh A. K. (2009). Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome 52 741–747. 10.1139/g09-042 PubMed DOI
Koprivova A., North K. A., Kopriva S. (2008). Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in Arabidopsis roots. Plant Physiol. 146 1408–1420. 10.1104/pp.107.113175 PubMed DOI PMC
Krantev A., Yordanova R., Janda T., Szalai G., Popova L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 165 920–931. 10.1016/j.jplph.2006.11.014 PubMed DOI
Krujatz F. (2012). Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium Pseudomonas brassicacearum. Water Air Soil Pollut. 223 1281–1293.
Kubier A., Wilkin R. T., Pichler T. (2019). Cadmium in soils and groundwater: a review. Appl. Geochem. 108:104388. 10.1016/j.apgeochem.2019.104388 PubMed DOI PMC
Kumar P., Edelstein M., Cardarelli M., Ferri E., Colla G. (2015). Grafting affects growth, yield, nutrient uptake, and partitioning under cadmium stress in tomato. HortScience 50 1654–1661.
Küpper H., Parameswaran A., Leitenmaier B., Trtilek M., Šetlík I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspicaerulescens. New Phytol. 175 655–674. 10.1111/j.1469-8137.2007.02139.x PubMed DOI
Lambrechts T., Gustot Q., Couder E., Houben D., Iserentant A., Lutts S. (2011). Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere 85 1290–1298. 10.1016/j.chemosphere.2011.07.034 PubMed DOI
Lan H. X., Wang Z. F., Wang Q. H., Wang M. M., Bao Y. M., Huang J., et al. (2012). Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Mol. Biol. Rep. 40 1201–1210. PubMed
Lata S., Kaur H. P., Mishra T. (2019). Cadmium bioremediation: a review. Int. J. Pharm. Sci. Res. 10 4120–4128. 10.13040/IJPSR.0975-8232 DOI
Lee K., Back K. (2017). Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J. Pineal Res. 62 1–14. 10.1111/jpi.12392 PubMed DOI
Leegood R. (1993). “Carbon metabolism,” in Photosynthesis and Production in a Changing Environment, eds Hall D. O., Scurlock J. M. O., Bolhar-Nordenkampf H. R., Leegood R. C., Long S. P. (Cham: Springer; ), 247–267.
Lehmann A., Leifheit E., Rillig M. (2017). “Mycorrhizas and soil aggregation,” in Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage, eds Johnson N. C., Gehring C., Jansa J. (Amsterdan: Elsevier; ). 10.1111/j.1469-8137.2004.01181.x DOI
Lehmann A., Rillig M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops - A meta-analysis. Soil Biol. Biochem. 81 147–158. 10.1016/j.soilbio.2014.11.013 DOI
Lentini M., De Lillo A., Paradisone V., Liberti D., Landi S., Esposito S. (2018). Early responses to cadmium exposure in barley plants: effects on biometric and physiological parameters. Acta Physiol. Plant. 40 1–11. 10.1007/s11738-018-2752-2 DOI
Li D. D., Zhou D. M. (2012). Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity. Ecotoxicol. Environ. Saf. 79 264–271. PubMed
Li F., Li Z., Mao P., Li Y., Li Y., McBride M. B., et al. (2019). Heavy metal availability, bioaccessibility, and leachability in contaminated soil: effects of pig manure and earthworms. Environ. Sci. Pollut. Res. 26 20030–20039. 10.1007/s11356-018-2080-5 PubMed DOI
Li J., Yu J., Du D., Liu J., Lu H., Yan C. (2019). Analysis of anatomical changes and cadmium distribution in Aegicerascorniculatum (L.) Blanco roots under cadmium stress. Mar. Pollut. Bull. 149:110536. 10.1016/j.marpolbul.2019.110536 PubMed DOI
Li L., Chen J., He Q., Daud M. K., Zhu S. (2012). Characterization of physiological traits, yield and fiber quality in three upland cotton cultivars grown under cadmium stress. Aust. J. Crop Sci. 6 1527–1533.
Li Q., Lu Y., Shi Y., Wang T., Ni K., Xu L., et al. (2013). Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. J. Environ. Sci. 25 1936–1946. PubMed
Li S., Chen J., Islam E., Wang Y., Wu J., Ye Z., et al. (2016). Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere 153 107–114. 10.1016/j.chemosphere.2016.02.062 PubMed DOI
Li S., Sun X., Li S., Liu Y., Ma Q., Zhou W. (2021). Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. RSC Adv. 11 4395–4405. 10.1039/D0RA09358K PubMed DOI PMC
Li W., Wu S., Liu Y., Jin G., Zhao H., Fan L., et al. (2016). Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants. J. Zhejiang Univ. Sci. B 17 992–996. 10.1631/jzus.B1600301 PubMed DOI PMC
Li X., Gitau M. M., Han S., Fu J., Xie Y. (2017a). Effects of cadmium-resistant fungi Aspergillus aculeatus on metabolic profiles of bermudagrass [Cynodondactylon (L.) Pers.] under Cd stress. Plant Physiol. Biochem. 114 38–50. 10.1016/j.plaphy.2017.02.014 PubMed DOI
Li X., Han S., Wang G., Liu X., Amombo E., Xie Y., et al. (2017b). The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass. Front. Microbiol. 8:1664. 10.3389/fmicb.2017.01664 PubMed DOI PMC
Li Y., Luo J., Yu J., Xia L., Zhou C., Cai L., et al. (2018). Improvement of the phytoremediation efficiency of Neyraudiareynaudiana for lead-zinc mine-contaminated soil under the interactive effect of earthworms and EDTA. Sci. Rep. 8:6417. 10.1038/s41598-018-24715-2 PubMed DOI PMC
Li Y., Wang L., Yang L., Li H. (2014). Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress. Ecotoxicol. Environ. Saf. 102 55–61. 10.1016/j.ecoenv.2014.01.004 PubMed DOI
Li Z., Zhang R., Zhang H. (2018). Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by Amaranthus hybridus Linn. Int. J. Phytoremed. 20 1121–1128. 10.1080/15226514.2017.1365348 PubMed DOI
Liao M., Xie X. M. (2004). Cadmium release in contaminated soils due to organic acids. Pedosphere 14 223–228.
