Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36160996
PubMed Central
PMC9493347
DOI
10.3389/fpls.2022.983830
Knihovny.cz E-zdroje
- Klíčová slova
- biochar, cadmium toxicity, crop growth, plant physiology, soil pollution,
- Publikační typ
- časopisecké články MeSH
Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.
Centre of Genomics and Biotechnology Fujian Agriculture and Forestry University Fuzhou China
College of Resources and Environmental Sciences Gansu Agricultural University Lanzhou China
Department of Agronomy University of Agriculture Faisalabad Pakistan
Institute for Environmental Studies Faculty of Science Charles University Prague Prague Czechia
Institute of Soil and Environmental Sciences University of Agriculture Faisalabad Pakistan
Zobrazit více v PubMed
Abbas T., Rizwan M., Ali S., Adrees M., Mahmood A., Zia-ur-Rehman M., et al. . (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf. 148, 825–833. 10.1016/j.ecoenv.2017.11.063 PubMed DOI
Abbas T., Rizwan M., Ali S., Adrees M., Zia-ur-Rehman M., Qayyum M. F., et al. . (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. 1–13. 10.1007/s11356-017-8987-4 PubMed DOI
Aebi H. (1984). Catalase in vitro. Meth. Enzymol. 105, 121–126. 10.1016/S0076-6879(84)05016-3 PubMed DOI
Ahmad I., Akhtar M. J., Zahir Z. A., Naveed M., Mitter B., Sessitsch A., et al. . (2014). Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. 21, 11054–11065. 10.1007/s11356-014-3010-9 PubMed DOI
Ahmad M., Rajapaksha A. U., Lim J. E., Zhang M., Bolan N., Mohan D., et al. . (2013). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99, 19–33. 10.1016/j.chemosphere.2013.10.071 PubMed DOI
Bashir S., Zhu J., Fu Q., Hu H. (2017). Cadmium mobility, uptake, and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite, and rock phosphate as amendments. Chemosphere. 11, 162. 10.1016/j.chemosphere.2017.11.162 PubMed DOI
Chellaiah E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a mini-review. Appl. Water Sci. 8, 154. 10.1007/s13201-018-0796-5 DOI
Chen B., Stein A. F., Castell N., Gonzalez-Castanedo Y., Sanchez-Dela-Campa A. M., De-La-Rosa J. D., et al. . (2016). Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Sci. Total Environ. 539, 17–25. 10.1016/j.scitotenv.2015.08.117 PubMed DOI
Chinese Soil Taxonomy Cooperative Research Group . (1995). Chinese Soil Taxonomy (Revised Proposal). Academic Sinica/Beijing: Institute of Soil Science/Chinese Agricultural Science and Technology Press.
Cui H., Fan Y., Fang G., Zhang H., Su B., Zhou J., et al. . (2016). Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: a five-year field experiment. Ecotoxicol. Environ. Saf. 134, 148–155. 10.1016/j.ecoenv.2016.07.005 PubMed DOI
Ding Y., Liu Y., Liu S., Li Z., Tan X., Huang X., et al. . (2016). Biochar to improve soil fertility. a review. Agron. Sustain. Dev. 36, 36. 10.1007/s13593-016-0372-z DOI
Dionisio-Sese M. L., Tobita S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9. 10.1016/S0168-9452(98)00025-9 DOI
Dume B., Berecha G., Tulu S. (2015). Characterization of biochar produced at different temperatures and its effect on acidic Nitosol of Jimma, southwest Ethiopia. Int. J. Plant Soil Sci. 10, 63–73. 10.3923/ijss.2015.63.73 DOI
Ejaz M., Zhao B., Wang X., Bashir S., Haider F. U., Aslam Z., et al. . (2021). Isolation and characterization of oil degrading Enterobacter sp. from naturally hydrocarbon contaminated soils and their potential against bioremediation of crude oil. Appl. Sci. 11, 3504. 10.3390/app11083504 DOI
El-Naggar A., M-Lee H., Hur J., Lee Y. H., Igalavithana A. D., Shaheen S. M., et al. . (2020). Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Sci. Total Environ. 698, 134112. 10.1016/j.scitotenv.2019.134112 PubMed DOI
FAO . (1990). Soil map of the world: revised legend. World soil resources report 60. Rome: Food and Agriculture Organization of the United Nations.
