Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35371142
PubMed Central
PMC8965506
DOI
10.3389/fpls.2022.773815
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, cadmium, contamination, plant physiology and growth, remediation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Agronomic Research Institute Ayub Agricultural Research Institute Faisalabad Pakistan
College of Life Sciences Yan'an University Yan'an China
College of Resources and Environmental Sciences Gansu Agricultural University Lanzhou China
Department of Agronomy University of Agriculture Faisalabad Faisalabad Pakistan
Department of Botany University of Agriculture Faisalabad Faisalabad Pakistan
Institute for Environmental Studies Faculty of Science Charles University Prague Prague Czechia
Institute of Soil and Environmental Science University of Agriculture Faisalabad Faisalabad Pakistan
Zobrazit více v PubMed
Abbas A., Azeem M., Naveed M., Latif A., Bashir S., Ali A., et al. (2020). Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. PubMed DOI
Abbas T., Rizwan M., Ali S., Adrees M., Zia-ur-Rehman M., Qayyum M. F., et al. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat ( PubMed DOI
Abbas T., Rizwan M., Ali S., Adrees M., Mahmood A., Zia-ur-Rehman M., et al. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. PubMed DOI
Abbasi S., Sadeghi A., Safaie N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes.
Abd El-Mageed T. A., El- Samnoudi I. M., Ibrahim A. M., Abd El Tawwab A. R. (2018). Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime.
Abdel-Latef A. A. H., Hashem A., Rasool S., Abdallah E. F., Alqarawi A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review.
Abd-El-Mageed T. A., El-Sherif A. M., Abd El-Mageed S. A., Abdou N. M. (2019). A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil.
Abe T., Nonoue Y., Ono N., Omoteno M., Kuramata M., Fukuoka S., et al. (2013). Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. PubMed DOI PMC
Abozeid A., Ying Z., Lin Y., Liu J., Zhang Z., Tang Z. (2017). Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in PubMed PMC
AbuHammad W. A., Mamidi S., Kumar A., Pirseyedi S., Manthey F. A., Kianian S. F., et al. (2016). Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars.
Aderholt M., Vogelien D. L., Koether M., Greipsson S. (2017). Phyto- extraction of contaminated urban soils by PubMed DOI
Adil M. F., Sehar S., Chen G., Chen Z. H., Jilani G., Chaudhry A. N., et al. (2020). Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. PubMed DOI
Afzal M., Yu M., Tang C., Zhang L., Muhammad N., Zhao H., et al. (2019). The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. PubMed DOI
Ahemad M. (2014). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. DOI
Ahmad J., Ali A. A., Baig M. A., Iqbal M., Haq I., Qureshi M. I. (2018). “Role of phytochelatins in cadmium stress tolerance in plants,” in
Ahmad M. T., Asghar H. N., Saleem M., Khan M. Y., Zahir Z. A. (2015). Synergistic effect of rhizobia and biochar on growth and physiology of maize.
Ahmad P., Alyemeni M. N., Vijaya L., Alam P., Ahanger M. A., Alamri S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean ( DOI
Ahmad P., Nabi G., Ashraf M. (2011). Cadmium-induced oxidative damage in mustard [ DOI
Ahmad S. H., Reshi Z., Ahmad J., Iqbal M. (2005). Morpho-anatomical responses of DOI
Akhter Z., Bi Z., Ali K., Sun C., Fiaz S., Haider F. U., et al. (2021). In response to abiotic stress, DNA methylation confers epi-genetic changes in plants. PubMed DOI PMC
Ali B., Gill R. A., Yang S., Gill M. B., Farooq M. A., Liu D., et al. (2015). Regulation of cadmium-induced proteomic and metabolic changes by 5- aminolevulinic acid in leaves of PubMed DOI PMC
Alle V., Kondratovics U., Osvalde A., Vikmane M. (2016). Differences in cadmium accumulation and induced changes in root anatomical structures in plants used for food.
Alyemeni M. N., Ahanger M. A., Wijaya L., Alam P., Bhardwaj R., Ahmad P. (2018). Selenium mitigates cadmium-induced oxidative stress in tomato ( PubMed DOI
Amirabad S. A., Behtash F., Vafaee Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish ( PubMed DOI
Amirahmadi E., Hojjati S. M., Kammann C., Ghorbani M., Biparva P. (2020). The potential effectiveness of biochar application to reduce soil Cd bioavailability and encourage oak seedling growth. DOI
Anjum S. A., Tanveer M., Hussain S., Bao M., Wang L., Khan I., et al. (2015). Cadmium toxicity in Maize ( PubMed DOI
Anjum S. A., Tanveer M., Hussain S., Ullah E., Wang L., Khan I., et al. (2016). Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. DOI
Anuradha S., Rao S. S. R. (2009). Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. DOI
Arao T., Ae N., Sugiyama M., Takahashi M. (2003). Genotypic differences in cadmium uptake and distribution in soybeans. PubMed DOI
Asgher M., Khan M. I. R., Anjum N. A., Khan N. A. (2015). Minimising toxicity of cadmium in plants—role of plant growth regulators. PubMed DOI
Attinti R., Barrett K. R., Datta R., Sarkar D. (2017). Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. PubMed DOI
Awasthi M. K., Pandey A. K., Bundela P. S., Khan J. (2015). Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic. PubMed DOI
Babadi M., Zalaghi R., Taghavi M. (2019). A non-toxic polymer enhances sorghum mycorrhiza symbiosis for bioremediation of Cd. PubMed DOI
Bagheri V., Shamshiri M. H., Shirani H., Roosta H. R. (2012). Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress.
