Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review

. 2022 ; 13 () : 773815. [epub] 20220309

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35371142

Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.

Zobrazit více v PubMed

Abbas A., Azeem M., Naveed M., Latif A., Bashir S., Ali A., et al. (2020). Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. PubMed DOI

Abbas T., Rizwan M., Ali S., Adrees M., Zia-ur-Rehman M., Qayyum M. F., et al. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat ( PubMed DOI

Abbas T., Rizwan M., Ali S., Adrees M., Mahmood A., Zia-ur-Rehman M., et al. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. PubMed DOI

Abbasi S., Sadeghi A., Safaie N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes.

Abd El-Mageed T. A., El- Samnoudi I. M., Ibrahim A. M., Abd El Tawwab A. R. (2018). Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime.

Abdel-Latef A. A. H., Hashem A., Rasool S., Abdallah E. F., Alqarawi A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review.

Abd-El-Mageed T. A., El-Sherif A. M., Abd El-Mageed S. A., Abdou N. M. (2019). A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil.

Abe T., Nonoue Y., Ono N., Omoteno M., Kuramata M., Fukuoka S., et al. (2013). Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines. PubMed DOI PMC

Abozeid A., Ying Z., Lin Y., Liu J., Zhang Z., Tang Z. (2017). Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in PubMed PMC

AbuHammad W. A., Mamidi S., Kumar A., Pirseyedi S., Manthey F. A., Kianian S. F., et al. (2016). Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars.

Aderholt M., Vogelien D. L., Koether M., Greipsson S. (2017). Phyto- extraction of contaminated urban soils by PubMed DOI

Adil M. F., Sehar S., Chen G., Chen Z. H., Jilani G., Chaudhry A. N., et al. (2020). Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. PubMed DOI

Afzal M., Yu M., Tang C., Zhang L., Muhammad N., Zhao H., et al. (2019). The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. PubMed DOI

Ahemad M. (2014). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. DOI

Ahmad J., Ali A. A., Baig M. A., Iqbal M., Haq I., Qureshi M. I. (2018). “Role of phytochelatins in cadmium stress tolerance in plants,” in

Ahmad M. T., Asghar H. N., Saleem M., Khan M. Y., Zahir Z. A. (2015). Synergistic effect of rhizobia and biochar on growth and physiology of maize.

Ahmad P., Alyemeni M. N., Vijaya L., Alam P., Ahanger M. A., Alamri S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean ( DOI

Ahmad P., Nabi G., Ashraf M. (2011). Cadmium-induced oxidative damage in mustard [ DOI

Ahmad S. H., Reshi Z., Ahmad J., Iqbal M. (2005). Morpho-anatomical responses of DOI

Akhter Z., Bi Z., Ali K., Sun C., Fiaz S., Haider F. U., et al. (2021). In response to abiotic stress, DNA methylation confers epi-genetic changes in plants. PubMed DOI PMC

Ali B., Gill R. A., Yang S., Gill M. B., Farooq M. A., Liu D., et al. (2015). Regulation of cadmium-induced proteomic and metabolic changes by 5- aminolevulinic acid in leaves of PubMed DOI PMC

Alle V., Kondratovics U., Osvalde A., Vikmane M. (2016). Differences in cadmium accumulation and induced changes in root anatomical structures in plants used for food.

Alyemeni M. N., Ahanger M. A., Wijaya L., Alam P., Bhardwaj R., Ahmad P. (2018). Selenium mitigates cadmium-induced oxidative stress in tomato ( PubMed DOI

Amirabad S. A., Behtash F., Vafaee Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish ( PubMed DOI

Amirahmadi E., Hojjati S. M., Kammann C., Ghorbani M., Biparva P. (2020). The potential effectiveness of biochar application to reduce soil Cd bioavailability and encourage oak seedling growth. DOI

Anjum S. A., Tanveer M., Hussain S., Bao M., Wang L., Khan I., et al. (2015). Cadmium toxicity in Maize ( PubMed DOI

Anjum S. A., Tanveer M., Hussain S., Ullah E., Wang L., Khan I., et al. (2016). Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. DOI

Anuradha S., Rao S. S. R. (2009). Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. DOI

Arao T., Ae N., Sugiyama M., Takahashi M. (2003). Genotypic differences in cadmium uptake and distribution in soybeans. PubMed DOI

Asgher M., Khan M. I. R., Anjum N. A., Khan N. A. (2015). Minimising toxicity of cadmium in plants—role of plant growth regulators. PubMed DOI

Attinti R., Barrett K. R., Datta R., Sarkar D. (2017). Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. PubMed DOI

Awasthi M. K., Pandey A. K., Bundela P. S., Khan J. (2015). Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic. PubMed DOI

Babadi M., Zalaghi R., Taghavi M. (2019). A non-toxic polymer enhances sorghum mycorrhiza symbiosis for bioremediation of Cd. PubMed DOI

Bagheri V., Shamshiri M. H., Shirani H., Roosta H. R. (2012). Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress.

Balestri M., Ceccarini A., Forino L. M. C., Zelko I., Martinka M., Lux A., et al. (2014). Cadmium uptake, localization and stress-induced morphogenic response in the fern PubMed DOI

Bari M. A., Akther M. S., Reza M. A., Kabir A. H. (2019). Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. PubMed DOI

Bashir A., Rizwan M., Zia-ur-Rehman M., Zubair M., Riaz M., Qayyum M. F., et al. (2020). Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. PubMed DOI

Bashir S., Gulshan A. B., Iqbal J., Husain A., Alwahibi M. S., Alkahtani J., et al. (2021). Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. PubMed DOI PMC

Bashir S., Rizwan M. S., Salam A., Fu Q., Zhu J., Shaaban M., et al. (2018). Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: extraction techniques and adsorption mechanism. PubMed DOI

Bhargava A., Carmona F. F., Bhargava M., Srivastava S. (2012). Approaches for enhanced phytoextraction of heavy metals. PubMed DOI

Bian R. J., Li L. Q., Bao D. D., Zheng J. W., Zhang X. H., Zheng J. F., et al. (2016). Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. PubMed DOI

Blanvillain R., Kim J. H., Wu S., Lima A., Ow D. W. (2009). OXIDATIVE STRESS 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. PubMed

Bloem E., Haneklaus S., Haensch R., Schnug E. (2016). EDTA application on agricultural soils affects microelement uptake of plants. PubMed DOI

Bojorquez C., Frias-Espericueta M. G., Voltolina D. (2016). Removal of cadmium and lead by adapted strains of

Boostani H. R., Najafi-Ghiri M., Mirsoleimani A. (2019). The effect of biochars application on reducing the toxic effects of nickel and growth indices of spinach ( PubMed DOI

Bora M. S., Sarma K. P. (2021). Anatomical and ultrastructural alterations in Ceratopterispteridoides under cadmium stress: a mechanism of cadmium tolerance. PubMed DOI

Bulak P., Walkiewicz A., Brzezińska M. (2014). Plant growth regulators- assisted phytoextraction. DOI

Çanakci S., Dursun B. (2012). The effect of pre-application of salicylic acid on some physiological and biochemical characteristics of tomato seedling ( DOI

Cao B. I., Ma Q., Zhao Q., Wang L., Xu K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. DOI

Chang Q., Wei D. F., Fan W. Q., Pan L., Hua D. Z., Guo W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings ( PubMed DOI

Chellaiah E. R. (2018). Cadmium (heavy metals) bioremediation by DOI

Chen B., Luo S., Wu Y., Ye J., Wang Q., Xu X., et al. (2017). The effects of the endophytic bacterium PubMed DOI PMC

