Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29187568
PubMed Central
PMC5813541
DOI
10.1104/pp.17.01022
PII: pp.17.01022
Knihovny.cz E-zdroje
- MeSH
- biologická adaptace MeSH
- chlorofyl metabolismus MeSH
- cirkulární dichroismus MeSH
- fluorescenční spektrometrie MeSH
- fotosystém I - proteinový komplex chemie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- molekulární evoluce MeSH
- Rhodophyta chemie fyziologie MeSH
- sinice chemie fyziologie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- teplota MeSH
- zeaxanthiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém I - proteinový komplex MeSH
- světlosběrné proteinové komplexy MeSH
- zeaxanthiny MeSH
The monomeric photosystem I-light-harvesting antenna complex I (PSI-LHCI) supercomplex from the extremophilic red alga Cyanidioschyzon merolae represents an intermediate evolutionary link between the cyanobacterial PSI reaction center and its green algal/higher plant counterpart. We show that the C. merolae PSI-LHCI supercomplex is characterized by robustness in various extreme conditions. By a combination of biochemical, spectroscopic, mass spectrometry, and electron microscopy/single particle analyses, we dissected three molecular mechanisms underlying the inherent robustness of the C. merolae PSI-LHCI supercomplex: (1) the accumulation of photoprotective zeaxanthin in the LHCI antenna and the PSI reaction center; (2) structural remodeling of the LHCI antenna and adjustment of the effective absorption cross section; and (3) dynamic readjustment of the stoichiometry of the two PSI-LHCI isomers and changes in the oligomeric state of the PSI-LHCI supercomplex, accompanied by dissociation of the PsaK core subunit. We show that the largest low light-treated C. merolae PSI-LHCI supercomplex can bind up to eight Lhcr antenna subunits, which are organized as two rows on the PsaF/PsaJ side of the core complex. Under our experimental conditions, we found no evidence of functional coupling of the phycobilisomes with the PSI-LHCI supercomplex purified from various light conditions, suggesting that the putative association of this antenna with the PSI supercomplex is absent or may be lost during the purification procedure.
Botany Department Faculty of Science Kafrelsheikh University 33516 Kafr El Sheikh Egypt
Faculty of Biology University of Warsaw 02 096 Warsaw Poland
Leibniz Institute on Aging Fritz Lipmann Institute 07745 Jena Germany
Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University D 44780 Bochum Germany
Solar Fuels Laboratory Center of New Technologies University of Warsaw 02 097 Warsaw Poland
Zobrazit více v PubMed
Adachi H, Umena Y, Enami I, Henmi T, Kamiya N, Shen JR (2009) Towards structural elucidation of eukaryotic photosystem II: purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga. Biochim Biophys Acta 1787: 121–128 PubMed
Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, Han G, Kuang T, Liu Z, et al. (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291: 5676–5687 PubMed PMC
Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123: 1047–1056 PubMed PMC
Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285: 3478–3486 PubMed PMC
Babcock GT, Barry BA, Debus RJ, Hoganson CW, Atamian M, McIntosh L, Sithole I, Yocum CF (1989) Water oxidation in photosystem II: from radical chemistry to multielectron chemistry. Biochemistry 28: 9557–9565 PubMed
Ballottari M, Alcocer MJP, D’Andrea C, Viola D, Ahn TK, Petrozza A, Polli D, Fleming GR, Cerullo G, Bassi R (2014) Regulation of photosystem I light harvesting by zeaxanthin. Proc Natl Acad Sci USA 111: E2431–E2438 PubMed PMC
Barber J. (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80: 137–155 PubMed
Boekema EJ, Folea M, Kouřil R (2009) Single particle electron microscopy. Photosynth Res 102: 189–196 PubMed PMC
Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta 1807: 864–877 PubMed
Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62: 886–897 PubMed
Castenholz RW. (1988) Culturing methods for cyanobacteria. Methods Enzymol 167: 68–93
Chitnis VP, Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334 PubMed
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372 PubMed
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794–1805 PubMed
Croce R, Dorra D, Holzwarth AR, Jennings RC (2000) Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry 39: 6341–6348 PubMed
Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116: 153–166 PubMed PMC
Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC (1996) Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry 35: 8572–8579 PubMed
Croce R, Zucchelli G, Garlaschi FM, Jennings RC (1998) A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochemistry 37: 17355–17360 PubMed
Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91: 1179–1187 PubMed PMC
Cunningham FX Jr, Lee H, Gantt E (2007) Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell 6: 533–545 PubMed PMC
DeLano WL. (2002) The PyMOL Molecular Graphics System. Delano Scientific, San Carlos.