Balestri M., Ceccarini A., Forino L. M. C., Zelko I., Martinka M., Lux A., et al. (2014). Cadmium uptake, localization and stress-induced morphogenic response in the fern PubMed DOI
Bari M. A., Akther M. S., Reza M. A., Kabir A. H. (2019). Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. PubMed DOI
Bashir A., Rizwan M., Zia-ur-Rehman M., Zubair M., Riaz M., Qayyum M. F., et al. (2020). Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. PubMed DOI
Bashir S., Gulshan A. B., Iqbal J., Husain A., Alwahibi M. S., Alkahtani J., et al. (2021). Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. PubMed DOI PMC
Bashir S., Rizwan M. S., Salam A., Fu Q., Zhu J., Shaaban M., et al. (2018). Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: extraction techniques and adsorption mechanism. PubMed DOI
Bhargava A., Carmona F. F., Bhargava M., Srivastava S. (2012). Approaches for enhanced phytoextraction of heavy metals. PubMed DOI
Bian R. J., Li L. Q., Bao D. D., Zheng J. W., Zhang X. H., Zheng J. F., et al. (2016). Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. PubMed DOI
Blanvillain R., Kim J. H., Wu S., Lima A., Ow D. W. (2009). OXIDATIVE STRESS 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. PubMed
Bloem E., Haneklaus S., Haensch R., Schnug E. (2016). EDTA application on agricultural soils affects microelement uptake of plants. PubMed DOI
Bojorquez C., Frias-Espericueta M. G., Voltolina D. (2016). Removal of cadmium and lead by adapted strains of
Boostani H. R., Najafi-Ghiri M., Mirsoleimani A. (2019). The effect of biochars application on reducing the toxic effects of nickel and growth indices of spinach ( PubMed DOI
Bora M. S., Sarma K. P. (2021). Anatomical and ultrastructural alterations in Ceratopterispteridoides under cadmium stress: a mechanism of cadmium tolerance. PubMed DOI
Bulak P., Walkiewicz A., Brzezińska M. (2014). Plant growth regulators- assisted phytoextraction. DOI
Çanakci S., Dursun B. (2012). The effect of pre-application of salicylic acid on some physiological and biochemical characteristics of tomato seedling ( DOI
Cao B. I., Ma Q., Zhao Q., Wang L., Xu K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. DOI
Chang Q., Wei D. F., Fan W. Q., Pan L., Hua D. Z., Guo W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings ( PubMed DOI
Chellaiah E. R. (2018). Cadmium (heavy metals) bioremediation by DOI
Chen B., Luo S., Wu Y., Ye J., Wang Q., Xu X., et al. (2017). The effects of the endophytic bacterium PubMed DOI PMC
Chen C.-T., Chen T.-H., Lo K.-F., Chiu C.-Y. (2004). Effects of proline on copper transport in rice seedlings under excess copper stress. DOI
Chen H., Yang X., Gielen G., Mandal S., Xu S., Guo J., et al. (2019). Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to PubMed DOI
Chen L., Long C., Wang D., Yang J. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by PubMed DOI
Chen Q., Lu X., Guo X., Pan Y., Yu B., Tang Z., et al. (2018a). Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant PubMed DOI
Chen H., Yang X., Wang P., Wang Z., Li M., Zhao F. J. (2018b). Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China. PubMed DOI
Chen H., Zhang W., Yang X., Wang P., McGrath S. P., Zhao F. J. (2018c). Effective methods to reduce cadmium accumulation in rice grain. PubMed DOI
Chen Z., Zhao Y., Fan L., Xing L., Yang Y. (2015). Cadmium (Cd) localization in tissues of cotton ( PubMed DOI
Choppala G., Saifullah, Bolan N., Bibi S., Iqbal M., Rengel Z., et al. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. PubMed DOI
Clabeaux B. L., Navarro D. A. G., Aga D. S., Bisson M. A. (2011). Cd tolerance and accumulation in the aquatic macrophyte, PubMed DOI
Clarke J. M., Norvell W. A., Clarke F. R., Buckley W. T. (2002). Concentration of cadmium and other elements in the grain of near-isogenic durum lines. PubMed DOI
Conolly E. L., Fett J. P., Guerinot M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. PubMed DOI PMC
Cui G., Ai S., Chen K., Wang X. (2019). Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. PubMed DOI
Cuypers A., Hendrix S., Amaral dos Reis R., De Smet S., Deckers J., Gielen H., et al. (2016). Hydrogen peroxide, signaling in disguise during metal phytotoxicity. PubMed DOI PMC
Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., et al. (2010). Cadmium stress: an oxidative challenge. PubMed DOI
da Silva Cunha L. F., de Oliveira V. P., do Nascimento A. W. S., da Silva B. R. S., Batista B. L., Alsahli A. A., et al. (2020). Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young PubMed DOI
Dad F. P., Khan W. U. D., Tanveer M., Ramzani P. M. A., Shaukat R., Muktadir A. (2020). Influence of iron-enriched biochar on Cd sorption, its ionic concentration and redox regulation of radish under cadmium toxicity. DOI
Das N., Bhattacharya S., Maiti M. K. (2016). Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytore mediation. PubMed DOI
Das R., Jayalekshmy V. G. (2015). Mechanism of heavy metal tolerance and improvement of tolerance in crop plants.
Da-wei H., Zhong-hua S., Qian-long L., Wei C., Xiang-jin W., et al. (2018). Identification of QTLs associated with cadmium concentration in rice grains.
Dobrikova A. G., Apostolova E. L., Hanć A., Yotsova E., Borisova P., Sperdouli I., et al. (2021). Cadmium toxicity in PubMed DOI
Eissa M. A. (2019). Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [ DOI
Elhiti M., Yang C., Chan A., Durnin D. C., Belmonte M. F., Ayele B. T., et al. (2012). Altered seed oil and glucosinolate levels in transgenic plants overexpressing the PubMed DOI
Elias E. M., Manthey F. (2016). Registration of ‘Joppa’ durum wheat. DOI
Elias E. M., Manthey F., AbuHammad W. (2015). Registration of ‘Carpio’ durum wheat. DOI
Elobeid M., Göbel C., Feussner I., Polle A. (2012). Cadmium interferes with auxin physiology and lignification in poplar. PubMed DOI PMC
Elyamine A. M., Moussa M. G., Afzal J., Rana M. S., Imran M., Zhao X., et al. (2019). Modified rice straw enhanced cadmium (ii) immobilization in soil and promoted the degradation of phenanthrene in co-contaminated soil. PubMed DOI PMC
Erdem H. (2021). The effects of biochars produced in different pyrolysis temperatures from agricultural wastes on cadmium uptake of tobacco plant. PubMed DOI PMC
Evangelou M. W. H., Ebel M., Schaeffer A. (2007). Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents. PubMed DOI
Farooq H., Asghar H. N., Khan M. Y., Saleem M., Zahir Z. A. (2015). Auxin-mediated growth of rice in cadmium-contaminated soil. DOI
Farooq M., Ullah A., Usman M., Siddique K. H. M. (2020). Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. PubMed DOI
Farooq M. A., Niazi A. K., Akhtar J., Farooq M., Souri Z., Karimi N., et al. (2019). Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PubMed DOI
French K. E. (2017). Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. PubMed DOI PMC
Gallego S. M., Pena L. B., Barcia R. A., Azpilicueta C. E., Iannone M. F., Rosales E. P., et al. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. PubMed DOI
García A. C., Tavares O. C. H., de Oliveira D. F. (2020). Biochar as agricultural alternative to protect the rice plant growth in fragile sandy soil contaminated with cadmium. DOI
Garg N., Chandel S. (2015). Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in DOI
Genchi G., Sinicropi M. S., Lauria G., Carocci A., Catalano A. (2020). The effects of cadmium toxicity. PubMed PMC
Gerszberg A., Hnatuszko-Konka K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. DOI
Ghani A. (2011). Varietal differences in canola (
Ghassemi H. R., Mostajeran A. (2018). TASOS1 and TATM20 genes expression and nutrient uptake in wheat seedlings may be altered via excess cadmium exposure and inoculation with DOI
Gill S. S., Khan N. A., Tuteja N. (2011). Differential cadmium stress tolerance in five Indian mustard ( PubMed DOI PMC
Glick B. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. PubMed DOI
Goel S., Gautam A. (2010). Effect of chelating agents on mobilization of metal from waste catalyst.
Goix S., Lévêque T., Xiong T. T., Schreck E., Baeza-Squiban A., Geret F., et al. (2014). Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. PubMed DOI
Goncalves J. F., Nicoloso F. T., Becker A. G., Pereira L. B., Tabaldi L. A., Cargnelutti D., et al. (2009). Photosynthetic pigments content, δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed DOI
Gondor O. K., Pál M., Darkó É, Janda T., Szalai G. (2016). Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize ( PubMed DOI PMC
Gong X., Yin L., Chen J., Gu C. (2015). Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. PubMed DOI
Goswami D., Thakker J. N., Dhandhukia P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review.