Farhangi-Abriz S., Torabian S. (2016). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety. 137, 64–70. 10.1016/j.ecoenv.2016.11.029 PubMed DOI
Farooq M., Ullah A., Usman M., Siddique K. H. M. (2020). Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere. 260, 127652. 10.1016/j.chemosphere.2020.127652 PubMed DOI
Gallego S. M., Pena L. B., Barcia R. A., Azpilicueta C. E., Iannone M. F., Rosales E. P., et al. . (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46. 10.1016/j.envexpbot.2012.04.006 PubMed DOI
Haider F. U., Coulter J. A., Cheema S. A., Farooq M., Wu J., Zhang R., et al. . (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicol. Environ. Saf. 214, 112112. 10.1016/j.ecoenv.2021.112112 PubMed DOI
Haider F. U., Virk A. L., Rehmani M. I. A., Skalicky M., Ata-Ul-Karim S. T., Ahmad N., et al. . (2022a). Combined application of thiourea and biochar improves maize growth and mitigates cadmium (Cd) bioavailability in Cd-contaminated soil. Front. Plant Sci. 2022, 3194. 10.3389/fpls.2021.809322 PubMed DOI PMC
Haider F. U., Coulter J. A., Liqun C., Hussain S., Cheema S. A., Wu J., et al. . (2022b). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere. 32, 107–130. 10.1016/S1002-0160(20)60094-7 DOI
Haider F. U., Farooq M., Hussain S., Cheema S. A., Ain N. U., Virk A. L., et al. . (2022c). Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production; update. Ecotoxicol. Environ. Saf. 230, 113165. 10.1016/j.ecoenv.2022.113165 PubMed DOI
Hammer E. C., Forstreuter M., Rillig M. C., Kohler J. (2015). Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl. Soil Ecol. 96, 114–121. 10.1016/j.apsoil.2015.07.014 DOI
Han Y., Douds D. D., Boateng A. A. (2016). Effect of biochar soil-amendments on Allium porrum growth and arbuscular mycorrhizal fungus colonization. J. Plant Nutr. 39, 1654–1662. 10.1080/01904167.2015.1089903 DOI
Heath R. L., Packer L. (1968). Photoperoxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem. Biophysiol. 125, 189–198. 10.1016/0003-9861(68)90654-1 PubMed DOI
Hussain B., Ashraf M. N., Rahman S. U., Abbas A., Lia J., Farooq M., et al. . (2021). Cadmium stress in paddy fields: EFFECTS of soil conditions and remediation strategies. Sci. Total Environ. 754, 142188. 10.1016/j.scitotenv.2020.142188 PubMed DOI
Jackson M. L. (1962). Soil chemical analysis. London: Constable and Co. Ltd. p. 219.
Lata S., Kaur H. P., Mishra T. (2019). Cadmium bioremediation: a review. Int. J. Pharm. Sci. 10, 4120–4128. 10.13040/IJPSR.0975-8232 DOI
Liaquat F., Munis M. F. H., Haroon U., Arif S., Saqib S., Zaman W., et al. . (2020). Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of Nanjing, China. Biology. 9, 469. 10.3390/biology9120469 PubMed DOI PMC
Liu Y., Shen L., Lin H., Yu W., Xu Y., Li R., et al. . (2020). novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. J. Memb. Sci. 612, 118378. 10.1016/j.memsci.2020.118378 DOI
Mahajan P., Kaushal J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. Hindawi J. Toxicol. 4864365–81. 10.1155/2018/4864365 PubMed DOI PMC
Mehmood S., Akmal M., Imtiaz M., Bashir S., Rizwan M., Shakeel Q., et al. . (2017). Differential effect of wheat straw and sugarcane derived biochars on microbial and enzymatic activities of rain-fed soil. J. Environ. Agric. Sci. 10,64–70.