Chen C.-T., Chen T.-H., Lo K.-F., Chiu C.-Y. (2004). Effects of proline on copper transport in rice seedlings under excess copper stress. DOI

Chen H., Yang X., Gielen G., Mandal S., Xu S., Guo J., et al. (2019). Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to PubMed DOI

Chen L., Long C., Wang D., Yang J. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by PubMed DOI

Chen Q., Lu X., Guo X., Pan Y., Yu B., Tang Z., et al. (2018a). Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant PubMed DOI

Chen H., Yang X., Wang P., Wang Z., Li M., Zhao F. J. (2018b). Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China. PubMed DOI

Chen H., Zhang W., Yang X., Wang P., McGrath S. P., Zhao F. J. (2018c). Effective methods to reduce cadmium accumulation in rice grain. PubMed DOI

Chen Z., Zhao Y., Fan L., Xing L., Yang Y. (2015). Cadmium (Cd) localization in tissues of cotton ( PubMed DOI

Choppala G., Saifullah, Bolan N., Bibi S., Iqbal M., Rengel Z., et al. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. PubMed DOI

Clabeaux B. L., Navarro D. A. G., Aga D. S., Bisson M. A. (2011). Cd tolerance and accumulation in the aquatic macrophyte, PubMed DOI

Clarke J. M., Norvell W. A., Clarke F. R., Buckley W. T. (2002). Concentration of cadmium and other elements in the grain of near-isogenic durum lines. PubMed DOI

Conolly E. L., Fett J. P., Guerinot M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. PubMed DOI PMC

Cui G., Ai S., Chen K., Wang X. (2019). Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. PubMed DOI

Cuypers A., Hendrix S., Amaral dos Reis R., De Smet S., Deckers J., Gielen H., et al. (2016). Hydrogen peroxide, signaling in disguise during metal phytotoxicity. PubMed DOI PMC

Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., et al. (2010). Cadmium stress: an oxidative challenge. PubMed DOI

da Silva Cunha L. F., de Oliveira V. P., do Nascimento A. W. S., da Silva B. R. S., Batista B. L., Alsahli A. A., et al. (2020). Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young PubMed DOI

Dad F. P., Khan W. U. D., Tanveer M., Ramzani P. M. A., Shaukat R., Muktadir A. (2020). Influence of iron-enriched biochar on Cd sorption, its ionic concentration and redox regulation of radish under cadmium toxicity. DOI

Das N., Bhattacharya S., Maiti M. K. (2016). Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytore mediation. PubMed DOI

Das R., Jayalekshmy V. G. (2015). Mechanism of heavy metal tolerance and improvement of tolerance in crop plants.

Da-wei H., Zhong-hua S., Qian-long L., Wei C., Xiang-jin W., et al. (2018). Identification of QTLs associated with cadmium concentration in rice grains.

Dobrikova A. G., Apostolova E. L., Hanć A., Yotsova E., Borisova P., Sperdouli I., et al. (2021). Cadmium toxicity in PubMed DOI

Eissa M. A. (2019). Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [ DOI

Elhiti M., Yang C., Chan A., Durnin D. C., Belmonte M. F., Ayele B. T., et al. (2012). Altered seed oil and glucosinolate levels in transgenic plants overexpressing the PubMed DOI

Elias E. M., Manthey F. (2016). Registration of ‘Joppa’ durum wheat. DOI

Elias E. M., Manthey F., AbuHammad W. (2015). Registration of ‘Carpio’ durum wheat. DOI

Elobeid M., Göbel C., Feussner I., Polle A. (2012). Cadmium interferes with auxin physiology and lignification in poplar. PubMed DOI PMC

Elyamine A. M., Moussa M. G., Afzal J., Rana M. S., Imran M., Zhao X., et al. (2019). Modified rice straw enhanced cadmium (ii) immobilization in soil and promoted the degradation of phenanthrene in co-contaminated soil. PubMed DOI PMC

Erdem H. (2021). The effects of biochars produced in different pyrolysis temperatures from agricultural wastes on cadmium uptake of tobacco plant. PubMed DOI PMC

Evangelou M. W. H., Ebel M., Schaeffer A. (2007). Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents. PubMed DOI

Farooq H., Asghar H. N., Khan M. Y., Saleem M., Zahir Z. A. (2015). Auxin-mediated growth of rice in cadmium-contaminated soil. DOI

Farooq M., Ullah A., Usman M., Siddique K. H. M. (2020). Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. PubMed DOI

Farooq M. A., Niazi A. K., Akhtar J., Farooq M., Souri Z., Karimi N., et al. (2019). Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PubMed DOI

French K. E. (2017). Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. PubMed DOI PMC

Gallego S. M., Pena L. B., Barcia R. A., Azpilicueta C. E., Iannone M. F., Rosales E. P., et al. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. PubMed DOI

García A. C., Tavares O. C. H., de Oliveira D. F. (2020). Biochar as agricultural alternative to protect the rice plant growth in fragile sandy soil contaminated with cadmium. DOI

Garg N., Chandel S. (2015). Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in DOI

Genchi G., Sinicropi M. S., Lauria G., Carocci A., Catalano A. (2020). The effects of cadmium toxicity. PubMed PMC

Gerszberg A., Hnatuszko-Konka K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. DOI

Ghani A. (2011). Varietal differences in canola (

Ghassemi H. R., Mostajeran A. (2018). TASOS1 and TATM20 genes expression and nutrient uptake in wheat seedlings may be altered via excess cadmium exposure and inoculation with DOI

Gill S. S., Khan N. A., Tuteja N. (2011). Differential cadmium stress tolerance in five Indian mustard ( PubMed DOI PMC

Glick B. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. PubMed DOI

Goel S., Gautam A. (2010). Effect of chelating agents on mobilization of metal from waste catalyst.

Goix S., Lévêque T., Xiong T. T., Schreck E., Baeza-Squiban A., Geret F., et al. (2014). Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. PubMed DOI

Goncalves J. F., Nicoloso F. T., Becker A. G., Pereira L. B., Tabaldi L. A., Cargnelutti D., et al. (2009). Photosynthetic pigments content, δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed DOI

Gondor O. K., Pál M., Darkó É, Janda T., Szalai G. (2016). Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize ( PubMed DOI PMC

Gong X., Yin L., Chen J., Gu C. (2015). Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. PubMed DOI

Goswami D., Thakker J. N., Dhandhukia P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review.

Gothberg A., Greger E., Holm K., Bengtsson B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. PubMed DOI

Gouia H., Suzuki A., Brulfert J., Ghorbal M. H. (2003). Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. PubMed DOI

Gruznova K. A., Bashmakov D. I., Miliauskiene J., Vastakaite V., Duchovskis P., Lukatkin A. S. (2018). The effect of a growth regulator Ribav-Extra on winter wheat seedlings exposed to heavy metals. DOI

Gul S., Naz A., Khan A., Nisa S., Irshad M. (2016). Phytoavailability and leachability of heavy metals from contaminated soil treated with composted livestock manure. DOI

Guo B., Liu C., Liang Y., Li N., Fu Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. PubMed DOI PMC

Guo H., Hong C., Chen X., Xu Y., Liu Y., Jiang D., et al. (2016). Different growth and physiological responses to cadmium of the three PubMed DOI PMC

Guo Z. H., Miao X. F. (2010). Growth changes and tissues anatomical characteristics of giant reed ( DOI

Gusiatin Z. M., Klimiuk E. (2012). Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. PubMed DOI

Habiba U., Ali S., Farid M., Shakoor M. B., Rizwan M., Ibrahim M., et al. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by PubMed DOI

Hafeez F., Rizwan M., Saqib M., Yasmeen T., Ali S., Abbas T., et al. (2019). Residual effect of biochar on growth, antioxidant defense and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil.