Lin H., Fang C., Li Y., Lin W., He J., Lin R., et al. (2016). Effect of silicon on grain yield of rice under cadmium-stress. Acta Physiol. Plant. 38 1–13. 10.1007/s11738-016-2177-8 DOI
Lin R., Wang X., Luo Y., Du W., Guo H., Yin D. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69 89–98. 10.1016/j.chemosphere.2007.04.041 PubMed DOI
Liu F., Liu X., Ding C., Wu L. (2015). The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crops Res. 183 225–234. 10.1016/j.fcr.2015.08.004 DOI
Liu J., Qian M., Cai G., Yang J., Zhu Q. (2007). Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J. Hazard. Mater. 143 443–447. 10.1016/j.jhazmat.2006.09.057 PubMed DOI
Liu J. N., Zhou Q., Sun T., Ma L. Q., Wang S. (2008). Identification of and chemical enhancement of two ornamental plants for phytoremediation. Bull. Environ. Contam. Toxicol. 80 260–265. 10.1007/s00128-008-9357-1 PubMed DOI
Liu J. N., Zhou Q. X., Wang S., Sun T. (2009). Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulation under chemical enhancement. Environ. Monit. Assess. 149 419–427. 10.1007/s10661-008-0218-5 PubMed DOI
Liu L., Li J. W., Yue F. X., Yan X. W., Wang F. Y., Bloszies S., et al. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194 495–503. 10.1016/j.chemosphere.2017.12.025 PubMed DOI
Liu M., Sun J., Li Y., Xiao Y. (2017). Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere 167 204–211. PubMed
Liu X., Chen S., Chen M., Zheng G., Peng Y., Shi X., et al. (2019). Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands. Front. Plant Sci. 10:61. 10.3389/fpls.2019.00061 PubMed DOI PMC
Liu Y., Xiao T., Ning Z., Li H., Tang J., Zhou G. (2013). High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. Appl. Geochem. 37 149–156. 10.1016/j.apgeochem.2013.07.022 DOI
Liza S. J., Shethi K. J., Rashid P. (2020). Effects of cadmium on the anatomical structures of vegetative organs of chickpea (Cicer arientinum L.). Dhaka Univ. J. Biol. Sci. 29 45–52. 10.3329/dujbs.v29i1.46530 DOI
Long C., Wang D., Chen L., Jiang W. J., Xiang M. W. (2017). Effect of four kinds of phytohormones on U and Cd accumulation in Helianthus annuus. Chin. J. Environ. Eng. 11 3251–3256.
Lozano-Rodriguez E., Hernandez L. E., Bonay P., Carpena-Ruiz R. O. (1997). Distribution of cadmium in shoot and root tissues1. J. Exp. Bot. 48 123–128. 10.1093/jxb/48.1.123 DOI
Luo J., Li X., Jin Y., Traore I., Dong L., Yang G., et al. (2020). Effects of arbuscular mycorrhizal fungi glomus mosseae on the growth and medicinal components of Dysosma versipellis under copper stress. Bull. Environ. Contam. Toxicol. 107 924–930. 10.1007/s00128-019-02780-1 PubMed DOI
Luo J. S., Huang J., Zeng D. L., Peng J. S., Zhang G. B., Ma H. L., et al. (2018). A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 9 1–9. 10.1038/s41467-018-03088-0 PubMed DOI PMC
Ma J., Ni X., Huang Q., Liu D., Ye Z. (2021). Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes. Environ. Sci. Pollut. Res. 28 17405–17416. 10.1007/s11356-020-12007-0 PubMed DOI
Mahajan P., Kaushal J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. J. Toxicol. 2018 1–16. 10.1155/2018/4864365 PubMed DOI PMC
Maksimović I., Kastori R., Krstić L., Luković J. (2007). Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol. Plant. 51 589–592. 10.1007/s10535-007-0129-2 DOI
Maksymiec W., Krupa Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants-a similar physiological response to both stressors? J. Plant Physiol. 159 509–515. 10.1078/0176-1617-00610 DOI
Maksymiec W., Krupa Z. (2006). The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ. Exp. Bot. 57 187–194. 10.1016/j.envexpbot.2005.05.006 DOI
Mani D., Kumar C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Technol. 11 843–872. 10.1007/s13762-013-0299-8 DOI
Manzoor M., Gul I., Kallerhoff J., Arshad M. (2019). Fungi-assisted phytoextraction of lead: tolerance, plant growth—promoting activities and phytoavailability. Environ. Sci. Pollut. Res. 26 23788–23797. 10.1007/s11356-019-05656-3 PubMed DOI
Martínez Domínguez D., Córdoba García F., Canalejo Raya A., Torronteras Santiago R. (2010). Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol. Plant. 139 289–302. 10.1111/j.1399-3054.2010.01368.x PubMed DOI
Maurya A. K. (2020). “Oxidative stress in crop plants,” in Agronomic Crops, ed. Hasanuzzaman M. (Singapore: Springer; ).
McCouch S. R., Wright M. H., Tung C. W., Maron L. G., McNally K. L., Fitzgerald M., et al. (2016). Open access resources for genome-wide association mapping in rice. Nat. Commun. 7 1–14. 10.1038/ncomms10532 PubMed DOI PMC
Medynska-Juraszek A., Cwielag-Piasecka I. (2020). Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 29 1749–1757. 10.15244/pjoes/108928 DOI
Medyńska-Juraszek A., Bednik M., Chohura P. (2020). Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. Int. J. Environ. Res. Public Health 17:7861. PubMed PMC
Mehdizadeh L., Farsaraei S., Moghaddam M. (2021). Biochar application modified growth and physiological parameters of Ocimumciliatum L. and reduced human risk assessment under cadmium stress. J. Hazard. Mater. 409:124954. 10.1016/j.jhazmat.2020.124954 PubMed DOI
Meng D., Li J., Liu T., Liu Y., Yan M., Hu J., et al. (2019). Effects of redox potential on soil cadmium solubility: insight into microbial community. J. Environ. Sci. 75 224–232. 10.1016/j.jes.2018.03.032 PubMed DOI
Meng J., Zhong L., Wang L., Liu X., Tang C., Chen H., et al. (2018). Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. Environ. Sci. Pollut. Res. 25 8827–8835. 10.1007/s11356-017-1148-y PubMed DOI
Menguer P. K., Farthing E., Peaston K. A., Ricachenevsky F. K., Fett J. P., Williams L. E. (2013). Functional analysis of the rice vacuolar zinc transporter OsMTP1. J. Exp. Bot. 64 2871–2883. 10.1093/jxb/ert136 PubMed DOI PMC
Mishra S., Tripathi R. D., Srivastava S., Dwivedi S., Trivedi P. K., Dhankher O. P., et al. (2009). Thiol metabolism play significant role during cadmium detoxification by Ceratophyllumdemersum L. Bioresour. Technol. 100 2155–2161. 10.1016/j.biortech.2008.10.041 PubMed DOI
Mizushima M., Ferreira B., França M., Almeida A. A., Cortez P., Silva J., et al. (2019). Ultrastructural and metabolic disorders induced by short-term cadmium exposure in Avicenniaschaueriana plants and its excretion through leaf salt glands. Plant Biol. 21 844–853. 10.1111/plb.12992 PubMed DOI
Mokarram-Kashtiban S., Hosseini S. M., Kouchaksaraei M. T., Younesi H. (2019). Biochar improves the morphological, physiological and biochemical properties of white willow seedlings in heavy metal-contaminated soil. Arch. Biol. Sci. 71 281–291. 10.2298/ABS180918010M DOI
Molina A. S., Lugo M. A., PerezChaca M. V., Vargas-Gil S., Zirulnik F., Leporati J., et al. (2020). Effect of arbuscular mycorrhizal colonization on cadmium-mediated oxidative stress in Glycine max (L.) Merr. Plants 9:108. 10.3390/plants9010108 PubMed DOI PMC
Mondal S. C., Sarma B., Farooq M., Nath D. J., Gogoi N. (2020). Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. Int. J. Environ. Sci. Technol. 17 153–160. 10.1007/s13762-019-02263-0 DOI
Mongkhonsin B., Nakbanpote W., Meesungnoen O., Prasad M. N. V. (2019). “Adaptive and tolerance mechanisms in herbaceous plants exposed to cadmium,” in Cadmium Toxicity and Tolerance in Plants, eds Hasanuzzaman M., Prasad M. N. V., Fujita M. (Cambridge, MA: Academic Press; ), 73–109.