Drop B, Webber-Birungi M, Fusetti F, Kouřil R, Redding KE, Boekema EJ, Croce R (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286: 44878–44887 PubMed PMC
Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4: 207–214 PubMed
El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M (2010) Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49: 4740–4751 PubMed
Engelmann E, Zucchelli G, Casazza AP, Brogioli D, Garlaschi FM, Jennings RC (2006) Influence of the photosystem I-light harvesting complex I antenna domains on fluorescence decay. Biochemistry 45: 6947–6955 PubMed
Farci D, Kirkpatrick J, Piano D (2017) A new procedure for fast soft staining of BN-PAGEs on photosynthetic complexes. Electrophoresis 38: 441–446 PubMed
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838 PubMed
Gardian Z, Bumba L, Schrofel A, Herbstova M, Nebesarova J, Vacha F (2007) Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767: 725–731 PubMed
Gibasiewicz K, Szrajner A, Ihalainen JA, Germano M, Dekker JP, van Grondelle R (2005) Characterization of low-energy chlorophylls in the PSI-LHCI supercomplex from Chlamydomonas reinhardtii: a site-selective fluorescence study. J Phys Chem B 109: 21180–21186 PubMed
Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507: 80–99 PubMed
Gordiichuk PI, Wetzelaer GJAH, Rimmerman D, Gruszka A, de Vries JW, Saller M, Gautier DA, Catarci S, Pesce D, Richter S, et al. (2014) Solid-state biophotovoltaic cells containing photosystem I. Adv Mater 26: 4863–4869 PubMed
Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740: 108–115 PubMed
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16: 334–342 PubMed
Havaux M, Dall’osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145: 1506–1520 PubMed PMC
Ihalainen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Scheller HV, Dekker JP (2002) Pigment organization and energy transfer dynamics in isolated photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Biophys J 83: 2190–2201 PubMed PMC
Iwuchukwu IJ, Vaughn M, Myers N, O’Neill H, Frymier P, Bruce BD (2010) Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nat Nanotechnol 5: 73–79 PubMed
Janna Olmos JD, Kargul J (2015) A quest for the artificial leaf. Int J Biochem Cell Biol 66: 37–44 PubMed
Jennings RC, Zucchelli G, Croce R, Garlaschi FM (2003) The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. Biochim Biophys Acta 1557: 91–98 PubMed
Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767: 335–352 PubMed
Johnson MP, Havaux M, Triantaphylidès C, Ksas B, Pascal AA, Robert B, Davison PA, Ruban AV, Horton P (2007) Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J Biol Chem 282: 22605–22618 PubMed
Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411: 909–917 PubMed
Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103 PubMed PMC
Kargul J, Barber J (2011) Structure and function of photosynthetic reaction centres. In Wydrzynski TJ, Hillier W, eds, Molecular Solar Fuels. Royal Society of Chemistry, Cambridge, UK, pp 107–142
Kargul J, Janna Olmos JD, Krupnik T (2012) Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J Plant Physiol 169: 1639–1653 PubMed
Kargul J, Nield J, Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I-photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii: insights into light harvesting for PSI. J Biol Chem 278: 16135–16141 PubMed
Klukas O, Schubert WD, Jordan P, Krauss N, Fromme P, Witt HT, Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360 PubMed
Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3: 4055–4061 PubMed
Krupnik T, Kotabová E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kaňa R, Boekema EJ, Kargul J (2013) A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 288: 23529–23542 PubMed PMC
Kuhl H, Kruip J, Seidler A, Krieger-Liszkay A, Bunker M, Bald D, Scheidig AJ, Rögner M (2000) Towards structural determination of the water-splitting enzyme: purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J Biol Chem 275: 20652–20659 PubMed
Kuroiwa T. (1998) The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. BioEssays 20: 344–354
Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181: 1–41 PubMed
León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22: 45–52 PubMed
Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044 PubMed
Marquardt J, Lutz B, Wans S, Rhiel E, Krumbein WE (2001) The gene family coding for the light-harvesting polypeptides of photosystem I of the red alga Galdieria sulphuraria. Photosynth Res 68: 121–130 PubMed
Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657 PubMed
Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat Plants 3: 17014. PubMed
Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 4: e07433. PubMed PMC
Melkozernov AN, Kargul J, Lin S, Barber J, Blankenship RE (2004) Energy coupling in the PSI-LHCI supercomplex from the green alga Chlamydomonas reinhardtii. J Phys Chem B 108: 10547–10555
Melkozernov AN, Kargul J, Lin S, Barber J, Blankenship RE (2005) Spectral and kinetic analysis of the energy coupling in the PSI-LHCI supercomplex from the green alga Chlamydomonas reinhardtii at 77 K. Photosynth Res 86: 203–215 PubMed
Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang S (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep 2: 234. PubMed PMC
Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45: 667–671 PubMed
Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15: 655–665 PubMed PMC