Haider F. U., Coulter J. A., Liqun C., Hussain S., Cheema S. A., Wu J., et al. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. DOI

Haider F. U., Liqun C., Coulter J. A., Cheema S. A., Wu J., Zhang R., et al. (2021a). Cadmium toxicity in plants: impacts and remediation strategies. PubMed DOI

Haider F. U., Coulter J. A., Cheema S. A., Farooq M., Wu J., Zhang R., et al. (2021b). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. PubMed DOI

Hajeb P., Sloth J. J., Shakibazadeh S., Mahyudin N. A., Afsah-Hejri L. (2014). Toxic elements in food: occurrence, binding, and reduction approaches. PubMed DOI

Hakmaoui A., Ater M., Boka K., Baron M. (2007). Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on PubMed DOI

Halim M. A., Majumder R. K., Zaman M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. DOI

Hamid Y., Tang L., Hussain B., Usman M., Gurajala H. K., Rashid M. S., et al. (2019). Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. PubMed DOI

Hamid Y., Tang L., Hussain B., Usman M., Lin Q., Rashid M. S., et al. (2020a). Organic soil additives for the remediation of cadmium contaminated soil sand their impact on the soil-plant system: a review. PubMed DOI

Hamid Y., Tang L., Hussain B., Usman M., Gurajala H. K., Rashid M. S., et al. (2020b). Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. PubMed

Han R. M., Lefèvre I., Albacete A., Pérez-Alfocea F., Barba-Espín G., Díaz-Vivancos P., et al. (2013). Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. PubMed DOI

Hasan M., Uddin M., Ara-Sharmeen F., I, Alharby H., Alzahrani Y., Hakeem K. R., et al. (2019). Assisting phytoremediation of heavy metals using chemical amendments. PubMed DOI PMC

Hasanuzzaman M., Alhaithloul H., Parvin K., Bhuyan M., Tanveer M., Mohsin S. M., et al. (2019). Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions. PubMed DOI PMC

Hasanuzzaman M., Bhuyan M., Zulfiqar F., Raza A., Mohsin S. M., Mahmud J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. PubMed DOI PMC

Hashem A., Abdallah E. F., Alqarawi A. A., Al-Huqail A. A., Egamberdieva D., Wirth S. (2016). Alleviation of cadmium stress in PubMed DOI PMC

Hassan W., Bano R., Bashir S., Aslam Z. (2015). Cadmium toxicity and soil biological index under potato (

Hayat S., Ali B., Hasan S. A., Ahmad A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in DOI

Hayat S., Alyemeni M. N., Hasan S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of PubMed DOI PMC

Hayat S., Hasan S. A., Hayat Q., Ahmad A. (2010). Brassinosteroids protect PubMed DOI

Hayat S., Hayat Q., Alyemeni M. N., Ahmad A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of DOI

He D., Cui J., Gao M., Wang W., Zhou J., Yang J., et al. (2019). Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. PubMed DOI

He J., Zhu C., Ren Y., Yan Y., Jiang D. (2006). Genotypic variation in grain cadmium concentration of lowland rice. DOI

He L., Ma X., Li Z. (2016). Maize oxidative stress 2 homologs enhance cadmium tolerance in PubMed DOI PMC

He S., Wu Q., He Z. (2014). Synergetic effects of DA-6/GA3 with EDTA on plant growth, extraction and detoxification of Cd by PubMed DOI

Hong K., Tokunaga S., Kajiuchi T. (2002). Evaluation of remediation process with plant derived biosurfactant for recovery of heavy metals from contaminated soils. PubMed DOI

Hossain M. A., Piyatida P., da Silva J. A. T., Fujita M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation.

Hu W., Zhang Y., Huang B., Teng Y. (2017). Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. PubMed DOI

Hu X., Liu X., Zhang X., Cao L., Chen J., Yu H. (2017). Increased accumulation of Pb and Cd from contaminated soil with Scirpustriqueter by the combined application of NTA and APG. PubMed DOI

Huang X., Han B. (2014). Natural variations and genome-wide association studies in crop plants. PubMed DOI

Huang D. F., Ling-Lin X., Li-Nian Y., Zhi-Qin W., Jian-Chang Y. (2008). Comparison of agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. DOI

Huang H., Luo L., Huang L., Zhang J., Gikas P., Zhou Y. (2020). Effect of manure compost on distribution of Cu and Zn in rhizosphere soil and heavy metal accumulation by

Huang J., Liu Z., Li S., Xu B., Gong Y., Yang Y., et al. (2016). Isolation and engineering of plant growth promoting rhizobacteria PubMed DOI

Huang Q., Yu Y., Wan Y., Wang Q., Luo Z., Qiao Y., et al. (2018). Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice ( PubMed DOI

Huang X., Ho S. H., Zhu S., Ma F., Wu J., Yang J., et al. (2017). Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in PubMed DOI

Hussain A., Ali S., Rizwan M., ur Rehman M. Z., Javed M. R., Imran M., et al. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. PubMed

Hussain B., Ashraf M. N., Abbas A., Li J., Farooq M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. PubMed DOI

Huybrechts M., Hendrix S., Bertels J., Beemster G. T. S., Vandamme D., Cuypers A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. DOI

Ibrahim M., Li G., Chan F. K. S., Kay P., Liu X. X., Firbank L., et al. (2019). Biochar effects potentially toxic elements and antioxidant enzymes in

Ijaz M., Rizwan M. S., Sarfraz M., Ul-Allah S., Sher A., Sattar A., et al. (2020). Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. DOI

Ishikawa S., Abe T., Kuramata M., Yamaguchi M., Ando T., Yamamoto T., et al. (2010). A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. PubMed DOI PMC

Ishikawa S., Ae N., Yano M. (2005). Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice ( PubMed DOI

Ishizaki T. (2016). CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation.

Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. PubMed DOI PMC

Jan S. U., Jamal A., Sabar M. A., Ortas I., Isik M., Aksahin V., et al. (2020). Impact of

Janeczko A., Koscielniak J., Pilipowicz M., Szarek-Lukaszewska G., Skoczowski A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. DOI

Janeeshma E., Puthur J. T. (2020). Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. PubMed DOI

Janoušková M., Pavlíková D., Vosátka M. (2006). Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. PubMed DOI

Januškaitienė I. (2010). Impact of low concentration of cadmium on photosynthesis and growth of pea and barley.

Jebara S. H., Chiboub M., Jebara M. (2018). “Antioxidant responses and gene level expressions of

Jegadeesan S., Yu K., Povsa V., Gawalko E., Morrison M. J., Shi C., et al. (2010). Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [ PubMed DOI

Jha U. C., Bohra A. (2016). Genomics enabled breeding approaches for improving cadmium stress tolerance in plants.

Jianfeng W., Zhang Y., Jin J., Li Q., Chenzhou Z., Wenbin N., et al. (2017). An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture alteration in DOI

Jiang M., Liu S., Li Y., Li X., Luo Z., Song H., et al. (2019). EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. PubMed

Jiang Q. Y., Zhuo F., Long S. H., Di-Zhao H., Yang D. J., Ye Z. H., et al. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of PubMed DOI PMC

Jianv L., Qixing Z., Song W. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with PubMed DOI

Joshi P. M., Juwarkar A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. PubMed DOI

Jung M. C. (2008). Heavy metal concentration in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu–W mine. PubMed DOI PMC

Jung C., Capistrano-Gossmann G., Braatz J., Sashidhar N., Melzer S. (2018). Recent developments in genome editing and applications in plant breeding.