Gothberg A., Greger E., Holm K., Bengtsson B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. PubMed DOI
Gouia H., Suzuki A., Brulfert J., Ghorbal M. H. (2003). Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. PubMed DOI
Gruznova K. A., Bashmakov D. I., Miliauskiene J., Vastakaite V., Duchovskis P., Lukatkin A. S. (2018). The effect of a growth regulator Ribav-Extra on winter wheat seedlings exposed to heavy metals. DOI
Gul S., Naz A., Khan A., Nisa S., Irshad M. (2016). Phytoavailability and leachability of heavy metals from contaminated soil treated with composted livestock manure. DOI
Guo B., Liu C., Liang Y., Li N., Fu Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. PubMed DOI PMC
Guo H., Hong C., Chen X., Xu Y., Liu Y., Jiang D., et al. (2016). Different growth and physiological responses to cadmium of the three PubMed DOI PMC
Guo Z. H., Miao X. F. (2010). Growth changes and tissues anatomical characteristics of giant reed ( DOI
Gusiatin Z. M., Klimiuk E. (2012). Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. PubMed DOI
Habiba U., Ali S., Farid M., Shakoor M. B., Rizwan M., Ibrahim M., et al. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by PubMed DOI
Hafeez F., Rizwan M., Saqib M., Yasmeen T., Ali S., Abbas T., et al. (2019). Residual effect of biochar on growth, antioxidant defense and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil.
Haider F. U., Coulter J. A., Liqun C., Hussain S., Cheema S. A., Wu J., et al. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. DOI
Haider F. U., Liqun C., Coulter J. A., Cheema S. A., Wu J., Zhang R., et al. (2021a). Cadmium toxicity in plants: impacts and remediation strategies. PubMed DOI
Haider F. U., Coulter J. A., Cheema S. A., Farooq M., Wu J., Zhang R., et al. (2021b). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. PubMed DOI
Hajeb P., Sloth J. J., Shakibazadeh S., Mahyudin N. A., Afsah-Hejri L. (2014). Toxic elements in food: occurrence, binding, and reduction approaches. PubMed DOI
Hakmaoui A., Ater M., Boka K., Baron M. (2007). Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on PubMed DOI
Halim M. A., Majumder R. K., Zaman M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. DOI
Hamid Y., Tang L., Hussain B., Usman M., Gurajala H. K., Rashid M. S., et al. (2019). Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. PubMed DOI
Hamid Y., Tang L., Hussain B., Usman M., Lin Q., Rashid M. S., et al. (2020a). Organic soil additives for the remediation of cadmium contaminated soil sand their impact on the soil-plant system: a review. PubMed DOI
Hamid Y., Tang L., Hussain B., Usman M., Gurajala H. K., Rashid M. S., et al. (2020b). Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. PubMed
Han R. M., Lefèvre I., Albacete A., Pérez-Alfocea F., Barba-Espín G., Díaz-Vivancos P., et al. (2013). Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. PubMed DOI
Hasan M., Uddin M., Ara-Sharmeen F., I, Alharby H., Alzahrani Y., Hakeem K. R., et al. (2019). Assisting phytoremediation of heavy metals using chemical amendments. PubMed DOI PMC
Hasanuzzaman M., Alhaithloul H., Parvin K., Bhuyan M., Tanveer M., Mohsin S. M., et al. (2019). Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions. PubMed DOI PMC
Hasanuzzaman M., Bhuyan M., Zulfiqar F., Raza A., Mohsin S. M., Mahmud J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. PubMed DOI PMC
Hashem A., Abdallah E. F., Alqarawi A. A., Al-Huqail A. A., Egamberdieva D., Wirth S. (2016). Alleviation of cadmium stress in PubMed DOI PMC
Hassan W., Bano R., Bashir S., Aslam Z. (2015). Cadmium toxicity and soil biological index under potato (
Hayat S., Ali B., Hasan S. A., Ahmad A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in DOI
Hayat S., Alyemeni M. N., Hasan S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of PubMed DOI PMC
Hayat S., Hasan S. A., Hayat Q., Ahmad A. (2010). Brassinosteroids protect PubMed DOI
Hayat S., Hayat Q., Alyemeni M. N., Ahmad A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of DOI
He D., Cui J., Gao M., Wang W., Zhou J., Yang J., et al. (2019). Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. PubMed DOI
He J., Zhu C., Ren Y., Yan Y., Jiang D. (2006). Genotypic variation in grain cadmium concentration of lowland rice. DOI
He L., Ma X., Li Z. (2016). Maize oxidative stress 2 homologs enhance cadmium tolerance in PubMed DOI PMC
He S., Wu Q., He Z. (2014). Synergetic effects of DA-6/GA3 with EDTA on plant growth, extraction and detoxification of Cd by PubMed DOI
Hong K., Tokunaga S., Kajiuchi T. (2002). Evaluation of remediation process with plant derived biosurfactant for recovery of heavy metals from contaminated soils. PubMed DOI
Hossain M. A., Piyatida P., da Silva J. A. T., Fujita M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation.
Hu W., Zhang Y., Huang B., Teng Y. (2017). Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. PubMed DOI
Hu X., Liu X., Zhang X., Cao L., Chen J., Yu H. (2017). Increased accumulation of Pb and Cd from contaminated soil with Scirpustriqueter by the combined application of NTA and APG. PubMed DOI
Huang X., Han B. (2014). Natural variations and genome-wide association studies in crop plants. PubMed DOI
Huang D. F., Ling-Lin X., Li-Nian Y., Zhi-Qin W., Jian-Chang Y. (2008). Comparison of agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. DOI
Huang H., Luo L., Huang L., Zhang J., Gikas P., Zhou Y. (2020). Effect of manure compost on distribution of Cu and Zn in rhizosphere soil and heavy metal accumulation by
Huang J., Liu Z., Li S., Xu B., Gong Y., Yang Y., et al. (2016). Isolation and engineering of plant growth promoting rhizobacteria PubMed DOI
Huang Q., Yu Y., Wan Y., Wang Q., Luo Z., Qiao Y., et al. (2018). Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice ( PubMed DOI
Huang X., Ho S. H., Zhu S., Ma F., Wu J., Yang J., et al. (2017). Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in PubMed DOI
Hussain A., Ali S., Rizwan M., ur Rehman M. Z., Javed M. R., Imran M., et al. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. PubMed
Hussain B., Ashraf M. N., Abbas A., Li J., Farooq M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. PubMed DOI
Huybrechts M., Hendrix S., Bertels J., Beemster G. T. S., Vandamme D., Cuypers A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. DOI
Ibrahim M., Li G., Chan F. K. S., Kay P., Liu X. X., Firbank L., et al. (2019). Biochar effects potentially toxic elements and antioxidant enzymes in
Ijaz M., Rizwan M. S., Sarfraz M., Ul-Allah S., Sher A., Sattar A., et al. (2020). Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. DOI
Ishikawa S., Abe T., Kuramata M., Yamaguchi M., Ando T., Yamamoto T., et al. (2010). A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. PubMed DOI PMC
Ishikawa S., Ae N., Yano M. (2005). Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice ( PubMed DOI
Ishizaki T. (2016). CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation.
Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. PubMed DOI PMC
Jan S. U., Jamal A., Sabar M. A., Ortas I., Isik M., Aksahin V., et al. (2020). Impact of
Janeczko A., Koscielniak J., Pilipowicz M., Szarek-Lukaszewska G., Skoczowski A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. DOI
Janeeshma E., Puthur J. T. (2020). Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. PubMed DOI
Janoušková M., Pavlíková D., Vosátka M. (2006). Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. PubMed DOI
Januškaitienė I. (2010). Impact of low concentration of cadmium on photosynthesis and growth of pea and barley.
Jebara S. H., Chiboub M., Jebara M. (2018). “Antioxidant responses and gene level expressions of
Jegadeesan S., Yu K., Povsa V., Gawalko E., Morrison M. J., Shi C., et al. (2010). Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [ PubMed DOI
Jha U. C., Bohra A. (2016). Genomics enabled breeding approaches for improving cadmium stress tolerance in plants.
Jianfeng W., Zhang Y., Jin J., Li Q., Chenzhou Z., Wenbin N., et al. (2017). An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture alteration in DOI
Jiang M., Liu S., Li Y., Li X., Luo Z., Song H., et al. (2019). EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. PubMed
Jiang Q. Y., Zhuo F., Long S. H., Di-Zhao H., Yang D. J., Ye Z. H., et al. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of PubMed DOI PMC
Jianv L., Qixing Z., Song W. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with PubMed DOI
Joshi P. M., Juwarkar A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. PubMed DOI
Jung M. C. (2008). Heavy metal concentration in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu–W mine. PubMed DOI PMC
Jung C., Capistrano-Gossmann G., Braatz J., Sashidhar N., Melzer S. (2018). Recent developments in genome editing and applications in plant breeding.
Kabata-Pendias A. (1993). Behavioural properties of trace metals in soils. DOI
Kabata-Pendias A., Sadurski W. (2004). “Trace elements and compounds in soil,” in
Kamran M., Malik Z., Parveen A., Huang L., Riaz M., Bashir S., et al. (2020). Ameliorative effects of biochar on rapeseed (
Kamran M., Malik Z., Parveen A., Zong Y., Abbasi G. H., Rafiq M. T., et al. (2019). Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi ( PubMed DOI
Kapoor D., Sharma R., Handa N., Kaur H., Rattan A., Yadav P., et al. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. DOI
Kapoor D., Singh S., Kumar V., Romero R., Prasad R., Singh J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS).
Ke T., Guo G., Liu J., Zhang C., Tao Y., Wang P., et al. (2021). Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. PubMed DOI
Khan M. A., Khan S., Khan A., Alam M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. PubMed DOI
Khan N., Samiullah, Singh S., Nazar R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (
Khanna K., Jamwal V. L., Kohli S. K., Gandhi S. G., Ohri P., Bhardwaj R., et al. (2019). Plant growth promoting rhizobacteria induced Cd tolerance in PubMed DOI
Kirkham M. B. (2006). Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. DOI
Kloepper J. W. (1994). “Plant growth-promoting rhizobacteria,” in
Knox R. E., Pozniak C. J., Clarke F. R., Clarke J. M., Houshmand S., Singh A. K. (2009). Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. PubMed DOI
Koprivova A., North K. A., Kopriva S. (2008). Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in PubMed DOI PMC
Krantev A., Yordanova R., Janda T., Szalai G., Popova L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. PubMed DOI
Krujatz F. (2012). Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium
Kubier A., Wilkin R. T., Pichler T. (2019). Cadmium in soils and groundwater: a review. PubMed DOI PMC
Kumar P., Edelstein M., Cardarelli M., Ferri E., Colla G. (2015). Grafting affects growth, yield, nutrient uptake, and partitioning under cadmium stress in tomato.
Küpper H., Parameswaran A., Leitenmaier B., Trtilek M., Šetlík I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspicaerulescens. PubMed DOI
Lambrechts T., Gustot Q., Couder E., Houben D., Iserentant A., Lutts S. (2011). Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with PubMed DOI
Lan H. X., Wang Z. F., Wang Q. H., Wang M. M., Bao Y. M., Huang J., et al. (2012). Characterization of a vacuolar zinc transporter OZT1 in rice ( PubMed
Lata S., Kaur H. P., Mishra T. (2019). Cadmium bioremediation: a review. DOI
Lee K., Back K. (2017). Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. PubMed DOI
Leegood R. (1993). “Carbon metabolism,” in
Lehmann A., Leifheit E., Rillig M. (2017). “Mycorrhizas and soil aggregation,” in DOI
Lehmann A., Rillig M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops - A meta-analysis. DOI
Lentini M., De Lillo A., Paradisone V., Liberti D., Landi S., Esposito S. (2018). Early responses to cadmium exposure in barley plants: effects on biometric and physiological parameters. DOI
Li D. D., Zhou D. M. (2012). Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity. PubMed
Li F., Li Z., Mao P., Li Y., Li Y., McBride M. B., et al. (2019). Heavy metal availability, bioaccessibility, and leachability in contaminated soil: effects of pig manure and earthworms. PubMed DOI
Li J., Yu J., Du D., Liu J., Lu H., Yan C. (2019). Analysis of anatomical changes and cadmium distribution in PubMed DOI
Li L., Chen J., He Q., Daud M. K., Zhu S. (2012). Characterization of physiological traits, yield and fiber quality in three upland cotton cultivars grown under cadmium stress.
Li Q., Lu Y., Shi Y., Wang T., Ni K., Xu L., et al. (2013). Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. PubMed
Li S., Chen J., Islam E., Wang Y., Wu J., Ye Z., et al. (2016). Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo ( PubMed DOI
Li S., Sun X., Li S., Liu Y., Ma Q., Zhou W. (2021). Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. PubMed DOI PMC
Li W., Wu S., Liu Y., Jin G., Zhao H., Fan L., et al. (2016). Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants. PubMed DOI PMC
Li X., Gitau M. M., Han S., Fu J., Xie Y. (2017a). Effects of cadmium-resistant fungi PubMed DOI
Li X., Han S., Wang G., Liu X., Amombo E., Xie Y., et al. (2017b). The fungus PubMed DOI PMC
Li Y., Luo J., Yu J., Xia L., Zhou C., Cai L., et al. (2018). Improvement of the phytoremediation efficiency of Neyraudiareynaudiana for lead-zinc mine-contaminated soil under the interactive effect of earthworms and EDTA. PubMed DOI PMC
Li Y., Wang L., Yang L., Li H. (2014). Dynamics of rhizosphere properties and antioxidative responses in wheat ( PubMed DOI
Li Z., Zhang R., Zhang H. (2018). Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by PubMed DOI
Liao M., Xie X. M. (2004). Cadmium release in contaminated soils due to organic acids.
Lin H., Fang C., Li Y., Lin W., He J., Lin R., et al. (2016). Effect of silicon on grain yield of rice under cadmium-stress. DOI
Lin R., Wang X., Luo Y., Du W., Guo H., Yin D. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings ( PubMed DOI
Liu F., Liu X., Ding C., Wu L. (2015). The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. DOI
Liu J., Qian M., Cai G., Yang J., Zhu Q. (2007). Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. PubMed DOI
Liu J. N., Zhou Q., Sun T., Ma L. Q., Wang S. (2008). Identification of and chemical enhancement of two ornamental plants for phytoremediation. PubMed DOI
Liu J. N., Zhou Q. X., Wang S., Sun T. (2009). Cadmium tolerance and accumulation of PubMed DOI
Liu L., Li J. W., Yue F. X., Yan X. W., Wang F. Y., Bloszies S., et al. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. PubMed DOI
Liu M., Sun J., Li Y., Xiao Y. (2017). Nitrogen fertilizer enhances growth and nutrient uptake of PubMed
Liu X., Chen S., Chen M., Zheng G., Peng Y., Shi X., et al. (2019). Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands. PubMed DOI PMC
Liu Y., Xiao T., Ning Z., Li H., Tang J., Zhou G. (2013). High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. DOI
Liza S. J., Shethi K. J., Rashid P. (2020). Effects of cadmium on the anatomical structures of vegetative organs of chickpea ( DOI
Long C., Wang D., Chen L., Jiang W. J., Xiang M. W. (2017). Effect of four kinds of phytohormones on U and Cd accumulation in
Lozano-Rodriguez E., Hernandez L. E., Bonay P., Carpena-Ruiz R. O. (1997). Distribution of cadmium in shoot and root tissues1. DOI
Luo J., Li X., Jin Y., Traore I., Dong L., Yang G., et al. (2020). Effects of arbuscular mycorrhizal fungi glomus mosseae on the growth and medicinal components of PubMed DOI
Luo J. S., Huang J., Zeng D. L., Peng J. S., Zhang G. B., Ma H. L., et al. (2018). A defensin-like protein drives cadmium efflux and allocation in rice. PubMed DOI PMC
Ma J., Ni X., Huang Q., Liu D., Ye Z. (2021). Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes. PubMed DOI
Mahajan P., Kaushal J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. PubMed DOI PMC
Maksimović I., Kastori R., Krstić L., Luković J. (2007). Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. DOI
Maksymiec W., Krupa Z. (2002). Jasmonic acid and heavy metals in DOI
Maksymiec W., Krupa Z. (2006). The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in DOI
Mani D., Kumar C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. DOI
Manzoor M., Gul I., Kallerhoff J., Arshad M. (2019). Fungi-assisted phytoextraction of lead: tolerance, plant growth—promoting activities and phytoavailability. PubMed DOI
Martínez Domínguez D., Córdoba García F., Canalejo Raya A., Torronteras Santiago R. (2010). Cadmium-induced oxidative stress and the response of the antioxidative defense system in PubMed DOI
Maurya A. K. (2020). “Oxidative stress in crop plants,” in
McCouch S. R., Wright M. H., Tung C. W., Maron L. G., McNally K. L., Fitzgerald M., et al. (2016). Open access resources for genome-wide association mapping in rice. PubMed DOI PMC
Medynska-Juraszek A., Cwielag-Piasecka I. (2020). Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. DOI
Medyńska-Juraszek A., Bednik M., Chohura P. (2020). Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. PubMed PMC
Mehdizadeh L., Farsaraei S., Moghaddam M. (2021). Biochar application modified growth and physiological parameters of Ocimumciliatum L. and reduced human risk assessment under cadmium stress. PubMed DOI
Meng D., Li J., Liu T., Liu Y., Yan M., Hu J., et al. (2019). Effects of redox potential on soil cadmium solubility: insight into microbial community. PubMed DOI
Meng J., Zhong L., Wang L., Liu X., Tang C., Chen H., et al. (2018). Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. PubMed DOI
Menguer P. K., Farthing E., Peaston K. A., Ricachenevsky F. K., Fett J. P., Williams L. E. (2013). Functional analysis of the rice vacuolar zinc transporter OsMTP1. PubMed DOI PMC
Mishra S., Tripathi R. D., Srivastava S., Dwivedi S., Trivedi P. K., Dhankher O. P., et al. (2009). Thiol metabolism play significant role during cadmium detoxification by PubMed DOI
Mizushima M., Ferreira B., França M., Almeida A. A., Cortez P., Silva J., et al. (2019). Ultrastructural and metabolic disorders induced by short-term cadmium exposure in Avicenniaschaueriana plants and its excretion through leaf salt glands. PubMed DOI
Mokarram-Kashtiban S., Hosseini S. M., Kouchaksaraei M. T., Younesi H. (2019). Biochar improves the morphological, physiological and biochemical properties of white willow seedlings in heavy metal-contaminated soil. DOI
Molina A. S., Lugo M. A., PerezChaca M. V., Vargas-Gil S., Zirulnik F., Leporati J., et al. (2020). Effect of arbuscular mycorrhizal colonization on cadmium-mediated oxidative stress in PubMed DOI PMC
Mondal S. C., Sarma B., Farooq M., Nath D. J., Gogoi N. (2020). Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. DOI
Mongkhonsin B., Nakbanpote W., Meesungnoen O., Prasad M. N. V. (2019). “Adaptive and tolerance mechanisms in herbaceous plants exposed to cadmium,” in
Moradi R., Pourghasemian N., Naghizadeh M. (2019). Effect of beeswax waste biochar on growth, physiology and cadmium uptake in saffron. DOI
Moreira F. M. D. S., Ferreira P. A. A., Vilela L. A. F., Carneiro M. A. C. (2015). “Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils,” in
Mosa K. A., Saadoun I., Kumar K. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. PubMed DOI PMC
Moslehi A., Feizian M., Higueras P., Eisvand H. R. (2019). Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower ( PubMed DOI
Muhammad D., Chen F., Zhao J., Zhang G., Wu F. (2009). Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by PubMed DOI
Murgese P., Santamaria P., Leoni B., Crecchio C. (2020). Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere ( DOI
Myśliwa-Kurdziel B., Strzałka K. (2002). “Influence of metals on biosynthesis of photosynthetic pigments,” in
Naeem M. A., Shabbir A., Amjad M., Abbas G., Imran M., Murtaza B., et al. (2020). Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa ( PubMed DOI
Najeeb U., Jilani G., Ali S., Sarwar M., Xu L., Zhou W. (2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. PubMed DOI
Nakamura M., Ochiai T., Noji M., Ogura Y., Suzuki K., Yoshimoto N., et al. (2014). An improved tolerance to cadmium by overexpression of two genes for cysteine synthesis in tobacco. DOI
Nejad Z. D., Jung M. C., Kim K. H. (2017). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. PubMed DOI
Nguyen T. Q., Sesin V., Kisiala A., Emery R. J. N. (2020). Phytohormonal roles in plant responses to heavy metal stress-implications for using macrophytes in phytoremediation of aquatic ecosystems. PubMed DOI
Nian L., Zhang X., Yi X., Liu X., Ain U. L., Yang Y., et al. (2021). Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in PubMed DOI PMC
Nigam N., Khare P., Yadav V., Mishra D., Jain S., Karak T., et al. (2019). Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. PubMed DOI
Nikolić N., Zorić L., Cvetković I., Pajević S., Borišev M., Orlović S., et al. (2017). Assessment of cadmium tolerance and phytoextraction ability in young DOI
Noriega G. O., Balestrasse K. B., Batlle A., Tomaro M. L. (2007). Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. PubMed DOI
Nowack B. (2002). Environmental chemistry of aminopolycarboxylate chelating agents. PubMed DOI
Okem A., Kulkarni M. G., Staden J. V. (2015). Enhancing phytoremediation potential of Pennisetum clandestinumHochst in cadmium- contaminated coil using smoke-water and smoke-isolated karrikinolide. PubMed DOI
Ostrowski M., Ciarkowska A., Jakubowska A. (2016). The auxin conjugate indole-3- acetyl-aspartate affects responses to cadmium and salt stress in PubMed DOI
Palansooriya K. N., Shaheen S. M., Chen S. S., Tsang D. C. W., Hashimoto Y., Hou D., et al. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. PubMed DOI
Pan F., Luo S., Shen J., Wang Q., Ye J., Meng Q., et al. (2017). The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure. PubMed DOI
Parmar P., Kumari N., Sharma V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. PubMed DOI PMC
Pereira B. F. F., de Abreu C. A., Herpin U., de Abreu M. F., Berton R. S. (2010). Phytoremediation of lead by jack beans on a Rhodic Hapludox amended with EDTA. DOI
Pierattini E. C., Francini A., Raffaelli A., Sebastiani L. (2017). Surfactant and heavy metal interaction in poplar: a focus on SDS and Zn uptake. PubMed DOI
Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska- Zylkiewicz B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga PubMed DOI
Pompeu G. B., Vilhena M. B., Gratão P. L. (2017). Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. PubMed DOI
Pozniak C., Fox S., Knott D. (2009). CDC Verona durum wheat. DOI
Qayyum M. F., Liaquat F., Rehman R. A., Gul M., Zia ul Hye M., Rizwan M., et al. (2017). Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. PubMed DOI
Qayyum M. F., Rehman R. A., Liaqat S., Ikram M., Ali S., Rizwan M., et al. (2019). Cadmium immobilization in the soil and accumulation by spinach ( DOI
Qi F., Lamb D., Naidu R., Bolan N. S., Yan Y., Ok Y. S., et al. (2018). Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. PubMed DOI
Qianqian M., Haider F. U., Farooq M., Adeel M., Shakoor N., Jun W., et al. (2022). Selenium treated Foliage and biochar treated soil for improved lettuce ( DOI
Qin P., Wang L., Liu K., Mao S., Li Z., Gao S., et al. (2015). Genome wide association study of DOI
Qiu Z., Tan H., Zhou S., Cao L. (2014). Enhanced phytoremediation of toxic metals by inoculating endophytic PubMed DOI
Quartacci M. F., Pinzino C., Sgherri C. L., Dalla Vecchia F., Navari-Izzo F. (2000). Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. DOI
Rady M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean ( DOI
Rady M. M., Hemida K. A. (2015). Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of poly- amines. PubMed DOI
Rafique M., Haque K., Hussain T., Amna C., Javed H. (2017).