Moradi R., Pourghasemian N., Naghizadeh M. (2019). Effect of beeswax waste biochar on growth, physiology and cadmium uptake in saffron. J. Clean. Prod. 229 1251–1261. 10.1016/j.jclepro.2019.05.047 DOI
Moreira F. M. D. S., Ferreira P. A. A., Vilela L. A. F., Carneiro M. A. C. (2015). “Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils,” in Heavy Metal Contamination of Soils, 1st Edn, eds Sherameti I., Varma A. (Switzerland: Springer; ).
Mosa K. A., Saadoun I., Kumar K. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7:303. 10.3389/fpls.2016.00303 PubMed DOI PMC
Moslehi A., Feizian M., Higueras P., Eisvand H. R. (2019). Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (Helianthus annuus L.). Int. J. Phytoremed. 21 191–199. 10.1080/15226514.2018.1501336 PubMed DOI
Muhammad D., Chen F., Zhao J., Zhang G., Wu F. (2009). Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int. J. Phytoremediat. 11 558–574. 10.1080/15226510902717580 PubMed DOI
Murgese P., Santamaria P., Leoni B., Crecchio C. (2020). Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere (Cucumis melo L.). J. Soil Sci. Plant Nutr. 20 784–793. 10.1007/s42729-019-00165-1 DOI
Myśliwa-Kurdziel B., Strzałka K. (2002). “Influence of metals on biosynthesis of photosynthetic pigments,” in Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, eds Prasad M. N., Strzalka K., Strzałka K. (Cham: Springer Science & Business Media; ), 201–227.
Naeem M. A., Shabbir A., Amjad M., Abbas G., Imran M., Murtaza B., et al. (2020). Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa (Chenopodium quinoa Willd.). Ecotoxicol. Environ. Saf. 191:110218. 10.1016/j.ecoenv.2020.110218 PubMed DOI
Najeeb U., Jilani G., Ali S., Sarwar M., Xu L., Zhou W. (2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J. Hazard. Mater. 186 565–574. 10.1016/j.jhazmat.2010.11.037 PubMed DOI
Nakamura M., Ochiai T., Noji M., Ogura Y., Suzuki K., Yoshimoto N., et al. (2014). An improved tolerance to cadmium by overexpression of two genes for cysteine synthesis in tobacco. Plant Biotechnol. 31 141–147. 10.5511/plantbiotechnology.14.0130a DOI
Nejad Z. D., Jung M. C., Kim K. H. (2017). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 40 927–953. 10.1007/s10653-017-9964-z PubMed DOI
Nguyen T. Q., Sesin V., Kisiala A., Emery R. J. N. (2020). Phytohormonal roles in plant responses to heavy metal stress-implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ. Toxicol. Chem. 40 7–22. 10.1002/etc.4909 PubMed DOI
Nian L., Zhang X., Yi X., Liu X., Ain U. L., Yang Y., et al. (2021). Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in Medicago sativa L. Physiol. Mol. Biol. Plants 27 1979–1995. 10.1007/s12298-021-01066-3 PubMed DOI PMC
Nigam N., Khare P., Yadav V., Mishra D., Jain S., Karak T., et al. (2019). Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. Ecotoxicol. Environ. Saf. 172 411–422. 10.1016/j.ecoenv.2019.02.006 PubMed DOI
Nikolić N., Zorić L., Cvetković I., Pajević S., Borišev M., Orlović S., et al. (2017). Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus× euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iForest Biogeosci. For. 10:635. 10.3832/ifor2165-010 PubMed DOI
Noriega G. O., Balestrasse K. B., Batlle A., Tomaro M. L. (2007). Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20 841–851. 10.1007/s10534-006-9077-0 PubMed DOI
Nowack B. (2002). Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol. 36 4009–4016. 10.1021/es025683s PubMed DOI
Okem A., Kulkarni M. G., Staden J. V. (2015). Enhancing phytoremediation potential of Pennisetum clandestinumHochst in cadmium- contaminated coil using smoke-water and smoke-isolated karrikinolide. Int. J. Phytoremed. 17 1046–1052. 10.1080/15226514.2014.981245 PubMed DOI
Ostrowski M., Ciarkowska A., Jakubowska A. (2016). The auxin conjugate indole-3- acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. J. Plant Physiol. 191 63–72. 10.1016/j.jplph.2015.11.012 PubMed DOI
Palansooriya K. N., Shaheen S. M., Chen S. S., Tsang D. C. W., Hashimoto Y., Hou D., et al. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ. Int. 134:105046. 10.1016/j.envint.2019.105046 PubMed DOI
Pan F., Luo S., Shen J., Wang Q., Ye J., Meng Q., et al. (2017). The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure. Environ. Sci. Pollut. Res. 24 9350–9360. 10.1007/s11356-017-8565-9 PubMed DOI
Parmar P., Kumari N., Sharma V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud. 54 1–6. 10.1186/1999-3110-54-45 PubMed DOI PMC
Pereira B. F. F., de Abreu C. A., Herpin U., de Abreu M. F., Berton R. S. (2010). Phytoremediation of lead by jack beans on a Rhodic Hapludox amended with EDTA. Sci. Agric. 67 308–318. 10.1590/S0103-90162010000300009 DOI
Pierattini E. C., Francini A., Raffaelli A., Sebastiani L. (2017). Surfactant and heavy metal interaction in poplar: a focus on SDS and Zn uptake. Tree Physiol. 38 109–118. 10.1093/treephys/tpx155 PubMed DOI
Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska- Zylkiewicz B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 52 52–65. 10.1016/j.plaphy.2011.11.009 PubMed DOI
Pompeu G. B., Vilhena M. B., Gratão P. L. (2017). Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254 771–783. 10.1007/s00709-016-0989-4 PubMed DOI
Pozniak C., Fox S., Knott D. (2009). CDC Verona durum wheat. Can. J. Plant Sci. 89 321–324. 10.4141/CJPS08117 DOI
Qayyum M. F., Liaquat F., Rehman R. A., Gul M., Zia ul Hye M., Rizwan M., et al. (2017). Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. Environ. Sci. Pollut. Res. 24 26060–26068. 10.1007/s11356-017-0227-4 PubMed DOI
Qayyum M. F., Rehman R. A., Liaqat S., Ikram M., Ali S., Rizwan M., et al. (2019). Cadmium immobilization in the soil and accumulation by spinach (Spinacia oleracea) depend on biochar types under controlled and field conditions. Arab. J. Geosci. 12 1–11. 10.1007/s12517-019-4681-9 DOI
Qi F., Lamb D., Naidu R., Bolan N. S., Yan Y., Ok Y. S., et al. (2018). Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ. 610 1457–1466. 10.1016/j.scitotenv.2017.08.228 PubMed DOI
Qianqian M., Haider F. U., Farooq M., Adeel M., Shakoor N., Jun W., et al. (2022). Selenium treated Foliage and biochar treated soil for improved lettuce (Lactuca sativa L.) growth in Cd-polluted soil. J. Cleaner Prod. 335:130267. 10.1016/j.jclepro.2021.130267 DOI
Qin P., Wang L., Liu K., Mao S., Li Z., Gao S., et al. (2015). Genome wide association study of Aegilops tauschiitraits under seedling-stage cadmium stress. Crop J. 3 405–415. 10.1016/j.cj.2015.04.005 DOI
Qiu Z., Tan H., Zhou S., Cao L. (2014). Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J. Hazard Mater. 267 17–20. 10.1016/j.jhazmat.2013.12.043 PubMed DOI
Quartacci M. F., Pinzino C., Sgherri C. L., Dalla Vecchia F., Navari-Izzo F. (2000). Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol. Plant. 108 87–93. 10.1034/j.1399-3054.2000.108001087.x PubMed DOI
Rady M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hort. 129 232–237. 10.1016/j.scienta.2011.03.035 DOI
Rady M. M., Hemida K. A. (2015). Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of poly- amines. Ecotoxicol. Environ. Saf. 119 178–185. 10.1016/j.ecoenv.2015.05.008 PubMed DOI
Rafique M., Haque K., Hussain T., Amna C., Javed H. (2017). Biochemical Talk in the Rhizoshperic Microbial Community for Phytoremediation. Hauppauge, NY: Nova Science Publishers.