Morosinotto T, Mozzo M, Bassi R, Croce R (2005) Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I. J Biol Chem 280: 20612–20619 PubMed
Nikolova D, Weber D, Scholz M, Bald T, Scharsack JP, Hippler M (2017) Temperature-induced remodeling of the photosynthetic machinery tunes photosynthesis in the thermophilic alga Cyanidioschyzon merolae. Plant Physiol 174: 35–46 PubMed PMC
Nilsson H, Krupnik T, Kargul J, Messinger J (2014) Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae. Biochim Biophys Acta 1837: 1257–1262 PubMed
Nishida K, Takahara M, Miyagishima SY, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci USA 100: 2146–2151 PubMed PMC
Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56: 485–497 PubMed
Ocakoglu K, Krupnik T, van den Bosch B, Harputlu E, Gullo MP, Olmos JDJ, Yildirimcan S, Gupta RK, Yakuphanoglu F, Barbieri A, et al. (2014) Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater 24: 7467–7477
Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen JR, Enami I (2003) Extrinsic proteins of photosystem II: an intermediate member of PsbQ protein family in red algal PS II. Eur J Biochem 270: 4156–4163 PubMed
Olmos JDJ, Becquet P, Gront D, Sar J, Dąbrowski A, Gawlik G, Teodorczyk M, Pawlak D, Kargul J (2017) Biofunctionalisation of p-doped silicon with cytochrome c553 minimises charge recombination and enhances photovoltaic performance of the all-solid-state photosystem I-based biophotoelectrode. RSC Advances 7: 47854–47866
Oren A, Kuhl M, Karsten U (1996) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Oceanogr Lit Rev 6: 593
Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975: 384–394
Qin X, Suga M, Kuang T, Shen JR (2015) Photosynthesis: structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348: 989–995 PubMed
Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In Seckbach J, Chapman D, eds, Red Algae in the Genomic Age. Springer, Dordrecht, The Netherlands, pp 409–426
Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC (1999) The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth Res 60: 209–215
Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199: 223–231 PubMed
Scheres SHW. (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180: 519–530 PubMed PMC
Schlodder E, Shubin VV, El-Mohsnawy E, Roegner M, Karapetyan NV (2007) Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus. Biochim Biophys Acta 1767: 732–741 PubMed
Schluchter WM, Shen G, Zhao J, Bryant DA (1996) Characterization of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria. Photochem Photobiol 64: 53–66 PubMed
Snellenburg JJ, Dekker JP, van Grondelle R, van Stokkum IHM (2013) Functional compartmental modeling of the photosystems in the thylakoid membrane at 77 K. J Phys Chem B 117: 11363–11371 PubMed
Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, et al. (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond x-ray pulses. Nature 517: 99–103 PubMed
Szalkowski M, Janna Olmos JD, Buczyńska D, Maćkowski S, Kowalska D, Kargul J (2017) Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires. Nanoscale 9: 10475–10486 PubMed
Tan S, Ducret A, Aebersold R, Gantt E (1997) Red algal LHC I genes have similarities with both Chl a/b- and a/c-binding proteins: a 21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53: 129–140
Thangaraj B, Jolley CC, Sarrou I, Bultema JB, Greyslak J, Whitelegge JP, Lin S, Kouřil R, Subramanyam R, Boekema EJ, et al. (2011) Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys J 100: 135–143 PubMed PMC
Tian L, Liu Z, Wang F, Shen L, Chen J, Chang L, Zhao S, Han G, Wang W, Kuang T, et al. (2017a) Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. Photosynth Res 133: 201–214 PubMed
Tian L, Xu P, Chukhutsina VU, Holzwarth AR, Croce R (2017b) Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA 114: 4828–4832 PubMed PMC
Ueno Y, Aikawa S, Niwa K, Abe T, Murakami A, Kondo A, Akimoto S (2017) Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. Photosynth Res 133: 235–243 PubMed
Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60 PubMed
Utschig LM, Silver SC, Mulfort KL, Tiede DM (2011) Nature-driven photochemistry for catalytic solar hydrogen production: a photosystem I-transition metal catalyst hybrid. J Am Chem Soc 133: 16334–16337 PubMed
Vanselow C, Weber APM, Krause K, Fromme P (2009) Genetic analysis of the photosystem I subunits from the red alga, Galdieria sulphuraria. Biochim Biophys Acta 1787: 46–59 PubMed
Vernon LP, Cardon S (1982) Direct spectrophotometric measurement of photosystem I and photosystem II activities of photosynthetic membrane preparations from Cyanophora paradoxa, Phormidium laminosum, and spinach. Plant Physiol 70: 442–445 PubMed PMC
Werst M, Jia Y, Mets L, Fleming GR (1992) Energy transfer and trapping in the photosystem I core antenna: a temperature study. Biophys J 61: 868–878 PubMed PMC
Wientjes E, Roest G, Croce R (2012) From red to blue to far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? Biochim Biophys Acta 1817: 711–717 PubMed
Wolfe GR, Cunningham FX, Durnfordt D, Green BR, Gantt E (1994a) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568
Wolfe GR, Cunningham FX, Grabowski B, Gantt E (1994b) Isolation and characterization of photosystems I and II from the red alga Porphyridium cruentum. Biochim Biophys Acta 1188: 357–366
Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807: 847–853 PubMed
Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743 PubMed
Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins