-
Je něco špatně v tomto záznamu ?
Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate
P. Haniewicz, M. Abram, L. Nosek, J. Kirkpatrick, E. El-Mohsnawy, JDJ. Olmos, R. Kouřil, JM. Kargul,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1926 do Před 1 rokem
Open Access Digital Library
od 1926-01-01
PubMed
29187568
DOI
10.1104/pp.17.01022
Knihovny.cz E-zdroje
- MeSH
- biologická adaptace MeSH
- chlorofyl metabolismus MeSH
- cirkulární dichroismus MeSH
- fluorescenční spektrometrie MeSH
- fotosystém I - proteinový komplex chemie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- molekulární evoluce MeSH
- Rhodophyta chemie fyziologie MeSH
- sinice chemie fyziologie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- teplota MeSH
- zeaxanthiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The monomeric photosystem I-light-harvesting antenna complex I (PSI-LHCI) supercomplex from the extremophilic red alga Cyanidioschyzon merolae represents an intermediate evolutionary link between the cyanobacterial PSI reaction center and its green algal/higher plant counterpart. We show that the C. merolae PSI-LHCI supercomplex is characterized by robustness in various extreme conditions. By a combination of biochemical, spectroscopic, mass spectrometry, and electron microscopy/single particle analyses, we dissected three molecular mechanisms underlying the inherent robustness of the C. merolae PSI-LHCI supercomplex: (1) the accumulation of photoprotective zeaxanthin in the LHCI antenna and the PSI reaction center; (2) structural remodeling of the LHCI antenna and adjustment of the effective absorption cross section; and (3) dynamic readjustment of the stoichiometry of the two PSI-LHCI isomers and changes in the oligomeric state of the PSI-LHCI supercomplex, accompanied by dissociation of the PsaK core subunit. We show that the largest low light-treated C. merolae PSI-LHCI supercomplex can bind up to eight Lhcr antenna subunits, which are organized as two rows on the PsaF/PsaJ side of the core complex. Under our experimental conditions, we found no evidence of functional coupling of the phycobilisomes with the PSI-LHCI supercomplex purified from various light conditions, suggesting that the putative association of this antenna with the PSI supercomplex is absent or may be lost during the purification procedure.
Leibniz Institute on Aging Fritz Lipmann Institute 07745 Jena Germany
Solar Fuels Laboratory Center of New Technologies University of Warsaw 02 097 Warsaw Poland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19001065
- 003
- CZ-PrNML
- 005
- 20190111151158.0
- 007
- ta
- 008
- 190107s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1104/pp.17.01022 $2 doi
- 035 __
- $a (PubMed)29187568
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Haniewicz, Patrycja $u Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
- 245 10
- $a Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate / $c P. Haniewicz, M. Abram, L. Nosek, J. Kirkpatrick, E. El-Mohsnawy, JDJ. Olmos, R. Kouřil, JM. Kargul,
- 520 9_
- $a The monomeric photosystem I-light-harvesting antenna complex I (PSI-LHCI) supercomplex from the extremophilic red alga Cyanidioschyzon merolae represents an intermediate evolutionary link between the cyanobacterial PSI reaction center and its green algal/higher plant counterpart. We show that the C. merolae PSI-LHCI supercomplex is characterized by robustness in various extreme conditions. By a combination of biochemical, spectroscopic, mass spectrometry, and electron microscopy/single particle analyses, we dissected three molecular mechanisms underlying the inherent robustness of the C. merolae PSI-LHCI supercomplex: (1) the accumulation of photoprotective zeaxanthin in the LHCI antenna and the PSI reaction center; (2) structural remodeling of the LHCI antenna and adjustment of the effective absorption cross section; and (3) dynamic readjustment of the stoichiometry of the two PSI-LHCI isomers and changes in the oligomeric state of the PSI-LHCI supercomplex, accompanied by dissociation of the PsaK core subunit. We show that the largest low light-treated C. merolae PSI-LHCI supercomplex can bind up to eight Lhcr antenna subunits, which are organized as two rows on the PsaF/PsaJ side of the core complex. Under our experimental conditions, we found no evidence of functional coupling of the phycobilisomes with the PSI-LHCI supercomplex purified from various light conditions, suggesting that the putative association of this antenna with the PSI supercomplex is absent or may be lost during the purification procedure.
- 650 _2
- $a biologická adaptace $7 D000220
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a cirkulární dichroismus $7 D002942
- 650 _2
- $a sinice $x chemie $x fyziologie $7 D000458
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a světlosběrné proteinové komplexy $x chemie $x metabolismus $7 D045342
- 650 _2
- $a fotosystém I - proteinový komplex $x chemie $x metabolismus $7 D045331
- 650 _2
- $a Rhodophyta $x chemie $x fyziologie $7 D000461
- 650 _2
- $a fluorescenční spektrometrie $7 D013050
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a zeaxanthiny $x metabolismus $7 D065146
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Abram, Mateusz $u Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland. Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
- 700 1_
- $a Nosek, Lukáš $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic.
- 700 1_
- $a Kirkpatrick, Joanna $u Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany.
- 700 1_
- $a El-Mohsnawy, Eithar $u Botany Department, Faculty of Science, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt. Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University, D-44780 Bochum, Germany.
- 700 1_
- $a Olmos, Julian D Janna $u Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland. Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
- 700 1_
- $a Kouřil, Roman $u Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic.
- 700 1_
- $a Kargul, Joanna M $u Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland j.kargul@uw.edu.pl.
- 773 0_
- $w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 176, č. 2 (2018), s. 1433-1451
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29187568 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190111151403 $b ABA008
- 999 __
- $a ok $b bmc $g 1363989 $s 1039188
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 176 $c 2 $d 1433-1451 $e 20171129 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
- LZP __
- $a Pubmed-20190107