Rafique M., Ortas I., Rizwan M., Sultan T., Chaudhary H. J., Işik M., et al. (2019). Effects of Rhizophagusclarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environ. Sci. Pollut. Res. 26 20689–20700. 10.1007/s11356-019-05323-7 PubMed DOI
Rajkumar M., Sandhya S., Prasad M. N. V., Freitas H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30 1562–1574. 10.1016/j.biotechadv.2012.04.011 PubMed DOI
Raklami A., Oufdou K., Tahiri A. I., Mateos-Naranjo E., Navarro-Torre S., Rodríguez-Llorente I. D., et al. (2019). Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat-and metallo-resistant PGPR. Microorganisms 7:212. 10.3390/microorganisms7070212 PubMed DOI PMC
Rasheed R., Ashraf M. A., Hussain I., Haider M. Z., Kanwal U., Iqbal M. (2014). Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Braz. J. Bot. 37 399–406. 10.1007/s40415-014-0089-7 DOI
Rehman A., Shahzad B., Haider F. U., Ahmed H. A. I., Lee D.-J., Im S. Y., et al. (2022a). “An introduction to brassinosteroids: history, biosynthesis, and chemical diversity,” in Brassinosteroids in Plant Developmental Biology and Stress Tolerance, eds Yu J. Q., Ahammed G. J., Krishna P. (Cambridge, MA: Academic Press; ).
Rehman A., Shahzad B., Haider F. U., Moeen-ud-din M., Ullah A., Khan I. (2022b). “Brassinosteroids in plant response to high temperature stress,” in Brassinosteroids in Plant Developmental Biology and Stress Tolerance, eds Yu J. Q., Ahammed G. J., Krishna P. (Cambridge, MA: Academic Press; ).
Remans T., Opdenakker K., Smeets K., Mathijsen D., Vangronsveld J., Cuypers A. (2010). Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct. Plant Biol. 37 532–544. 10.1071/FP09194 DOI
Ren T., Chen N., Mahari W. A. W., Xu C., Feng H., Ji X., et al. (2021). Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environ. Res. 192:110273. 10.1016/j.envres.2020.110273 PubMed DOI
Ren Y., Chen Y., An J., Zhao Z., Zhang G., Wang Y., et al. (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci. 270 245–256. 10.1016/j.plantsci.2018.02.022 PubMed DOI
Riaz M., Yan L., Wu X., Hussain S., Aziz O., Wang Y., et al. (2018). Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J. Environ. Manage. 208 149–158. 10.1016/j.jenvman.2017.12.008 PubMed DOI
Rizwan M., Ali S., Abbas T., Zia-Ur-Rehman M., Hannan F., Keller C., et al. (2016). Cadmium minimization in wheat: a critical review. Ecotoxicol. Environ. Saf. 130 43–53. 10.1016/j.ecoenv.2016.04.001 PubMed DOI
Rizwan M., Ali S., Qayyum M. F., Ok Y. S., Zia-ur-Rehman M., Abbas Z., et al. (2017). Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ. Geochem. Health 39 259–277. 10.1007/s10653-016-9826-0 PubMed DOI
Rizwan M., Ali S., Ur Rehman M. Z., Maqbool A. (2019a). A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ. Sci. Pollut. Res. 26 6279–6289. 10.1007/s11356-019-04174-6 PubMed DOI
Rizwan M., Ali S., Ur Rehman M. Z., Rinklebe J., Tsang D. C., Bashir A., et al. (2018). Cadmium phytoremediation potential of Brassica crop species: a review. Sci. Total Environ. 631 1175–1191. 10.1016/j.scitotenv.2018.03.104 PubMed DOI
Rizwan M., Noureen S., Ali S., Anwar S., Zia-ur-Rehman M., Qayyum M. F., et al. (2019b). Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. J. Soils Sediments 19 3749–3759. 10.1007/s11368-019-02327-1 DOI
Rodda M. S., Li G., Reid R. J. (2011). The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil 347 105–114. 10.1007/s11104-011-0829-4 DOI
Rodríguez-Serrano M., Romero-Puertas M. C., Zabalza A., Corpas F. J., Gómez M., Del Río L. A., et al. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 29 1532–1544. 10.1111/j.1365-3040.2006.01531.x PubMed DOI
Romero-Puertas M., Rodríguez-Serrano M., Corpas F., Gomez M. D., Del Rio L., Sandalio L. (2004). Cadmium-induced subcellular accumulation of O2•− and H2O2 in pea leaves. Plant Cell Environ. 27 1122–1134. 10.1111/j.1365-3040.2004.01217.x DOI
Rostami S., Azhdarpoor A. (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220 818–827. 10.1016/j.chemosphere.2018.12.203 PubMed DOI
Roychoudhury A., Ghosh S., Paul S., Mazumdar S., Das G., Das S. (2016). Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. wilczek). Acta Physiol. Plant. 38 1–18. 10.1007/s11738-015-2027-0 DOI
Saeed Q., Xiukang W., Haider F. U., Kucerik J., Mumtaz M. Z., Holatko J., et al. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 21:10529. 10.3390/ijms221910529 PubMed DOI PMC
Saeid A., Prochownik E., Dobrowolska-Iwanek J. (2018). Phosphorus solubilization by Bacillus species. Molecules 23:2897. 10.3390/molecules23112897 PubMed DOI PMC
Saeki K., Kunito T. (2012). Influence of chloride ions on cadmium adsorptions by oxides, hydroxides, oxyhydroxides, and phyllosilicates. Appl. Clay Sci. 62–63 58–62. 10.1016/j.clay.2012.04.018 DOI
Saifullah M. E., Qadir M., de Caritat P., Tack F. M. G., Du Laing G., Zia M. (2009). H. EDTA-assisted Pb phytoextraction. Chemosphere 74 1279–1291. 10.1016/j.chemosphere.2008.11.007 PubMed DOI
Sakouhi L., Rahoui S., Massoud M. B., Munemasa S., Ferjani E. E., Murata Y., et al. (2016). Calcium and EGTA alleviate cadmium toxicity in germinating chickpea seeds. J. Plant Growth Regul. 35 1064–1073. 10.1007/s00344-016-9605-2 DOI
Salazar M. J., Rodriguez J. H., Nieto G. L., Pignata M. L. (2012). Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater. 233 244–253. 10.1016/j.jhazmat.2012.07.026 PubMed DOI
Sangthong C., Setkit K., Prapagdee B. (2016). Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ. Sci. Pollut. Res. 23 756–764. 10.1007/s11356-015-5318-5 PubMed DOI
Sárvári É. (2008). Effect of Cd on the iron re-supply-induced formation of chlorophyll-protein complexes in cucumber. Acta Biol. Szegediensis 52 183–186.