Kabata-Pendias A. (1993). Behavioural properties of trace metals in soils. DOI

Kabata-Pendias A., Sadurski W. (2004). “Trace elements and compounds in soil,” in

Kamran M., Malik Z., Parveen A., Huang L., Riaz M., Bashir S., et al. (2020). Ameliorative effects of biochar on rapeseed (

Kamran M., Malik Z., Parveen A., Zong Y., Abbasi G. H., Rafiq M. T., et al. (2019). Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi ( PubMed DOI

Kapoor D., Sharma R., Handa N., Kaur H., Rattan A., Yadav P., et al. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. DOI

Kapoor D., Singh S., Kumar V., Romero R., Prasad R., Singh J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS).

Ke T., Guo G., Liu J., Zhang C., Tao Y., Wang P., et al. (2021). Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. PubMed DOI

Khan M. A., Khan S., Khan A., Alam M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. PubMed DOI

Khan N., Samiullah, Singh S., Nazar R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (

Khanna K., Jamwal V. L., Kohli S. K., Gandhi S. G., Ohri P., Bhardwaj R., et al. (2019). Plant growth promoting rhizobacteria induced Cd tolerance in PubMed DOI

Kirkham M. B. (2006). Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. DOI

Kloepper J. W. (1994). “Plant growth-promoting rhizobacteria,” in

Knox R. E., Pozniak C. J., Clarke F. R., Clarke J. M., Houshmand S., Singh A. K. (2009). Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. PubMed DOI

Koprivova A., North K. A., Kopriva S. (2008). Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in PubMed DOI PMC

Krantev A., Yordanova R., Janda T., Szalai G., Popova L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. PubMed DOI

Krujatz F. (2012). Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium

Kubier A., Wilkin R. T., Pichler T. (2019). Cadmium in soils and groundwater: a review. PubMed DOI PMC

Kumar P., Edelstein M., Cardarelli M., Ferri E., Colla G. (2015). Grafting affects growth, yield, nutrient uptake, and partitioning under cadmium stress in tomato.

Küpper H., Parameswaran A., Leitenmaier B., Trtilek M., Šetlík I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspicaerulescens. PubMed DOI

Lambrechts T., Gustot Q., Couder E., Houben D., Iserentant A., Lutts S. (2011). Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with PubMed DOI

Lan H. X., Wang Z. F., Wang Q. H., Wang M. M., Bao Y. M., Huang J., et al. (2012). Characterization of a vacuolar zinc transporter OZT1 in rice ( PubMed

Lata S., Kaur H. P., Mishra T. (2019). Cadmium bioremediation: a review. DOI

Lee K., Back K. (2017). Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. PubMed DOI

Leegood R. (1993). “Carbon metabolism,” in

Lehmann A., Leifheit E., Rillig M. (2017). “Mycorrhizas and soil aggregation,” in DOI

Lehmann A., Rillig M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops - A meta-analysis. DOI

Lentini M., De Lillo A., Paradisone V., Liberti D., Landi S., Esposito S. (2018). Early responses to cadmium exposure in barley plants: effects on biometric and physiological parameters. DOI

Li D. D., Zhou D. M. (2012). Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity. PubMed

Li F., Li Z., Mao P., Li Y., Li Y., McBride M. B., et al. (2019). Heavy metal availability, bioaccessibility, and leachability in contaminated soil: effects of pig manure and earthworms. PubMed DOI

Li J., Yu J., Du D., Liu J., Lu H., Yan C. (2019). Analysis of anatomical changes and cadmium distribution in PubMed DOI

Li L., Chen J., He Q., Daud M. K., Zhu S. (2012). Characterization of physiological traits, yield and fiber quality in three upland cotton cultivars grown under cadmium stress.

Li Q., Lu Y., Shi Y., Wang T., Ni K., Xu L., et al. (2013). Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. PubMed

Li S., Chen J., Islam E., Wang Y., Wu J., Ye Z., et al. (2016). Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo ( PubMed DOI

Li S., Sun X., Li S., Liu Y., Ma Q., Zhou W. (2021). Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. PubMed DOI PMC

Li W., Wu S., Liu Y., Jin G., Zhao H., Fan L., et al. (2016). Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants. PubMed DOI PMC

Li X., Gitau M. M., Han S., Fu J., Xie Y. (2017a). Effects of cadmium-resistant fungi PubMed DOI

Li X., Han S., Wang G., Liu X., Amombo E., Xie Y., et al. (2017b). The fungus PubMed DOI PMC

Li Y., Luo J., Yu J., Xia L., Zhou C., Cai L., et al. (2018). Improvement of the phytoremediation efficiency of Neyraudiareynaudiana for lead-zinc mine-contaminated soil under the interactive effect of earthworms and EDTA. PubMed DOI PMC

Li Y., Wang L., Yang L., Li H. (2014). Dynamics of rhizosphere properties and antioxidative responses in wheat ( PubMed DOI

Li Z., Zhang R., Zhang H. (2018). Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by PubMed DOI

Liao M., Xie X. M. (2004). Cadmium release in contaminated soils due to organic acids.

Lin H., Fang C., Li Y., Lin W., He J., Lin R., et al. (2016). Effect of silicon on grain yield of rice under cadmium-stress. DOI

Lin R., Wang X., Luo Y., Du W., Guo H., Yin D. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings ( PubMed DOI

Liu F., Liu X., Ding C., Wu L. (2015). The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. DOI

Liu J., Qian M., Cai G., Yang J., Zhu Q. (2007). Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. PubMed DOI

Liu J. N., Zhou Q., Sun T., Ma L. Q., Wang S. (2008). Identification of and chemical enhancement of two ornamental plants for phytoremediation. PubMed DOI

Liu J. N., Zhou Q. X., Wang S., Sun T. (2009). Cadmium tolerance and accumulation of PubMed DOI

Liu L., Li J. W., Yue F. X., Yan X. W., Wang F. Y., Bloszies S., et al. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. PubMed DOI

Liu M., Sun J., Li Y., Xiao Y. (2017). Nitrogen fertilizer enhances growth and nutrient uptake of PubMed

Liu X., Chen S., Chen M., Zheng G., Peng Y., Shi X., et al. (2019). Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands. PubMed DOI PMC

Liu Y., Xiao T., Ning Z., Li H., Tang J., Zhou G. (2013). High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. DOI

Liza S. J., Shethi K. J., Rashid P. (2020). Effects of cadmium on the anatomical structures of vegetative organs of chickpea ( DOI

Long C., Wang D., Chen L., Jiang W. J., Xiang M. W. (2017). Effect of four kinds of phytohormones on U and Cd accumulation in

Lozano-Rodriguez E., Hernandez L. E., Bonay P., Carpena-Ruiz R. O. (1997). Distribution of cadmium in shoot and root tissues1. DOI

Luo J., Li X., Jin Y., Traore I., Dong L., Yang G., et al. (2020). Effects of arbuscular mycorrhizal fungi glomus mosseae on the growth and medicinal components of PubMed DOI

Luo J. S., Huang J., Zeng D. L., Peng J. S., Zhang G. B., Ma H. L., et al. (2018). A defensin-like protein drives cadmium efflux and allocation in rice. PubMed DOI PMC

Ma J., Ni X., Huang Q., Liu D., Ye Z. (2021). Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes. PubMed DOI

Mahajan P., Kaushal J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. PubMed DOI PMC

Maksimović I., Kastori R., Krstić L., Luković J. (2007). Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. DOI

Maksymiec W., Krupa Z. (2002). Jasmonic acid and heavy metals in DOI

Maksymiec W., Krupa Z. (2006). The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in DOI

Mani D., Kumar C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. DOI

Manzoor M., Gul I., Kallerhoff J., Arshad M. (2019). Fungi-assisted phytoextraction of lead: tolerance, plant growth—promoting activities and phytoavailability. PubMed DOI

Martínez Domínguez D., Córdoba García F., Canalejo Raya A., Torronteras Santiago R. (2010). Cadmium-induced oxidative stress and the response of the antioxidative defense system in PubMed DOI

Maurya A. K. (2020). “Oxidative stress in crop plants,” in

McCouch S. R., Wright M. H., Tung C. W., Maron L. G., McNally K. L., Fitzgerald M., et al. (2016). Open access resources for genome-wide association mapping in rice. PubMed DOI PMC

Medynska-Juraszek A., Cwielag-Piasecka I. (2020). Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. DOI

Medyńska-Juraszek A., Bednik M., Chohura P. (2020). Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. PubMed PMC

Mehdizadeh L., Farsaraei S., Moghaddam M. (2021). Biochar application modified growth and physiological parameters of Ocimumciliatum L. and reduced human risk assessment under cadmium stress. PubMed DOI

Meng D., Li J., Liu T., Liu Y., Yan M., Hu J., et al. (2019). Effects of redox potential on soil cadmium solubility: insight into microbial community. PubMed DOI

Meng J., Zhong L., Wang L., Liu X., Tang C., Chen H., et al. (2018). Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. PubMed DOI

Menguer P. K., Farthing E., Peaston K. A., Ricachenevsky F. K., Fett J. P., Williams L. E. (2013). Functional analysis of the rice vacuolar zinc transporter OsMTP1. PubMed DOI PMC

Mishra S., Tripathi R. D., Srivastava S., Dwivedi S., Trivedi P. K., Dhankher O. P., et al. (2009). Thiol metabolism play significant role during cadmium detoxification by PubMed DOI

Mizushima M., Ferreira B., França M., Almeida A. A., Cortez P., Silva J., et al. (2019). Ultrastructural and metabolic disorders induced by short-term cadmium exposure in Avicenniaschaueriana plants and its excretion through leaf salt glands. PubMed DOI

Mokarram-Kashtiban S., Hosseini S. M., Kouchaksaraei M. T., Younesi H. (2019). Biochar improves the morphological, physiological and biochemical properties of white willow seedlings in heavy metal-contaminated soil. DOI

Molina A. S., Lugo M. A., PerezChaca M. V., Vargas-Gil S., Zirulnik F., Leporati J., et al. (2020). Effect of arbuscular mycorrhizal colonization on cadmium-mediated oxidative stress in PubMed DOI PMC

Mondal S. C., Sarma B., Farooq M., Nath D. J., Gogoi N. (2020). Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. DOI

Mongkhonsin B., Nakbanpote W., Meesungnoen O., Prasad M. N. V. (2019). “Adaptive and tolerance mechanisms in herbaceous plants exposed to cadmium,” in

Moradi R., Pourghasemian N., Naghizadeh M. (2019). Effect of beeswax waste biochar on growth, physiology and cadmium uptake in saffron. DOI

Moreira F. M. D. S., Ferreira P. A. A., Vilela L. A. F., Carneiro M. A. C. (2015). “Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils,” in

Mosa K. A., Saadoun I., Kumar K. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. PubMed DOI PMC

Moslehi A., Feizian M., Higueras P., Eisvand H. R. (2019). Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower ( PubMed DOI

Muhammad D., Chen F., Zhao J., Zhang G., Wu F. (2009). Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by PubMed DOI

Murgese P., Santamaria P., Leoni B., Crecchio C. (2020). Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere ( DOI

Myśliwa-Kurdziel B., Strzałka K. (2002). “Influence of metals on biosynthesis of photosynthetic pigments,” in

Naeem M. A., Shabbir A., Amjad M., Abbas G., Imran M., Murtaza B., et al. (2020). Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa ( PubMed DOI

Najeeb U., Jilani G., Ali S., Sarwar M., Xu L., Zhou W. (2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. PubMed DOI

Nakamura M., Ochiai T., Noji M., Ogura Y., Suzuki K., Yoshimoto N., et al. (2014). An improved tolerance to cadmium by overexpression of two genes for cysteine synthesis in tobacco. DOI

Nejad Z. D., Jung M. C., Kim K. H. (2017). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. PubMed DOI

Nguyen T. Q., Sesin V., Kisiala A., Emery R. J. N. (2020). Phytohormonal roles in plant responses to heavy metal stress-implications for using macrophytes in phytoremediation of aquatic ecosystems. PubMed DOI

Nian L., Zhang X., Yi X., Liu X., Ain U. L., Yang Y., et al. (2021). Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in PubMed DOI PMC

Nigam N., Khare P., Yadav V., Mishra D., Jain S., Karak T., et al. (2019). Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. PubMed DOI

Nikolić N., Zorić L., Cvetković I., Pajević S., Borišev M., Orlović S., et al. (2017). Assessment of cadmium tolerance and phytoextraction ability in young DOI

Noriega G. O., Balestrasse K. B., Batlle A., Tomaro M. L. (2007). Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. PubMed DOI

Nowack B. (2002). Environmental chemistry of aminopolycarboxylate chelating agents. PubMed DOI

Okem A., Kulkarni M. G., Staden J. V. (2015). Enhancing phytoremediation potential of Pennisetum clandestinumHochst in cadmium- contaminated coil using smoke-water and smoke-isolated karrikinolide. PubMed DOI

Ostrowski M., Ciarkowska A., Jakubowska A. (2016). The auxin conjugate indole-3- acetyl-aspartate affects responses to cadmium and salt stress in PubMed DOI

Palansooriya K. N., Shaheen S. M., Chen S. S., Tsang D. C. W., Hashimoto Y., Hou D., et al. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. PubMed DOI

Pan F., Luo S., Shen J., Wang Q., Ye J., Meng Q., et al. (2017). The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure. PubMed DOI

Parmar P., Kumari N., Sharma V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. PubMed DOI PMC

Pereira B. F. F., de Abreu C. A., Herpin U., de Abreu M. F., Berton R. S. (2010). Phytoremediation of lead by jack beans on a Rhodic Hapludox amended with EDTA. DOI

Pierattini E. C., Francini A., Raffaelli A., Sebastiani L. (2017). Surfactant and heavy metal interaction in poplar: a focus on SDS and Zn uptake. PubMed DOI

Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska- Zylkiewicz B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga PubMed DOI

Pompeu G. B., Vilhena M. B., Gratão P. L. (2017). Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. PubMed DOI

Pozniak C., Fox S., Knott D. (2009). CDC Verona durum wheat. DOI

Qayyum M. F., Liaquat F., Rehman R. A., Gul M., Zia ul Hye M., Rizwan M., et al. (2017). Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. PubMed DOI

Qayyum M. F., Rehman R. A., Liaqat S., Ikram M., Ali S., Rizwan M., et al. (2019). Cadmium immobilization in the soil and accumulation by spinach ( DOI

Qi F., Lamb D., Naidu R., Bolan N. S., Yan Y., Ok Y. S., et al. (2018). Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. PubMed DOI

Qianqian M., Haider F. U., Farooq M., Adeel M., Shakoor N., Jun W., et al. (2022). Selenium treated Foliage and biochar treated soil for improved lettuce ( DOI

Qin P., Wang L., Liu K., Mao S., Li Z., Gao S., et al. (2015). Genome wide association study of DOI

Qiu Z., Tan H., Zhou S., Cao L. (2014). Enhanced phytoremediation of toxic metals by inoculating endophytic PubMed DOI

Quartacci M. F., Pinzino C., Sgherri C. L., Dalla Vecchia F., Navari-Izzo F. (2000). Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. DOI

Rady M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean ( DOI

Rady M. M., Hemida K. A. (2015). Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of poly- amines. PubMed DOI

Rafique M., Haque K., Hussain T., Amna C., Javed H. (2017).

Rafique M., Ortas I., Rizwan M., Sultan T., Chaudhary H. J., Işik M., et al. (2019). Effects of Rhizophagusclarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize ( PubMed DOI

Rajkumar M., Sandhya S., Prasad M. N. V., Freitas H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. PubMed DOI

Raklami A., Oufdou K., Tahiri A. I., Mateos-Naranjo E., Navarro-Torre S., Rodríguez-Llorente I. D., et al. (2019). Safe cultivation of PubMed DOI PMC

Rasheed R., Ashraf M. A., Hussain I., Haider M. Z., Kanwal U., Iqbal M. (2014). Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat ( DOI

Rehman A., Shahzad B., Haider F. U., Ahmed H. A. I., Lee D.-J., Im S. Y., et al. (2022a). “An introduction to brassinosteroids: history, biosynthesis, and chemical diversity,” in

Rehman A., Shahzad B., Haider F. U., Moeen-ud-din M., Ullah A., Khan I. (2022b). “Brassinosteroids in plant response to high temperature stress,” in

Remans T., Opdenakker K., Smeets K., Mathijsen D., Vangronsveld J., Cuypers A. (2010). Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in DOI

Ren T., Chen N., Mahari W. A. W., Xu C., Feng H., Ji X., et al. (2021). Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. PubMed DOI

Ren Y., Chen Y., An J., Zhao Z., Zhang G., Wang Y., et al. (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. PubMed DOI

Riaz M., Yan L., Wu X., Hussain S., Aziz O., Wang Y., et al. (2018). Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. PubMed DOI

Rizwan M., Ali S., Abbas T., Zia-Ur-Rehman M., Hannan F., Keller C., et al. (2016). Cadmium minimization in wheat: a critical review. PubMed DOI

Rizwan M., Ali S., Qayyum M. F., Ok Y. S., Zia-ur-Rehman M., Abbas Z., et al. (2017). Use of maize ( PubMed DOI

Rizwan M., Ali S., Ur Rehman M. Z., Maqbool A. (2019a). A critical review on the effects of zinc at toxic levels of cadmium in plants. PubMed DOI

Rizwan M., Ali S., Ur Rehman M. Z., Rinklebe J., Tsang D. C., Bashir A., et al. (2018). Cadmium phytoremediation potential of PubMed DOI

Rizwan M., Noureen S., Ali S., Anwar S., Zia-ur-Rehman M., Qayyum M. F., et al. (2019b). Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. DOI

Rodda M. S., Li G., Reid R. J. (2011). The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. DOI

Rodríguez-Serrano M., Romero-Puertas M. C., Zabalza A., Corpas F. J., Gómez M., Del Río L. A., et al. (2006). Cadmium effect on oxidative metabolism of pea ( PubMed DOI

Romero-Puertas M., Rodríguez-Serrano M., Corpas F., Gomez M. D., Del Rio L., Sandalio L. (2004). Cadmium-induced subcellular accumulation of O2•− and H2O2 in pea leaves. DOI

Rostami S., Azhdarpoor A. (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. PubMed DOI

Roychoudhury A., Ghosh S., Paul S., Mazumdar S., Das G., Das S. (2016). Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean ( DOI

Saeed Q., Xiukang W., Haider F. U., Kucerik J., Mumtaz M. Z., Holatko J., et al. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. PubMed DOI PMC

Saeid A., Prochownik E., Dobrowolska-Iwanek J. (2018). Phosphorus solubilization by PubMed DOI PMC

Saeki K., Kunito T. (2012). Influence of chloride ions on cadmium adsorptions by oxides, hydroxides, oxyhydroxides, and phyllosilicates. DOI

Saifullah M. E., Qadir M., de Caritat P., Tack F. M. G., Du Laing G., Zia M. (2009). H. EDTA-assisted Pb phytoextraction. PubMed DOI

Sakouhi L., Rahoui S., Massoud M. B., Munemasa S., Ferjani E. E., Murata Y., et al. (2016). Calcium and EGTA alleviate cadmium toxicity in germinating chickpea seeds. DOI

Salazar M. J., Rodriguez J. H., Nieto G. L., Pignata M. L. (2012). Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [ PubMed DOI

Sangthong C., Setkit K., Prapagdee B. (2016). Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant PubMed DOI

Sárvári É. (2008). Effect of Cd on the iron re-supply-induced formation of chlorophyll-protein complexes in cucumber.

Sarwar N., Malhi S. S., Zia M. H., Naeem A., Bibi S., Farid G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. PubMed DOI

Sasaki A., Yamaji N., Yokosho K., Ma J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. PubMed PMC

Sato H., Shirasawa S., Maeda H., Nakagomi K., Kaji R., Ohta H., et al. (2011). Analysis of QTL for lowering cadmium concentration in rice grains from ‘LAC23’. DOI

Sell J., Kayser A., Schulin R., Brunner I. (2005). Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. DOI

Semida W. M., Rady M. M., Abd El-Mageed T. A., Howladar S. M., Abdelhamid M. A. (2015). Alleviation of cadmium toxicity in common bean ( DOI

Shah K., Nahakpam S., Chaturvedi V., Singh P. (2019). “Cadmium-induced anatomical abnormalities in plants,” in DOI

Shah K., Singh P., Nahakpam S. (2013). Effect of cadmium uptake and heat stress on root ultrastructure, membrane damage and antioxidative response in rice seedlings. DOI

Shahid M., Austruy A., Echevarria G., Arshad M., Sanaullah M., Aslam M., et al. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. DOI

Shahid M., Dumat C., Khalid S., Niazi N. K., Antunes P. M. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil plant system. PubMed DOI

Shahkolaie S. S., Baranimotlagh M., Dordipour E., Khormali F. (2020). Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in DOI

Shahzad B., Tanveer M., Che Z., Rehman A., Cheema S. A., Sharma A., et al. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. PubMed DOI

Shakirova F. M., Allagulova C. R., Maslennikova D. R., Klyuchnikova E. O., Avalbaev A. M., Bezrukova M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. DOI

Sharaf A. E. M. M., Farghal I. I., Sofy M. R. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants.

Sharma R. K., Archana G. (2016). Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. DOI

Sharma S., Anand G., Singh N., Kapoor R. (2017). Arbuscular mycorrhiza augments arsenic tolerance in wheat ( PubMed DOI PMC

Sharma S. S., Kumar V. (2002). Responses of wild type and abscisic acid mutants of DOI

Shao J. F., Xia J., Yamaji N., Shen R. F., Ma J. F. (2018). Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. PubMed PMC

Sheoran V., Sheoran A. S., Poonia P. (2016). Factors affecting phytoextraction: (a review). DOI

Shi P., Zhu K., Zhang Y., Chai T. (2016). Growth and cadmium accumulation of

Shiyu Q. I. N., Hongen L. I. U., Zhaojun N. I. E., Rengel Z., Wei G. A. O., Chang L. I., et al. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. DOI

Shukla D., Kesari R., Tiwari M., Dwivedi S., Tripathi R. D., Nath P., et al. (2013). Expression of Ceratophyllumdemersumphytochelatin synthase, CdPCS1, in PubMed DOI

Siemianowski O., Barabasz A., Kendziorek M., Ruszczyńska A., Bulska E., Williams L. E., et al. (2014). AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. PubMed DOI PMC

Sigfridsson K. G., Bernát G., Mamedov F., Styring S. (2004). Molecular interference of Cd2+ with Photosystem II. PubMed DOI

Silber A., Bar-Yosef B., Suryano S., Levkovitch I. (2012). Zinc adsorption by perlite: effects of pH, ionic strength, temperature, and pre-use as growth substrate.

Silva S. A., Techio V. H., de Castro E. M., de Faria M. R., Palmieri M. J. (2013). Reproductive, cellular, and anatomical alterations in

Singh G., Pankaj U., Chand S., Verma R. (2019). Arbuscular mycorrhizal fungi assisted phytoextraction of toxic metals by DOI

Singh P., Singh I., Shah K. (2020). Alterations in antioxidative machinery and growth parameters upon application of nitric oxide donor that reduces detrimental effects of cadmium in rice seedlings with increasing days of growth. DOI

Singh S., Parihar P., Singh R., Singh V. P., Prasad S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. PubMed DOI PMC

Singh S., Prasad S. M. (2016). Kinetin ameliorates cadmium induced toxicity on growth, pigments and photosynthesis by regulating antioxidant potential in tomato seedlings.

Singh S., Prasad S. M. (2017). Effects of 28-homobrassinoloid on key physiological attributes of DOI

Singh S., Singh A., Srivastava P. K., Prasad S. M. (2018). Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. PubMed DOI

Skrebsky E. C., Tabaldi L. A., Pereira L. B., Rauber R., Maldaner J., Cargnelutti D., et al. (2008). Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of DOI

Sohail M. I., Rehman M. Z., Rizwan M., Yousaf B., Ali S., Haq M. A., et al. (2020). Efficiency of various silicon rich amendments on growth and cadmium accumulation in field grown cereals and health risk assessment. PubMed DOI

Sohail M. I., Zia-ur-Rehman M., Murtaza G., Wahid M. A. (2019). Chemical investigations of Si-rich organic and inorganic amendments and correlation analysis between different chemical composition and Si contents in amendments. DOI

Song W., Chen S., Liu J., Chen L., Song N., Li N., et al. (2015). Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. DOI

Song Y., Jin L., Wang X. (2017). Cadmium absorption and transportation pathways in plants. PubMed DOI

Stroiński A., Giżewska K., Zielezińska M. (2013). Abscisic acid is required in transduction of cadmium signal to potato roots. DOI

Sugiyama M., Ae N., Hajika M. (2011). Developing of a simple method for screening soybean seedling cadmium accumulation to select soybean genotypes with low seed cadmium.

Suksabye P., Pimthong A., Dhurakit P., Mekvichitsaeng P., Thiravetyan P. (2016). Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. PubMed DOI

Sullivan T. S., McBride M. B., Thies J. E. (2013). Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil. DOI

Sun S., Wang H., Yu H., Zhong C., Zhang X., Peng J., et al. (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. PubMed DOI

Sun S., Zhou X., Cui X., Liu C., Fan Y., McBride M. B., et al. (2020). Exogenous plant growth regulators improved phytoextraction efficiency by DOI

Sunitha M. S., Prashant S., Kumar S. A., Rao S. R. I. N. A. T. H., Narasu M. L., Kishor P. K. (2012). Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over-expressing phytochelatin synthase and metallothionein genes.

Tamás L., Dudíková J., Ďurčeková K., Halušková L’, Huttová J., Mistrík I. (2009). Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. PubMed DOI

Tang X., Zeng G., Fan C., Zhou M., Tang L., Zhu J., et al. (2018). Chromosomal expression of CadR on PubMed DOI

Tanveer M., Shabala S. (2022). “Entangling the interaction between essential and nonessential nutrients: implications for global food security,” in

Tanwar A., Aggarwal A., Charaya M. U., Kumar P. (2015). Cadmium remediation by arbuscular mycorrhizal fungus–colonized celery plants supplemented with ethylenediaminetetraacetic acid. DOI

Tao S., Sun L., Ma C., Li L., Li G., Hao L. (2013). Reducing basal salicylic acid enhances DOI

Teiri H., Pourzamani H., Hajizadeh Y. (2018). Phytoremediation of VOCs from indoor air by ornamental potted plants: a pilot study using a palm species under the controlled environment. PubMed

Timperio A. M., D’Amici G. M., Barta C., Loreto F., Zolla L. (2007). Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. PubMed DOI

Tiong J., McDonald G. K., Genc Y., Pedas P., Hayes J. E., Toubia J., et al. (2014). HvZIP7 mediates zinc accumulation in barley ( PubMed DOI

Tran T. A., Paunova S., Nedeva D., Popova L. (2011). Nitric oxide alleviates cadmium toxicity on photosynthesis in pea plants.

Tran T. A., Popova L. P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. DOI

Ueno D., Kono I., Yokosho K., Ando T., Yano M., Ma J. F. (2009a). A major quantitative trait locus controlling cadmium translocation in rice ( PubMed DOI

Ueno D., Koyama E., Kono I., Ando T., Yano M., Ma J. F. (2009b). Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. PubMed DOI

Ullah A., Heng S., Munis M. F. H., Fahad S., Yang X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. DOI

Unsal V., Dalkıran T., Çiçek M., Kölükçü E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. PubMed DOI PMC

Upadhyay S. K., Singh J. S., Singh D. P. (2011). Exopolysaccharide producing plant growth promoting rhizobacteria under salinity condition. DOI

Uraguchi S., Mori S., Kuramata M., Kawasaki A., Arao T., Ishikawa S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. PubMed DOI PMC

Varalakshmi L. R., Ganeshamurthy A. (2013). Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake. DOI

Verma S., Verma P. K., Meher A. K., Bansiwal A. K., Tripathi R. D., Chakrabarty D. (2017). A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in the transgenic rice plant. PubMed DOI

Vestena S., Cambraia J., Ribeiro C., Oliveira J. A., Oliva M. A. (2011). Cadmium-induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. DOI

Violante A., Cozzolino V., Perelomov L., Caporale A., Pigna M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. DOI

Vollmann J., Losak T., Pachner M., Watanabe D., Musilova L., Hlusek J. (2015). Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. DOI

Wahid A., Ghani A. (2008). Varietal differences in mungbean ( DOI

Wang F., Chen F., Cai Y., Zhang G., Wu F. (2011). Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. PubMed

Wang H., Gao B., Wang S., Fang J., Xue Y., Yang K. (2015). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO PubMed

Wang K., Liu Y., Song Z., Wang D., Qiu W. (2019). Chelator complexes enhanced PubMed DOI

Wang S., Liu J. (2014). The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by PubMed DOI

Wen E., Yang X., Chen H., Shaheen S. M., Sarkar B., Xu S., et al. (2020). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. PubMed DOI

World Health Organization [WHO] (2007).

Wu F., Zhang G., Dominy P., Wu H., Bachir D. M. (2007). Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. PubMed

Wiebe K., Harris N., Faris J., Clarke J., Knox R. E., Taylor G. J., et al. (2010). Targeted mapping of Cdu1-B, a major locus regulating grain cadmium concentration in durum wheat ( PubMed DOI

Wodala B., Eitel G., Gyula T., Ördög A., Horváth F. (2012). Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P 700 absorbance in pea leaves. DOI

Wu B., He T., Wang Z., Qiao S., Wang Y., Xu F., et al. (2020). Insight into the mechanisms of plant growth promoting strain SNB6 on enhancing the phytoextraction in cadmium contaminated soil. PubMed DOI

Wu D., Sato K., Ma J. F. (2015). Genome-wide association mapping of cadmium accumulation in different organs of barley. PubMed DOI

Wu Z., Wu W., Zhou S., Wu S. (2016). Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in pakchoi ( DOI

Xiao R., Wang P., Mi S., Ali A., Liu X., Li Y., et al. (2019). Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. PubMed DOI

Xie Y., Su L., He Z., Zhang J., Tang Y. (2021). Selenium inhibits cadmium absorption and improves yield and quality of cherry tomato ( DOI

Xu D., Chen Z., Sun K., Yan D., Kang M., Zhao Y. (2013). Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato ( PubMed DOI

Xu S. S., Lin S. Z., Lai Z. X. (2015). Cadmium impairs iron homeostasis in DOI

Xu W., Li Y., He J., Ma Q., Zhang X., Chen G., et al. (2010). Cd uptake in rice cultivars treated with organic acids and EDTA. PubMed

Xue D., Chen M., Zhang G. (2009). Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice ( DOI

Xue Z. C., Gao H. Y., Zhang L. T. (2013). Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. DOI

Yang P., Zhou X. F., Wang L. L., Li Q. S., Zhou T., Chen Y. K., et al. (2018). Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. PubMed DOI PMC

Yang Y., Ge Y., Zeng H., Zhou X., Peng L., Zeng Q. (2017). Phytoextraction of cadmium contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. PubMed DOI PMC

Yang Y., Xiong J., Tao L., Cao Z., Tang W., Zhang J., et al. (2020). Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. PubMed DOI

Yan L., Riaz M., Wu X., Du C., Liu Y., Lv B., et al. (2018). Boron inhibits aluminuminduced toxicity to citrus by stimulating antioxidant enzyme activity. PubMed DOI

Yao P., Zhou H., Li X., Wei L., Wang J., Zhang S., et al. (2021). Effect of biochar on the accumulation and distribution of cadmium in tobacco (Yunyan 87) at different developmental stages. PubMed DOI

Ying R. R., Qiu R. L., Tang Y. T., Hu P. J., Qiu H., Chen H. R., et al. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator PubMed DOI

Younis U., Malik S. A., Rizwan M., Qayyum M. F., Ok Y. S., Shah M. H. R., et al. (2016). Biochar enhances the cadmium tolerance in spinach ( PubMed DOI

Yousaf B., Liu G., Wang R., Zia-ur-Rehman M., Rizwan M. S., Imtiaz M., et al. (2016). Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. DOI

Yousaf M. T. B., Nawaz M. F., Khawaja H. F., Gul S., Ali S., Ahmad I., et al. (2019). Ecophysiological response of early stage DOI

Yu H. Y., Liu C., Zhu J., Li F., Deng D. M., Wang Q., et al. (2016). Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. PubMed DOI

Yu L., Gao R., Qinghua S., Wang X., Wei M., Yang F. (2013). Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber.

Yu R., Li D., Du X., Xia S., Liu C., Shi G. (2017). Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pakchoi ( PubMed DOI PMC

Yuan L., Yang S., Liu B., Zhang M., Wu K. (2012). Molecular characterization of a rice metal tolerance protein, OsMTP1. PubMed DOI

Yuan P., Wang J., Pan Y., Shen B., Wu C. (2019). Review of biochar for the management of contaminated soil: preparation, application and prospect. PubMed DOI

Zaheer I. E., Ali S., Muhammad R., Farid M., Shakoor M. B., Gill R. A., et al. (2015). Citric acid assisted phytoremediation of copper by PubMed DOI

Zainab N., Din B. U., Javed M. T., Afridi M. S., Mukhtar T., Kamran M. A., et al. (2020). Deciphering metal toxicity responses of flax ( PubMed DOI

Zawoznik M. S., Groppa M. D., Tomaro M. L., Benavides M. P. (2007). Endogenous salicylic acid potentiates cadmium-induced oxidative stress in DOI

Zeeshan N., Nasir A. A., Haider F. U., Naveed K., Naseer S., Murtaza G. (2021). Risk assessment of trace metals deposition and growth of DOI

Zhan F., Li B., Jiang M., Yue X., He Y., Xia Y., et al. (2018). Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. PubMed DOI

Zhang C., Yu Z. G., Zeng G. M., Jiang M., Yang Z. Z., Cui F., et al. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. PubMed DOI

Zhang C. J., Chen L., Shi D. W., Chen G. X., Lu C. G., Wang P., et al. (2007). Characteristics of ribulose-1, 5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. DOI

Zhang F., Liu M., Li Y., Che Y., Xiao Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of PubMed DOI

Zhang G., Fukami M., Sekimoto H. (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. DOI

Zhang L., Gao C., Chen C., Zhang W., Huang X. Y., Zhao F. J. (2020). Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. PubMed DOI

Zhang M., Liu X., Yuan L., Wu K., Duan J., Wang X., et al. (2012). Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. PubMed DOI

Zhang S., Quan L., Zhu Y., Yan J., He X., Zhang J., et al. (2020). Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil. PubMed DOI

Zhao F. J., Ma Y., Zhu Y. G., Tang Z., McGrath S. P. (2015). Soil contamination in China: current status and mitigation strategies. PubMed DOI

Zhao J., Yang W., Zhang S., Yang T., Liu Q., Dong J., et al. (2018). Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. PubMed DOI PMC

Zhao K., Liu X., Xu J., Selim H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. PubMed DOI

Zhen H., Jia L., Huang C., Qiao Y., Li J., Li H., et al. (2020). Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. PubMed DOI

Zhou C., Zhu L., Ma Z., Wang J. (2017). Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. PubMed DOI PMC

Zhu W., Du W., Shen X., Zhang H., Ding Y. (2017). Comparative adsorption of Pb and Cd by cow manure and its vermicompost. PubMed DOI

Zhu Y., Wang H., Lv X., Zhang Y., Wang W. (2020). Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the ant oxidative defense system. PubMed DOI PMC

Zhuo F., Zhang X. F., Lei L. L., Yan T. X., Lu R. R., Hu Z. H., et al. (2020). The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in PubMed DOI

Zia-ur-Rehman M., Zafar M., Waris A. A., Rizwan M., Ali S., Sabir M., et al. (2020). Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. PubMed DOI

Zivkovic L. I., Rikalovic M., Cvijovic G. G., Kazazic S., Vrvic M., Brceski I., et al. (2018). Cadmium specific proteomic responses of a highly resistant PubMed PMC

Zouari M., Elloumi N., Ahmed C. B., Delmail D., Rouina B. B., Abdallah F. B., et al. (2016). Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm ( DOI

Zulfiqar U., Ayub A., Hussain S., Waraich E. A., El-Esawi M. A., Ishfaq M., et al. (2021). Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. DOI

Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., et al. (2019). Lead toxicity in plants: impacts and remediation. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...