Rafique M., Ortas I., Rizwan M., Sultan T., Chaudhary H. J., Işik M., et al. (2019). Effects of Rhizophagusclarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize ( PubMed DOI
Rajkumar M., Sandhya S., Prasad M. N. V., Freitas H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. PubMed DOI
Raklami A., Oufdou K., Tahiri A. I., Mateos-Naranjo E., Navarro-Torre S., Rodríguez-Llorente I. D., et al. (2019). Safe cultivation of PubMed DOI PMC
Rasheed R., Ashraf M. A., Hussain I., Haider M. Z., Kanwal U., Iqbal M. (2014). Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat ( DOI
Rehman A., Shahzad B., Haider F. U., Ahmed H. A. I., Lee D.-J., Im S. Y., et al. (2022a). “An introduction to brassinosteroids: history, biosynthesis, and chemical diversity,” in
Rehman A., Shahzad B., Haider F. U., Moeen-ud-din M., Ullah A., Khan I. (2022b). “Brassinosteroids in plant response to high temperature stress,” in
Remans T., Opdenakker K., Smeets K., Mathijsen D., Vangronsveld J., Cuypers A. (2010). Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in DOI
Ren T., Chen N., Mahari W. A. W., Xu C., Feng H., Ji X., et al. (2021). Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. PubMed DOI
Ren Y., Chen Y., An J., Zhao Z., Zhang G., Wang Y., et al. (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. PubMed DOI
Riaz M., Yan L., Wu X., Hussain S., Aziz O., Wang Y., et al. (2018). Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. PubMed DOI
Rizwan M., Ali S., Abbas T., Zia-Ur-Rehman M., Hannan F., Keller C., et al. (2016). Cadmium minimization in wheat: a critical review. PubMed DOI
Rizwan M., Ali S., Qayyum M. F., Ok Y. S., Zia-ur-Rehman M., Abbas Z., et al. (2017). Use of maize ( PubMed DOI
Rizwan M., Ali S., Ur Rehman M. Z., Maqbool A. (2019a). A critical review on the effects of zinc at toxic levels of cadmium in plants. PubMed DOI
Rizwan M., Ali S., Ur Rehman M. Z., Rinklebe J., Tsang D. C., Bashir A., et al. (2018). Cadmium phytoremediation potential of PubMed DOI
Rizwan M., Noureen S., Ali S., Anwar S., Zia-ur-Rehman M., Qayyum M. F., et al. (2019b). Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. DOI
Rodda M. S., Li G., Reid R. J. (2011). The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. DOI
Rodríguez-Serrano M., Romero-Puertas M. C., Zabalza A., Corpas F. J., Gómez M., Del Río L. A., et al. (2006). Cadmium effect on oxidative metabolism of pea ( PubMed DOI
Romero-Puertas M., Rodríguez-Serrano M., Corpas F., Gomez M. D., Del Rio L., Sandalio L. (2004). Cadmium-induced subcellular accumulation of O2•− and H2O2 in pea leaves. DOI
Rostami S., Azhdarpoor A. (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. PubMed DOI
Roychoudhury A., Ghosh S., Paul S., Mazumdar S., Das G., Das S. (2016). Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean ( DOI
Saeed Q., Xiukang W., Haider F. U., Kucerik J., Mumtaz M. Z., Holatko J., et al. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. PubMed DOI PMC
Saeid A., Prochownik E., Dobrowolska-Iwanek J. (2018). Phosphorus solubilization by PubMed DOI PMC
Saeki K., Kunito T. (2012). Influence of chloride ions on cadmium adsorptions by oxides, hydroxides, oxyhydroxides, and phyllosilicates. DOI
Saifullah M. E., Qadir M., de Caritat P., Tack F. M. G., Du Laing G., Zia M. (2009). H. EDTA-assisted Pb phytoextraction. PubMed DOI
Sakouhi L., Rahoui S., Massoud M. B., Munemasa S., Ferjani E. E., Murata Y., et al. (2016). Calcium and EGTA alleviate cadmium toxicity in germinating chickpea seeds. DOI
Salazar M. J., Rodriguez J. H., Nieto G. L., Pignata M. L. (2012). Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [ PubMed DOI
Sangthong C., Setkit K., Prapagdee B. (2016). Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant PubMed DOI
Sárvári É. (2008). Effect of Cd on the iron re-supply-induced formation of chlorophyll-protein complexes in cucumber.
Sarwar N., Malhi S. S., Zia M. H., Naeem A., Bibi S., Farid G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. PubMed DOI
Sasaki A., Yamaji N., Yokosho K., Ma J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. PubMed PMC
Sato H., Shirasawa S., Maeda H., Nakagomi K., Kaji R., Ohta H., et al. (2011). Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’. DOI
Sell J., Kayser A., Schulin R., Brunner I. (2005). Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. DOI
Semida W. M., Rady M. M., Abd El-Mageed T. A., Howladar S. M., Abdelhamid M. A. (2015). Alleviation of cadmium toxicity in common bean ( DOI
Shah K., Nahakpam S., Chaturvedi V., Singh P. (2019). “Cadmium-induced anatomical abnormalities in plants,” in DOI
Shah K., Singh P., Nahakpam S. (2013). Effect of cadmium uptake and heat stress on root ultrastructure, membrane damage and antioxidative response in rice seedlings. DOI
Shahid M., Austruy A., Echevarria G., Arshad M., Sanaullah M., Aslam M., et al. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. DOI
Shahid M., Dumat C., Khalid S., Niazi N. K., Antunes P. M. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil plant system. PubMed DOI
Shahkolaie S. S., Baranimotlagh M., Dordipour E., Khormali F. (2020). Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in DOI
Shahzad B., Tanveer M., Che Z., Rehman A., Cheema S. A., Sharma A., et al. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. PubMed DOI
Shakirova F. M., Allagulova C. R., Maslennikova D. R., Klyuchnikova E. O., Avalbaev A. M., Bezrukova M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. DOI
Sharaf A. E. M. M., Farghal I. I., Sofy M. R. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants.
Sharma R. K., Archana G. (2016). Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. DOI
Sharma S., Anand G., Singh N., Kapoor R. (2017). Arbuscular mycorrhiza augments arsenic tolerance in wheat ( PubMed DOI PMC
Sharma S. S., Kumar V. (2002). Responses of wild type and abscisic acid mutants of DOI
Shao J. F., Xia J., Yamaji N., Shen R. F., Ma J. F. (2018). Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. PubMed PMC
Sheoran V., Sheoran A. S., Poonia P. (2016). Factors affecting phytoextraction: (a review). DOI
Shi P., Zhu K., Zhang Y., Chai T. (2016). Growth and cadmium accumulation of
Shiyu Q. I. N., Hongen L. I. U., Zhaojun N. I. E., Rengel Z., Wei G. A. O., Chang L. I., et al. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. DOI
Shukla D., Kesari R., Tiwari M., Dwivedi S., Tripathi R. D., Nath P., et al. (2013). Expression of Ceratophyllumdemersumphytochelatin synthase, CdPCS1, in PubMed DOI
Siemianowski O., Barabasz A., Kendziorek M., Ruszczyńska A., Bulska E., Williams L. E., et al. (2014). AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. PubMed DOI PMC
Sigfridsson K. G., Bernát G., Mamedov F., Styring S. (2004). Molecular interference of Cd2+ with Photosystem II. PubMed DOI
Silber A., Bar-Yosef B., Suryano S., Levkovitch I. (2012). Zinc adsorption by perlite: effects of pH, ionic strength, temperature, and pre-use as growth substrate.
Silva S. A., Techio V. H., de Castro E. M., de Faria M. R., Palmieri M. J. (2013). Reproductive, cellular, and anatomical alterations in
Singh G., Pankaj U., Chand S., Verma R. (2019). Arbuscular mycorrhizal fungi assisted phytoextraction of toxic metals by DOI
Singh P., Singh I., Shah K. (2020). Alterations in antioxidative machinery and growth parameters upon application of nitric oxide donor that reduces detrimental effects of cadmium in rice seedlings with increasing days of growth. DOI
Singh S., Parihar P., Singh R., Singh V. P., Prasad S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. PubMed DOI PMC
Singh S., Prasad S. M. (2016). Kinetin ameliorates cadmium induced toxicity on growth, pigments and photosynthesis by regulating antioxidant potential in tomato seedlings.
Singh S., Prasad S. M. (2017). Effects of 28-homobrassinoloid on key physiological attributes of DOI
Singh S., Singh A., Srivastava P. K., Prasad S. M. (2018). Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. PubMed DOI
Skrebsky E. C., Tabaldi L. A., Pereira L. B., Rauber R., Maldaner J., Cargnelutti D., et al. (2008). Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of DOI
Sohail M. I., Rehman M. Z., Rizwan M., Yousaf B., Ali S., Haq M. A., et al. (2020). Efficiency of various silicon rich amendments on growth and cadmium accumulation in field grown cereals and health risk assessment. PubMed DOI
Sohail M. I., Zia-ur-Rehman M., Murtaza G., Wahid M. A. (2019). Chemical investigations of Si-rich organic and inorganic amendments and correlation analysis between different chemical composition and Si contents in amendments. DOI
Song W., Chen S., Liu J., Chen L., Song N., Li N., et al. (2015). Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. DOI
Song Y., Jin L., Wang X. (2017). Cadmium absorption and transportation pathways in plants. PubMed DOI
Stroiński A., Giżewska K., Zielezińska M. (2013). Abscisic acid is required in transduction of cadmium signal to potato roots. DOI
Sugiyama M., Ae N., Hajika M. (2011). Developing of a simple method for screening soybean seedling cadmium accumulation to select soybean genotypes with low seed cadmium.
Suksabye P., Pimthong A., Dhurakit P., Mekvichitsaeng P., Thiravetyan P. (2016). Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. PubMed DOI
Sullivan T. S., McBride M. B., Thies J. E. (2013). Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil. DOI
Sun S., Wang H., Yu H., Zhong C., Zhang X., Peng J., et al. (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. PubMed DOI
Sun S., Zhou X., Cui X., Liu C., Fan Y., McBride M. B., et al. (2020). Exogenous plant growth regulators improved phytoextraction efficiency by DOI
Sunitha M. S., Prashant S., Kumar S. A., Rao S. R. I. N. A. T. H., Narasu M. L., Kishor P. K. (2012). Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over-expressing phytochelatin synthase and metallothionein genes.
Tamás L., Dudíková J., Ďurčeková K., Halušková L’, Huttová J., Mistrík I. (2009). Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. PubMed DOI
Tang X., Zeng G., Fan C., Zhou M., Tang L., Zhu J., et al. (2018). Chromosomal expression of CadR on PubMed DOI
Tanveer M., Shabala S. (2022). “Entangling the interaction between essential and nonessential nutrients: implications for global food security,” in
Tanwar A., Aggarwal A., Charaya M. U., Kumar P. (2015). Cadmium remediation by arbuscular mycorrhizal fungus–colonized celery plants supplemented with ethylenediaminetetraacetic acid. DOI
Tao S., Sun L., Ma C., Li L., Li G., Hao L. (2013). Reducing basal salicylic acid enhances DOI
Teiri H., Pourzamani H., Hajizadeh Y. (2018). Phytoremediation of VOCs from indoor air by ornamental potted plants: a pilot study using a palm species under the controlled environment. PubMed
Timperio A. M., D’Amici G. M., Barta C., Loreto F., Zolla L. (2007). Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. PubMed DOI
Tiong J., McDonald G. K., Genc Y., Pedas P., Hayes J. E., Toubia J., et al. (2014). HvZIP7 mediates zinc accumulation in barley ( PubMed DOI
Tran T. A., Paunova S., Nedeva D., Popova L. (2011). Nitric oxide alleviates cadmium toxicity on photosynthesis in pea plants.
Tran T. A., Popova L. P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. DOI
Ueno D., Kono I., Yokosho K., Ando T., Yano M., Ma J. F. (2009a). A major quantitative trait locus controlling cadmium translocation in rice ( PubMed DOI
Ueno D., Koyama E., Kono I., Ando T., Yano M., Ma J. F. (2009b). Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. PubMed DOI
Ullah A., Heng S., Munis M. F. H., Fahad S., Yang X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. DOI
Unsal V., Dalkıran T., Çiçek M., Kölükçü E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. PubMed DOI PMC
Upadhyay S. K., Singh J. S., Singh D. P. (2011). Exopolysaccharide producing plant growth promoting rhizobacteria under salinity condition. DOI
Uraguchi S., Mori S., Kuramata M., Kawasaki A., Arao T., Ishikawa S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. PubMed DOI PMC
Varalakshmi L. R., Ganeshamurthy A. (2013). Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake. DOI
Verma S., Verma P. K., Meher A. K., Bansiwal A. K., Tripathi R. D., Chakrabarty D. (2017). A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in the transgenic rice plant. PubMed DOI
Vestena S., Cambraia J., Ribeiro C., Oliveira J. A., Oliva M. A. (2011). Cadmium-induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. DOI
Violante A., Cozzolino V., Perelomov L., Caporale A., Pigna M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. DOI
Vollmann J., Losak T., Pachner M., Watanabe D., Musilova L., Hlusek J. (2015). Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. DOI
Wahid A., Ghani A. (2008). Varietal differences in mungbean ( DOI
Wang F., Chen F., Cai Y., Zhang G., Wu F. (2011). Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. PubMed
Wang H., Gao B., Wang S., Fang J., Xue Y., Yang K. (2015). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO PubMed
Wang K., Liu Y., Song Z., Wang D., Qiu W. (2019). Chelator complexes enhanced PubMed DOI
Wang S., Liu J. (2014). The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by PubMed DOI
Wen E., Yang X., Chen H., Shaheen S. M., Sarkar B., Xu S., et al. (2020). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. PubMed DOI
World Health Organization [WHO] (2007).
Wu F., Zhang G., Dominy P., Wu H., Bachir D. M. (2007). Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. PubMed
Wiebe K., Harris N., Faris J., Clarke J., Knox R. E., Taylor G. J., et al. (2010). Targeted mapping of Cdu1-B, a major locus regulating grain cadmium concentration in durum wheat ( PubMed DOI
Wodala B., Eitel G., Gyula T., Ördög A., Horváth F. (2012). Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P 700 absorbance in pea leaves. DOI
Wu B., He T., Wang Z., Qiao S., Wang Y., Xu F., et al. (2020). Insight into the mechanisms of plant growth promoting strain SNB6 on enhancing the phytoextraction in cadmium contaminated soil. PubMed DOI
Wu D., Sato K., Ma J. F. (2015). Genome-wide association mapping of cadmium accumulation in different organs of barley. PubMed DOI
Wu Z., Wu W., Zhou S., Wu S. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in pakchoi ( DOI
Xiao R., Wang P., Mi S., Ali A., Liu X., Li Y., et al. (2019). Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. PubMed DOI
Xie Y., Su L., He Z., Zhang J., Tang Y. (2021). Selenium inhibits cadmium absorption and improves yield and quality of cherry tomato ( DOI
Xu D., Chen Z., Sun K., Yan D., Kang M., Zhao Y. (2013). Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato ( PubMed DOI
Xu S. S., Lin S. Z., Lai Z. X. (2015). Cadmium impairs iron homeostasis in DOI
Xu W., Li Y., He J., Ma Q., Zhang X., Chen G., et al. (2010). Cd uptake in rice cultivars treated with organic acids and EDTA. PubMed
Xue D., Chen M., Zhang G. (2009). Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice ( DOI
Xue Z. C., Gao H. Y., Zhang L. T. (2013). Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. DOI
Yang P., Zhou X. F., Wang L. L., Li Q. S., Zhou T., Chen Y. K., et al. (2018). Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. PubMed DOI PMC
Yang Y., Ge Y., Zeng H., Zhou X., Peng L., Zeng Q. (2017). Phytoextraction of cadmium contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. PubMed DOI PMC
Yang Y., Xiong J., Tao L., Cao Z., Tang W., Zhang J., et al. (2020). Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. PubMed DOI
Yan L., Riaz M., Wu X., Du C., Liu Y., Lv B., et al. (2018). Boron inhibits aluminuminduced toxicity to citrus by stimulating antioxidant enzyme activity. PubMed DOI
Yao P., Zhou H., Li X., Wei L., Wang J., Zhang S., et al. (2021). Effect of biochar on the accumulation and distribution of cadmium in tobacco (Yunyan 87) at different developmental stages. PubMed DOI
Ying R. R., Qiu R. L., Tang Y. T., Hu P. J., Qiu H., Chen H. R., et al. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator PubMed DOI
Younis U., Malik S. A., Rizwan M., Qayyum M. F., Ok Y. S., Shah M. H. R., et al. (2016). Biochar enhances the cadmium tolerance in spinach ( PubMed DOI
Yousaf B., Liu G., Wang R., Zia-ur-Rehman M., Rizwan M. S., Imtiaz M., et al. (2016). Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. DOI
Yousaf M. T. B., Nawaz M. F., Khawaja H. F., Gul S., Ali S., Ahmad I., et al. (2019). Ecophysiological response of early stage DOI
Yu H. Y., Liu C., Zhu J., Li F., Deng D. M., Wang Q., et al. (2016). Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. PubMed DOI
Yu L., Gao R., Qinghua S., Wang X., Wei M., Yang F. (2013). Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber.
Yu R., Li D., Du X., Xia S., Liu C., Shi G. (2017). Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pakchoi ( PubMed DOI PMC
Yuan L., Yang S., Liu B., Zhang M., Wu K. (2012). Molecular characterization of a rice metal tolerance protein, OsMTP1. PubMed DOI
Yuan P., Wang J., Pan Y., Shen B., Wu C. (2019). Review of biochar for the management of contaminated soil: preparation, application and prospect. PubMed DOI
Zaheer I. E., Ali S., Muhammad R., Farid M., Shakoor M. B., Gill R. A., et al. (2015). Citric acid assisted phytoremediation of copper by PubMed DOI
Zainab N., Din B. U., Javed M. T., Afridi M. S., Mukhtar T., Kamran M. A., et al. (2020). Deciphering metal toxicity responses of flax ( PubMed DOI
Zawoznik M. S., Groppa M. D., Tomaro M. L., Benavides M. P. (2007). Endogenous salicylic acid potentiates cadmium-induced oxidative stress in DOI
Zeeshan N., Nasir A. A., Haider F. U., Naveed K., Naseer S., Murtaza G. (2021). Risk assessment of trace metals deposition and growth of DOI
Zhan F., Li B., Jiang M., Yue X., He Y., Xia Y., et al. (2018). Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. PubMed DOI
Zhang C., Yu Z. G., Zeng G. M., Jiang M., Yang Z. Z., Cui F., et al. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. PubMed DOI
Zhang C. J., Chen L., Shi D. W., Chen G. X., Lu C. G., Wang P., et al. (2007). Characteristics of ribulose-1, 5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. DOI
Zhang F., Liu M., Li Y., Che Y., Xiao Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of PubMed DOI
Zhang G., Fukami M., Sekimoto H. (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. DOI
Zhang L., Gao C., Chen C., Zhang W., Huang X. Y., Zhao F. J. (2020). Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. PubMed DOI
Zhang M., Liu X., Yuan L., Wu K., Duan J., Wang X., et al. (2012). Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. PubMed DOI
Zhang S., Quan L., Zhu Y., Yan J., He X., Zhang J., et al. (2020). Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil. PubMed DOI
Zhao F. J., Ma Y., Zhu Y. G., Tang Z., McGrath S. P. (2015). Soil contamination in China: current status and mitigation strategies. PubMed DOI
Zhao J., Yang W., Zhang S., Yang T., Liu Q., Dong J., et al. (2018). Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. PubMed DOI PMC
Zhao K., Liu X., Xu J., Selim H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. PubMed DOI
Zhen H., Jia L., Huang C., Qiao Y., Li J., Li H., et al. (2020). Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. PubMed DOI
Zhou C., Zhu L., Ma Z., Wang J. (2017). Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. PubMed DOI PMC
Zhu W., Du W., Shen X., Zhang H., Ding Y. (2017). Comparative adsorption of Pb and Cd by cow manure and its vermicompost. PubMed DOI
Zhu Y., Wang H., Lv X., Zhang Y., Wang W. (2020). Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the ant oxidative defense system. PubMed DOI PMC
Zhuo F., Zhang X. F., Lei L. L., Yan T. X., Lu R. R., Hu Z. H., et al. (2020). The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in PubMed DOI
Zia-ur-Rehman M., Zafar M., Waris A. A., Rizwan M., Ali S., Sabir M., et al. (2020). Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. PubMed DOI
Zivkovic L. I., Rikalovic M., Cvijovic G. G., Kazazic S., Vrvic M., Brceski I., et al. (2018). Cadmium specific proteomic responses of a highly resistant PubMed PMC
Zouari M., Elloumi N., Ahmed C. B., Delmail D., Rouina B. B., Abdallah F. B., et al. (2016). Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm ( DOI
Zulfiqar U., Ayub A., Hussain S., Waraich E. A., El-Esawi M. A., Ishfaq M., et al. (2021). Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. DOI
Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., et al. (2019). Lead toxicity in plants: impacts and remediation. PubMed DOI