Sarwar N., Malhi S. S., Zia M. H., Naeem A., Bibi S., Farid G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 90 925–937. 10.1002/jsfa.3916 PubMed DOI
Sasaki A., Yamaji N., Yokosho K., Ma J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24 2155–2167. PubMed PMC
Sato H., Shirasawa S., Maeda H., Nakagomi K., Kaji R., Ohta H., et al. (2011). Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’. Breed. Sci. 61 196–200. 10.1270/jsbbs.61.196 PubMed DOI
Sell J., Kayser A., Schulin R., Brunner I. (2005). Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277 245–253. 10.1007/s11104-005-7084-5 DOI
Semida W. M., Rady M. M., Abd El-Mageed T. A., Howladar S. M., Abdelhamid M. A. (2015). Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J. Hortic. Sci. Biotechnol. 90 83–91. 10.1080/14620316.2015.11513156 DOI
Shah K., Nahakpam S., Chaturvedi V., Singh P. (2019). “Cadmium-induced anatomical abnormalities in plants,” in Cadmium Toxicity and Tolerance in Plants, eds Hasanuzzaman M., Prasad M. N. V., Fujita M. (Amsterdam: Elsevier; ), 111–139. 10.1016/b978-0-12-814864-8.00005-x DOI
Shah K., Singh P., Nahakpam S. (2013). Effect of cadmium uptake and heat stress on root ultrastructure, membrane damage and antioxidative response in rice seedlings. J. Plant Biochem. Biotechnol. 22 103–112. 10.1007/s13562-012-0116-3 DOI
Shahid M., Austruy A., Echevarria G., Arshad M., Sanaullah M., Aslam M., et al. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment. Contam. 23 389–416. 10.1080/15320383.2014.831029 DOI
Shahid M., Dumat C., Khalid S., Niazi N. K., Antunes P. M. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil plant system. Rev. Environ. Contam. Toxicol. 241 73–137. 10.1007/398_2016_8 PubMed DOI
Shahkolaie S. S., Baranimotlagh M., Dordipour E., Khormali F. (2020). Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. S. Afr. J. Bot. 128 132–140. 10.1016/j.sajb.2019.10.007 DOI
Shahzad B., Tanveer M., Che Z., Rehman A., Cheema S. A., Sharma A., et al. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol. Environ. Saf. 147 935–944. 10.1016/j.ecoenv.2017.09.066 PubMed DOI
Shakirova F. M., Allagulova C. R., Maslennikova D. R., Klyuchnikova E. O., Avalbaev A. M., Bezrukova M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ. Exp. Bot. 122 19–28. 10.1016/j.envexpbot.2015.08.002 DOI
Sharaf A. E. M. M., Farghal I. I., Sofy M. R. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants. Res. J. Agric. Biol. Sci. 5 668–673.
Sharma R. K., Archana G. (2016). Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl. Soil Ecol. 107 66–78. 10.1016/j.apsoil.2016.05.009 DOI
Sharma S., Anand G., Singh N., Kapoor R. (2017). Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front. Plant Sci. 8:906. 10.3389/fpls.2017.00906 PubMed DOI PMC
Sharma S. S., Kumar V. (2002). Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium. J. Plant Physiol. 159 1323–1327. 10.1078/0176-1617-00601 DOI
Shao J. F., Xia J., Yamaji N., Shen R. F., Ma J. F. (2018). Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. J. Exp. Bot. 69 2743–2752. PubMed PMC
Sheoran V., Sheoran A. S., Poonia P. (2016). Factors affecting phytoextraction: (a review). Pedosphere 26 148–166. 10.1016/S1002-0160(15)60032-7 DOI
Shi P., Zhu K., Zhang Y., Chai T. (2016). Growth and cadmium accumulation of Solanum nigrum L. seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa. Water Air Soil Pollut. 227:459.
Shiyu Q. I. N., Hongen L. I. U., Zhaojun N. I. E., Rengel Z., Wei G. A. O., Chang L. I., et al. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30 168–180. 10.1016/S1002-0160(20)60002-9 DOI
Shukla D., Kesari R., Tiwari M., Dwivedi S., Tripathi R. D., Nath P., et al. (2013). Expression of Ceratophyllumdemersumphytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250 1263–1272. 10.1007/s00709-013-0508-9 PubMed DOI
Siemianowski O., Barabasz A., Kendziorek M., Ruszczyńska A., Bulska E., Williams L. E., et al. (2014). AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J. Exp. Bot. 65 1125–1139. 10.1093/jxb/ert471 PubMed DOI PMC
Sigfridsson K. G., Bernát G., Mamedov F., Styring S. (2004). Molecular interference of Cd2+ with Photosystem II. Biochim. Biophys. Acta Bioenerget. 1659 19–31. 10.1016/j.bbabio.2004.07.003 PubMed DOI
Silber A., Bar-Yosef B., Suryano S., Levkovitch I. (2012). Zinc adsorption by perlite: effects of pH, ionic strength, temperature, and pre-use as growth substrate. Geoderma 170 159–167.
Silva S. A., Techio V. H., de Castro E. M., de Faria M. R., Palmieri M. J. (2013). Reproductive, cellular, and anatomical alterations in Pistia stratiotes L. plants exposed to cadmium. Water Air Soil Pollut. 224 1–8.
Singh G., Pankaj U., Chand S., Verma R. (2019). Arbuscular mycorrhizal fungi assisted phytoextraction of toxic metals by Zea mays L. from tannery sludge. Soil Sediment. Contam. 28 729–746. 10.1080/15320383.2019.1657381 DOI
Singh P., Singh I., Shah K. (2020). Alterations in antioxidative machinery and growth parameters upon application of nitric oxide donor that reduces detrimental effects of cadmium in rice seedlings with increasing days of growth. S. Afr. J. Bot. 131 283–294. 10.1016/j.sajb.2020.02.022 DOI
Singh S., Parihar P., Singh R., Singh V. P., Prasad S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6:1143. 10.3389/fpls.2015.01143 PubMed DOI PMC
Singh S., Prasad S. M. (2016). Kinetin ameliorates cadmium induced toxicity on growth, pigments and photosynthesis by regulating antioxidant potential in tomato seedlings. Int. J. Sci. Eng. Appl. Sci. 2 1–10.
Singh S., Prasad S. M. (2017). Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: photosynthesis and nitrogen metabolism. Plant Growth Reg. 82 161–173. 10.1007/s10725-017-0248-5 DOI
Singh S., Singh A., Srivastava P. K., Prasad S. M. (2018). Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. J. Photochem. Photobiol. B Biol. 178 76–84. 10.1016/j.jphotobiol.2017.10.025 PubMed DOI
Skrebsky E. C., Tabaldi L. A., Pereira L. B., Rauber R., Maldaner J., Cargnelutti D., et al. (2008). Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of Pfaffia glomerata. Braz. J. Plant Physiol. 20 285–294. 10.1590/S1677-04202008000400004 DOI
Sohail M. I., Rehman M. Z., Rizwan M., Yousaf B., Ali S., Haq M. A., et al. (2020). Efficiency of various silicon rich amendments on growth and cadmium accumulation in field grown cereals and health risk assessment. Chemosphere 244 1–12. 10.1016/j.chemosphere.2019.125481 PubMed DOI
Sohail M. I., Zia-ur-Rehman M., Murtaza G., Wahid M. A. (2019). Chemical investigations of Si-rich organic and inorganic amendments and correlation analysis between different chemical composition and Si contents in amendments. Arab. J. Geosci. 12:47. 10.1007/s12517-018-4215-x DOI
Song W., Chen S., Liu J., Chen L., Song N., Li N., et al. (2015). Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J. Integr. Agric. 14 1845–1854. 10.1016/S2095-3119(14)60926-6 DOI
Song Y., Jin L., Wang X. (2017). Cadmium absorption and transportation pathways in plants. Int. J Phytoremed. 19 133–141. 10.1080/15226514.2016.1207598 PubMed DOI
Stroiński A., Giżewska K., Zielezińska M. (2013). Abscisic acid is required in transduction of cadmium signal to potato roots. Biol. Plant. 57 121–127. 10.1007/s10535-012-0135-x DOI
Sugiyama M., Ae N., Hajika M. (2011). Developing of a simple method for screening soybean seedling cadmium accumulation to select soybean genotypes with low seed cadmium. Plant Soil 341 413–422.
Suksabye P., Pimthong A., Dhurakit P., Mekvichitsaeng P., Thiravetyan P. (2016). Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environ. Sci. Pollut. Res. Int. 23 962–973. 10.1007/s11356-015-4590-8 PubMed DOI
Sullivan T. S., McBride M. B., Thies J. E. (2013). Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil. Soil Biol. Biochem. 66 102–109. 10.1016/j.soilbio.2013.06.021 DOI
Sun S., Wang H., Yu H., Zhong C., Zhang X., Peng J., et al. (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J. Exp. Bot. 64 1637–1647. 10.1093/jxb/ert021 PubMed DOI
Sun S., Zhou X., Cui X., Liu C., Fan Y., McBride M. B., et al. (2020). Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil. Plant Growth Reg. 90 29–40. 10.1007/s10725-019-00548-5 DOI
Sunitha M. S., Prashant S., Kumar S. A., Rao S. R. I. N. A. T. H., Narasu M. L., Kishor P. K. (2012). Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over-expressing phytochelatin synthase and metallothionein genes. Plant Cell Biotechnol. Mol. Biol. 13 99–104.
Tamás L., Dudíková J., Ďurčeková K., Halušková L’, Huttová J., Mistrík I. (2009). Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. Protoplasma 235:17. 10.1007/s00709-008-0027-2 PubMed DOI
Tang X., Zeng G., Fan C., Zhou M., Tang L., Zhu J., et al. (2018). Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd (II) from aqueous solutions. Sci. Total Environ. 636 1355–1361. 10.1016/j.scitotenv.2018.04.229 PubMed DOI
Tanveer M., Shabala S. (2022). “Entangling the interaction between essential and nonessential nutrients: implications for global food security,” in Plant Nutrition and Food Security in the Era of Climate Change, ed. Kumar V. (Cambridge, MA: Academic Press; ), 1–25.
Tanwar A., Aggarwal A., Charaya M. U., Kumar P. (2015). Cadmium remediation by arbuscular mycorrhizal fungus–colonized celery plants supplemented with ethylenediaminetetraacetic acid. Bioremediat. J. 19 188–200. 10.1080/10889868.2014.995371 DOI
Tao S., Sun L., Ma C., Li L., Li G., Hao L. (2013). Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant Soil 372 309–318. 10.1007/s11104-013-1749-2 DOI
Teiri H., Pourzamani H., Hajizadeh Y. (2018). Phytoremediation of VOCs from indoor air by ornamental potted plants: a pilot study using a palm species under the controlled environment. Chemosphere 197 375–381. PubMed
Timperio A. M., D’Amici G. M., Barta C., Loreto F., Zolla L. (2007). Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. J. Exp. Bot. 58 3695–3710. 10.1093/jxb/erm219 PubMed DOI
Tiong J., McDonald G. K., Genc Y., Pedas P., Hayes J. E., Toubia J., et al. (2014). HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol. 201 131–143. 10.1111/nph.12468 PubMed DOI
Tran T. A., Paunova S., Nedeva D., Popova L. (2011). Nitric oxide alleviates cadmium toxicity on photosynthesis in pea plants. ComptesRendus de l’AcademieBulgare des Sci. 64 1137–1142.
Tran T. A., Popova L. P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk. J. Bot. 37 1–13. 10.3906/bot-1112-16 PubMed DOI
Ueno D., Kono I., Yokosho K., Ando T., Yano M., Ma J. F. (2009a). A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). N. Phytol. 182 644–653. 10.1111/j.1469-8137.2009.02784.x PubMed DOI
Ueno D., Koyama E., Kono I., Ando T., Yano M., Ma J. F. (2009b). Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol. 50 2223–2233. 10.1093/pcp/pcp160 PubMed DOI
Ullah A., Heng S., Munis M. F. H., Fahad S., Yang X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ. Exp. Bot. 117 28–40. 10.1016/j.envexpbot.2015.05.001 DOI
Unsal V., Dalkıran T., Çiçek M., Kölükçü E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv. Pharm. Bull. 10:184. 10.34172/apb.2020.023 PubMed DOI PMC
Upadhyay S. K., Singh J. S., Singh D. P. (2011). Exopolysaccharide producing plant growth promoting rhizobacteria under salinity condition. Pedosphere 21 214–222. 10.1016/s1002-0160(11)60120-3 DOI
Uraguchi S., Mori S., Kuramata M., Kawasaki A., Arao T., Ishikawa S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J. Exp. Bot. 60:2677. 10.1093/jxb/erp119 PubMed DOI PMC
Varalakshmi L. R., Ganeshamurthy A. (2013). Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake. Commun. Soil Sci. Plant Anal. 44 1444–1456. 10.1080/00103624.2013.767344 DOI
Verma S., Verma P. K., Meher A. K., Bansiwal A. K., Tripathi R. D., Chakrabarty D. (2017). A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in the transgenic rice plant. J. Hazard. Mater. 344 626–634. 10.1016/j.jhazmat.2017.10.037 PubMed DOI
Vestena S., Cambraia J., Ribeiro C., Oliveira J. A., Oliva M. A. (2011). Cadmium-induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Braz. J. Plant Physiol. 23 131–139. 10.1590/S1677-04202011000200005 DOI
Violante A., Cozzolino V., Perelomov L., Caporale A., Pigna M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 10 268–292. 10.4067/S0718-95162010000100005 PubMed DOI
Vollmann J., Losak T., Pachner M., Watanabe D., Musilova L., Hlusek J. (2015). Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica 203 177–184. 10.1007/s10681-014-1297-8 DOI
Wahid A., Ghani A. (2008). Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Ann. Appl. Biol. 152 59–69. 10.1111/j.1744-7348.2007.00192.x DOI
Wang F., Chen F., Cai Y., Zhang G., Wu F. (2011). Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol. Trace Elem. Res. 144 1275–1288. PubMed
Wang H., Gao B., Wang S., Fang J., Xue Y., Yang K. (2015). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol. 197 356–362. PubMed
Wang K., Liu Y., Song Z., Wang D., Qiu W. (2019). Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237:124480. 10.1016/j.chemosphere.2019.124480 PubMed DOI
Wang S., Liu J. (2014). The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Environ. Monit. Assess. 186 751–759. 10.1007/s10661-013-3414-x PubMed DOI
Wen E., Yang X., Chen H., Shaheen S. M., Sarkar B., Xu S., et al. (2020). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. J. Hazard. Mater. 407:124344. 10.1016/j.jhazmat.2020.124344 PubMed DOI
World Health Organization [WHO] (2007). Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution. Copenhagen: World Health Organization.
Wu F., Zhang G., Dominy P., Wu H., Bachir D. M. (2007). Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. Chemosphere 70 83–92. PubMed
Wiebe K., Harris N., Faris J., Clarke J., Knox R. E., Taylor G. J., et al. (2010). Targeted mapping of Cdu1-B, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor. Appl. Genet. 121 1047–1058. 10.1007/s00122-010-1370-1 PubMed DOI
Wodala B., Eitel G., Gyula T., Ördög A., Horváth F. (2012). Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P 700 absorbance in pea leaves. Photosynthetica 50 380–386. 10.1007/s11099-012-0045-3 DOI
Wu B., He T., Wang Z., Qiao S., Wang Y., Xu F., et al. (2020). Insight into the mechanisms of plant growth promoting strain SNB6 on enhancing the phytoextraction in cadmium contaminated soil. J. Hazard Mater. 385:121587. 10.1016/j.jhazmat.2019.121587 PubMed DOI
Wu D., Sato K., Ma J. F. (2015). Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. 208 817–829. 10.1111/nph.13512 PubMed DOI
Wu Z., Wu W., Zhou S., Wu S. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in pakchoi (Brassica chinensis L.). Pedosphere 26 13–26. 10.1016/S1002-0160(15)60018-2 DOI
Xiao R., Wang P., Mi S., Ali A., Liu X., Li Y., et al. (2019). Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicol. Environ. Saf. 181 155–163. 10.1016/j.ecoenv.2019.06.005 PubMed DOI
Xie Y., Su L., He Z., Zhang J., Tang Y. (2021). Selenium inhibits cadmium absorption and improves yield and quality of cherry tomato (Lycopersicon esculentum) under cadmium stress. J. Soil Sci. Plant Nutr. 27 12476–12490. 10.1007/s42729-021-00427-x DOI
Xu D., Chen Z., Sun K., Yan D., Kang M., Zhao Y. (2013). Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicol. Environ. Saf. 97 147–153. 10.1016/j.ecoenv.2013.07.021 PubMed DOI
Xu S. S., Lin S. Z., Lai Z. X. (2015). Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil 392 71–85. 10.1007/s11104-015-2443-3 DOI
Xu W., Li Y., He J., Ma Q., Zhang X., Chen G., et al. (2010). Cd uptake in rice cultivars treated with organic acids and EDTA. J. Environ. Sci. 22 441–447. PubMed
Xue D., Chen M., Zhang G. (2009). Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165 587–596. 10.1007/s10681-008-9785-3 DOI
Xue Z. C., Gao H. Y., Zhang L. T. (2013). Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biol. Plant. 57 587–590. 10.1007/s10535-013-0318-0 DOI
Yang P., Zhou X. F., Wang L. L., Li Q. S., Zhou T., Chen Y. K., et al. (2018). Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. Int. J. Environ. Res. Public Health 15:1330. 10.3390/ijerph15071330 PubMed DOI PMC
Yang Y., Ge Y., Zeng H., Zhou X., Peng L., Zeng Q. (2017). Phytoextraction of cadmium contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci. Rep. 7:7210. 10.1038/s41598-017-05834-8 PubMed DOI PMC
Yang Y., Xiong J., Tao L., Cao Z., Tang W., Zhang J., et al. (2020). Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Sci. Total Environ. 708:135186. 10.1016/j.scitotenv.2019.135186 PubMed DOI
Yan L., Riaz M., Wu X., Du C., Liu Y., Lv B., et al. (2018). Boron inhibits aluminuminduced toxicity to citrus by stimulating antioxidant enzyme activity. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 36 145–163. 10.1080/10590501.2018.1490513 PubMed DOI
Yao P., Zhou H., Li X., Wei L., Wang J., Zhang S., et al. (2021). Effect of biochar on the accumulation and distribution of cadmium in tobacco (Yunyan 87) at different developmental stages. Ecotoxicol. Environ. Saf. 207:111295. 10.1016/j.ecoenv.2020.111295 PubMed DOI
Ying R. R., Qiu R. L., Tang Y. T., Hu P. J., Qiu H., Chen H. R., et al. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J. Plant Physiol. 167 81–87. 10.1016/j.jplph.2009.07.005 PubMed DOI
Younis U., Malik S. A., Rizwan M., Qayyum M. F., Ok Y. S., Shah M. H. R., et al. (2016). Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ. Sci. Pollut. Res. 23 21385–21394. 10.1007/s11356-016-7344-3 PubMed DOI
Yousaf B., Liu G., Wang R., Zia-ur-Rehman M., Rizwan M. S., Imtiaz M., et al. (2016). Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environ Earth Sci. 75:374. 10.1007/s12665-016-5285-2 DOI
Yousaf M. T. B., Nawaz M. F., Khawaja H. F., Gul S., Ali S., Ahmad I., et al. (2019). Ecophysiological response of early stage Albizia lebbeck to cadmium toxicity and biochar addition. Arab. J. Geosci. 12 1–8. 10.1007/s12517-019-4296-1 DOI
Yu H. Y., Liu C., Zhu J., Li F., Deng D. M., Wang Q., et al. (2016). Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut. 209 38–45. 10.1016/j.envpol.2015.11.021 PubMed DOI
Yu L., Gao R., Qinghua S., Wang X., Wei M., Yang F. (2013). Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber. Pak. J. Bot. 45 813–819.