Mohsenzadeh F., Shahrokhi F. (2014). Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. J. Environ. Health Sci. Eng. 12, 102. 10.1186/2052-336X-12-102 PubMed DOI PMC
Nazli F., Mustafa A., Ahmad M., Hussain A., Jamil M., Wang X., et al. . (2020). Review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability. 12, 9056. 10.3390/su12219056 DOI
Qianqian M., Haider F. U., Farooq M., Adeel M., Shakoor N., Jun W., et al. . (2022). Selenium treated foliage and biochar treated soil for improved lettuce (Lactuca sativa L.) growth in Cd-polluted soil. J. Clean. Prod. 335, 130267. 10.1016/j.jclepro.2021.130267 DOI
Qin S., Liu H., Nie Z., Rengel Z., Gao W., Li C., et al. . (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere. 30, 168–180. 10.1016/S1002-0160(20)60002-9 DOI
Radhakrishnan R., Hashem A., Abd-Allah E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8, 667. 10.3389/fphys.2017.00667 PubMed DOI PMC
Rasul F., Gull U., Rahman M., Hussain Q., Chaudhary H. J., Matloob A., et al. . (2016). Biochar: an emerging technology for climate change mitigation. J. Agric. Environ. Sci. 9, 37–43. 10.1201/9781315166063-7 DOI
Rehman M. Z., Rizwan M., Ghafoor A., Naeem A., Ali S., Sabir M., et al. . (2016). Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ. Sci. Pollut. Res. 1–10. 10.1007/s11356-015-4883-y PubMed DOI
Rizwan M., Ali S., Abbas T., Adrees M., Zia-ur-Rehman M., Ibrahim M. (2018). Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Env. Manag. 206, 676–683. 10.1016/j.jenvman.2017.10.035 PubMed DOI
Ryan P. R., Delhaize E., Jones D. J. (2001). Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560. 10.1146/annurev.arplant.52.1.527 PubMed DOI
Sabae S. Z., Hazaa M., Hallim S. A., Awny N. M., Daboor S. M. (2006). Bioremediation of Zn+2, Cu+2 and Fe+2 using Bacillus subtilis D215 and PseudomonasputidabiovarAD225. Biosci. Res. 3, 189–204.
Shaaban M., Van-Zwieten L., Bashir S., Younas A., Núñez-Delgado A., Chhajro M. A., et al. . (2018). Concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manage. (2018) 228:429–440. 10.1016/j.jenvman.2018.09.006 PubMed DOI
Uzoma K. C., Inoue M., Andry H., Fujimaki H., Zahoor A., Nishihara E., et al. . (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management. 27, 205–212. 10.1111/j.1475-2743.2011.00340.x DOI
Xie Y., He N., Wei M., Wen T., Wang X., Liu H., et al. . (2021). Cadmium biosorption and mechanism investigation using a novel Bacillus subtilis KC6 isolated from pyrite mine. J. Clean. Prod. 312, 127749. 10.1016/j.jclepro.2021.127749 DOI
Yaghoubian Y., Siadat S. A., Telavat M. R. M., Pirdashti H., Yaghoubia I. (2019). Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environ. Sci. Pollut. Res. 1–10. 10.1007/s11356-019-04255-6 PubMed DOI
Younis U., Malik S. A., Rizwan M., Qayyum M. F., Ok Y. S., Shah M. H. R., et al. . (2016). Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ. Sci. Pollut. Res. 23, 21385–21394. 10.1007/s11356-016-7344-3 PubMed DOI
Yuan P., Wang J., Pan Y., Shen B., Wu C. (2018). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 12 400. 10.1016/j.scitotenv.2018.12.400 PubMed DOI
Zeeshan N., Nasir A. A., Haider F. U., Naveed K., Naseer S., Murtaza G., et al. . (2021). Risk assessment of trace metals deposition and effects on the growth of Abelmochus esculentus L. by industrially polluted soils of Faisalabad, Pakistan. Pak. J. Agric. Sci. 58, 881–889. 10.21162/PAKJAS/21.409 DOI
Zhang F., Liu M., Li Y., Che Y., Xiao Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655, 1150–1158. 10.1016/j.scitotenv.2018.11.317 PubMed DOI
Zhang J., Huang B., Chen L., Li Y., Li W., Luo Z., et al. . (2018). Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chem. Speciat. Bioavailab. 30, 57–67. 10.1080/09542299.2018.1487774 DOI
Zhang J., Kirkham M. B. (1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35, 785–791. 10.1093/oxfordjournals.pcp.a078658 DOI
Zhang X. Z. (1992). “The measurement and mechanism of lipid peroxidation and SOD POD and CAT activities in biological system,” in Research methodology of crop physiology, Zhang X. Z.(ed). Beijing: Beijing Agriculture Press. p. 208–211.
Zhao X., Lin C., Rehmani M. I. A., Wang Q., Wang S., Hou P., et al. . (2013). Effect of nitric oxide on alleviating cadmium toxicity in rice (Oryza sativa L.). J. Integr. Agric. 12, 1540–1550. 10.1016/S2095-3119(13)60417-7 DOI
Zhou X., Qiao M., Su J. Q., Wang Y., Cao Z. H., Cheng W. D., et al. . (2019). Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. Sci. Total Environ. 649, 902–908. 10.1016/j.scitotenv.2018.08.368 PubMed DOI
Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., et al. . (2019). Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 250, 109557. 10.1016/j.jenvman.2019.109557 PubMed DOI
Zulfiqar U., Jiang W., Xiukang W., Hussain S., Ahmad M., Maqsood M. F., et al. . (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front. Plant Sci. 13, 773815. 10.3389/fpls.2022.773815 PubMed DOI PMC