Yu R., Li D., Du X., Xia S., Liu C., Shi G. (2017). Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pakchoi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genom. 18:587. 10.1186/s12864-017-3973-2 PubMed DOI PMC
Yuan L., Yang S., Liu B., Zhang M., Wu K. (2012). Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep. 31 67–79. 10.1007/s00299-011-1140-9 PubMed DOI
Yuan P., Wang J., Pan Y., Shen B., Wu C. (2019). Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci. Total Environ. 659 473–490. 10.1016/j.scitotenv.2018.12.400 PubMed DOI
Zaheer I. E., Ali S., Muhammad R., Farid M., Shakoor M. B., Gill R. A., et al. (2015). Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol. Environ. Saf. 120 310–317. 10.1016/j.ecoenv.2014.03.007 PubMed DOI
Zainab N., Din B. U., Javed M. T., Afridi M. S., Mukhtar T., Kamran M. A., et al. (2020). Deciphering metal toxicity responses of flax (Linumusitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol. Biochem. 152 90–99. 10.1016/j.plaphy.2020.04.039 PubMed DOI
Zawoznik M. S., Groppa M. D., Tomaro M. L., Benavides M. P. (2007). Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci. 173 190–197. 10.1016/j.plantsci.2007.05.004 DOI
Zeeshan N., Nasir A. A., Haider F. U., Naveed K., Naseer S., Murtaza G. (2021). Risk assessment of trace metals deposition and growth of Abelmochus esculentus L. on industrially polluted soils ofFaisalabad, Pakistan. Pak. J. Agri. Sci. 58 881–889. 10.21162/PAKJAS/21.409 DOI
Zhan F., Li B., Jiang M., Yue X., He Y., Xia Y., et al. (2018). Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ. Sci. Pollut. Res. 25 24338–24347. 10.1007/s11356-018-2487-z PubMed DOI
Zhang C., Yu Z. G., Zeng G. M., Jiang M., Yang Z. Z., Cui F., et al. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 73 270–281. 10.1016/j.envint.2014.08.010 PubMed DOI
Zhang C. J., Chen L., Shi D. W., Chen G. X., Lu C. G., Wang P., et al. (2007). Characteristics of ribulose-1, 5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. S. Afric. J. Bot. 73 22–28. 10.1016/j.sajb.2006.05.002 DOI
Zhang F., Liu M., Li Y., Che Y., Xiao Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655 1150–1158. 10.1016/j.scitotenv.2018.11.317 PubMed DOI
Zhang G., Fukami M., Sekimoto H. (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res. 77 93–98. 10.1016/S0378-4290(02)00061-8 DOI
Zhang L., Gao C., Chen C., Zhang W., Huang X. Y., Zhao F. J. (2020). Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. Environ. Sci. Technol. 54 10100–10108. 10.1021/acs.est.0c02877 PubMed DOI
Zhang M., Liu X., Yuan L., Wu K., Duan J., Wang X., et al. (2012). Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol. Biochem. 50 79–86. 10.1016/j.plaphy.2011.07.015 PubMed DOI
Zhang S., Quan L., Zhu Y., Yan J., He X., Zhang J., et al. (2020). Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil. Environ. Sci. Pollut. Res. 27 40434–40442. 10.1007/s11356-020-10079-6 PubMed DOI
Zhao F. J., Ma Y., Zhu Y. G., Tang Z., McGrath S. P. (2015). Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49 750–759. 10.1021/es5047099 PubMed DOI
Zhao J., Yang W., Zhang S., Yang T., Liu Q., Dong J., et al. (2018). Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice 11:61. 10.1186/s12284-018-0254-x PubMed DOI PMC
Zhao K., Liu X., Xu J., Selim H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard. Mater. 181 778–787. 10.1016/j.jhazmat.2010.05.081 PubMed DOI
Zhen H., Jia L., Huang C., Qiao Y., Li J., Li H., et al. (2020). Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 263:114552. 10.1016/j.envpol.2020.114552 PubMed DOI
Zhou C., Zhu L., Ma Z., Wang J. (2017). Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. Genes 8:173. 10.3390/genes8070173 PubMed DOI PMC
Zhu W., Du W., Shen X., Zhang H., Ding Y. (2017). Comparative adsorption of Pb and Cd by cow manure and its vermicompost. Environ. Pollut. 227 89–97. 10.1016/j.envpol.2017.04.048 PubMed DOI
Zhu Y., Wang H., Lv X., Zhang Y., Wang W. (2020). Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the ant oxidative defense system. Sci. Rep. 10 1–12. 10.1038/s41598-020-77142-7 PubMed DOI PMC
Zhuo F., Zhang X. F., Lei L. L., Yan T. X., Lu R. R., Hu Z. H., et al. (2020). The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int. J. Phytoremediation 22 1009–1018. 10.1080/15226514.2020.1725867 PubMed DOI
Zia-ur-Rehman M., Zafar M., Waris A. A., Rizwan M., Ali S., Sabir M., et al. (2020). Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 244:125548. 10.1016/j.chemosphere.2019.125548 PubMed DOI
Zivkovic L. I., Rikalovic M., Cvijovic G. G., Kazazic S., Vrvic M., Brceski I., et al. (2018). Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosasan ai. RSC Adv. 8 10541– 10549. PubMed PMC
Zouari M., Elloumi N., Ahmed C. B., Delmail D., Rouina B. B., Abdallah F. B., et al. (2016). Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol. Engg. 86 202–209. 10.1016/j.ecoleng.2015.11.016 DOI
Zulfiqar U., Ayub A., Hussain S., Waraich E. A., El-Esawi M. A., Ishfaq M., et al. (2021). Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. J. Soil Sci. Plant Nutr. [Epub ahead of print]. 10.1007/s42729-021-00645-3 DOI
Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., et al. (2019). Lead toxicity in plants: impacts and remediation. J. Environ. Manage 250:109557. 10.1016/j.jenvman.2019.109557 PubMed DOI