• This record comes from PubMed

Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress

. 2024 May 03 ; 24 (1) : 360. [epub] 20240503

Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
202442924814811233 the 2024 Guizhou Basic Research Plan (Natural Science) project, China
202442924814811233 the 2024 Guizhou Basic Research Plan (Natural Science) project, China
202442924814811233 the 2024 Guizhou Basic Research Plan (Natural Science) project, China
31560107 the National Natural Science Foundation of China
31560107 the National Natural Science Foundation of China

Links

PubMed 38698342
PubMed Central PMC11067083
DOI 10.1186/s12870-024-05076-7
PII: 10.1186/s12870-024-05076-7
Knihovny.cz E-resources

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.

See more in PubMed

Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P, Jansson S. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness. Plant J. 2003;35(3):350–361. doi: 10.1046/j.1365-313X.2003.01811.x. PubMed DOI

Bhaduri AM, Fulekar MH. Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Bio/Technol. 2012;11:55–69. doi: 10.1007/s11157-011-9251-x. DOI

Chen JH, Chen ST, He NY, Wang QL, Zhao Y, Gao W, Guo FQ. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat Plants. 2020;6(5):570–580. doi: 10.1038/s41477-020-0629-z. PubMed DOI

Chen Z, Hu B, Hu S, Vogel-Mikuš K, Pongrac P, Vymazal J. Imobilization of chromium enhanced by arbuscular mycorrhizal fungi in semi-aquatic habitats with biochar addition. J Hazard Mater. 2022;439:129562. doi: 10.1016/j.jhazmat.2022.129562. PubMed DOI

Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–861. doi: 10.1038/nrm1746. PubMed DOI

Cui J, Liu T, Li Y, Li F. Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes. Sci Total Environ. 2018;644602:610. PubMed

DalCorso G, Farinati S, Furini A. Regulatory networks of cadmium stress in plants. Plant Signal Behav. 2010;5:663–667. doi: 10.4161/psb.5.6.11425. PubMed DOI PMC

Damkjaer JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell. 2009;21(10):3245–3256. doi: 10.1105/tpc.108.064006. PubMed DOI PMC

Feng R, Wei C, Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot. 2013;87:58–68. doi: 10.1016/j.envexpbot.2012.09.002. DOI

Feng R, Liao G, Guo J, Wang R, Xu Y, Ding Y, Mo L, Fan Z, Li N. Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environ Exp Bot. 2016;122:29–38. doi: 10.1016/j.envexpbot.2015.08.007. DOI

Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z, Ni R, Zheng S. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J Hazard Mater. 2021;402:123570. doi: 10.1016/j.jhazmat.2020.123570. PubMed DOI

Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ. 2018;631–632:1100–1108. doi: 10.1016/j.scitotenv.2018.03.047. PubMed DOI

Gupta M, Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci. 2017;7:2074. doi: 10.3389/fpls.2016.02074. PubMed DOI PMC

Hasanuzzaman M, Nahar K, García-Caparrós P, Parvin K, Zulfiqar F, Ahmed N, Fujita M. Selenium supplementation and crop plant tolerance to metal/metalloid toxicity. Front Plant Sci. 2022;12:792770. doi: 10.3389/fpls.2021.792770. PubMed DOI PMC

Hu JH, Chen GL, Xu K, Wang J. Cadmium in cereal crops: uptake and transport mechanisms and minimizing strategies. J Agric Food Chem. 2022;70:5961–5974. doi: 10.1021/acs.jafc.1c07896. PubMed DOI

Huang B, Xin J, Dai H, Zhou W. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System. J Agric Food Chem. 2017;65:9537–9546. doi: 10.1021/acs.jafc.7b03316. PubMed DOI

Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, Cao M, Xiong S, Tu S. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mater. 2021;401:123393. doi: 10.1016/j.jhazmat.2020.123393. PubMed DOI

Jiao L, Zhang L, Zhang Y, Wang R, Lu B, Liu X. Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice. Environ Pollut. 2022;301:118980. doi: 10.1016/j.envpol.2022.118980. PubMed DOI

Kühlbrandt W. Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 2019;88:515–549. doi: 10.1146/annurev-biochem-013118-110903. PubMed DOI

Kumar K, Raina SK, Sultan SM. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biotechnol. 2020;29:700–714. doi: 10.1007/s13562-020-00596-3. DOI

Lanza MGDB, Reis ARD. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem. 2021;164:27–43. doi: 10.1016/j.plaphy.2021.04.026. PubMed DOI

Li T, Tao Q, Shohag MJI, Yang X, Sparks DL, Liang Y. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil. 2015;389:387–399. doi: 10.1007/s11104-014-2367-3. DOI

Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice functional genomics research: past decade and future. Mol Plant. 2018;11:359–380. doi: 10.1016/j.molp.2018.01.007. PubMed DOI

Liu H, Xiao C, Qiu T, Deng J, Cheng H, Cong X, Cheng S, Rao S, Zhang Y. Selenium regulates antioxidant, photosynthesis, and cell permeability in plants under various abiotic stresses: a review. Plants (Basel) 2022;12(1):44. doi: 10.3390/plants12010044. PubMed DOI PMC

Liu H, Jiao Q, Fan L, Jiang Y, Alyemeni MN, Ahmad P, Chen Y, Zhu M, Liu H, Zhao Y, Liu F, Liu S, Li G. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat. J Hazard Mater. 2023;452:131366. doi: 10.1016/j.jhazmat.2023.131366. PubMed DOI

Ma J, Cai H, He C, Zhang W, Wang L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 2015;206:1063–74. PubMed

Mittler R, Zandalinas SI, Fichman Y, Van BF. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol. 2022;23(10):663–679. doi: 10.1038/s41580-022-00499-2. PubMed DOI

Mu T, Wu T, Zhou T, Li Z, Ouyang Y, Jiang J, Zhu D, Hou J, Wang Z, Luo Y, Christie P, Wu L. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Sci Total Environ. 2019;677:373–381. doi: 10.1016/j.scitotenv.2019.04.337. PubMed DOI

Palmer R, Cornuault V, Marcus SE, Knox JP, Tosi P. Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain. Planta. 2015;241:669–685. doi: 10.1007/s00425-014-2201-4. PubMed DOI PMC

Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell. 2014;26(9):3646–3660. doi: 10.1105/tpc.114.127373. PubMed DOI PMC

Rao S, Yu T, Cong X, Lai X, Xiang J, Cao J, Liao X, Gou Y, Chao W, Xue H, Cheng S, Xu F. Transcriptome, proteome, and metabolome reveal the mechanism of tolerance to selenate toxicity in Cardamine violifolia. J Hazard Mater. 2021;406:124283. doi: 10.1016/j.jhazmat.2020.124283. PubMed DOI

Ren C, Qi Y, Huang G, Yao S, You J, Hu H. Contributions of root cell wall polysaccharides to Cu sequestration in castor ( Ricinus communis L.) exposed to different Cu stresses. J Environ Sci. 2020;88:209–216. doi: 10.1016/j.jes.2019.08.012. PubMed DOI

Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere. 2021;273:12690. doi: 10.1016/j.chemosphere.2021.129690. PubMed DOI

Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res Int. 2016;23:17859–17879. doi: 10.1007/s11356-016-6436-4. PubMed DOI

Roose JL, Wegener KM, Pakrasi HB. The extrinsic proteins of photosystem II. Photosynth Res. 2007;92:369–387. doi: 10.1007/s11120-006-9117-1. PubMed DOI

Seidler A. The extrinsic polypeptides of photosystem II. Biochim Biophys Acta. 1996;1277:35–60. doi: 10.1016/S0005-2728(96)00102-8. PubMed DOI

Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng BS. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC

Shi Y, Jiang W, Li M, Jiang N, Huang Y, Wang M, Du Z, Chen J, Li J, Wu L, Zhong M, Yang J, Huang J. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.) Int J Biol Macromol. 2023;245:125607. doi: 10.1016/j.ijbiomac.2023.125607. PubMed DOI

Silva VM, Rimoldi TRF, Gratão PL, Alcock TD, Reis ARD. Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (Vigna unguiculata (L.) walp) plants. Ecotoxicol Environ Saf. 2020;201:110777. doi: 10.1016/j.ecoenv.2020.110777. PubMed DOI

Trotta A, Redondo-Gómez S, Pagliano C, Clemente ME, Rascio N, La Rocca N, Antonacci A, Andreucci F, Barbato R. Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J Plant Physiol. 2012;169(2):111–6. doi: 10.1016/j.jplph.2011.11.001. PubMed DOI

Wan YN, Wang K, Liu Z, Yu Y, Wang Q, Li HF. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.) Environ Sci Pollut Res. 2019;26:16220–16228. doi: 10.1007/s11356-019-04975-9. PubMed DOI

Wang CR, Rong H, Zhang XB, Shi WJ, Hong X, Liu WC, et al. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) Chemosphere. 2020;251:126347. doi: 10.1016/j.chemosphere.2020.126347. PubMed DOI

Wang C, Cheng T, Liu H, Zhou F, Zhang J, Zhang M, Liu X, Shi W, Cao T. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. J Environ Sci (China) 2021;103:336–346. doi: 10.1016/j.jes.2020.11.005. PubMed DOI

Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Mol Plant. 2022;15:593–619. doi: 10.1016/j.molp.2022.03.009. PubMed DOI

Wang LZ, Wu KY, Liu ZQ, Li ZF, Shen J, Wu ZH, et al. Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins, hemicelluloses, lignins, callose and Casparian strips in rice roots. J Hazard Mater. 2023;448:130812. doi: 10.1016/j.jhazmat.2023.130812. PubMed DOI

Wei Z, Zhongbing C, Xiuqin Y, Luying S, Huan M, Sixi Z. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J Hazard Mater. 2023;452:131214. doi: 10.1016/j.jhazmat.2023.131214. PubMed DOI

Wei Z, Sixi Z, Xiuqin Y, Guodong X, Baichun W, Baojing G. Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicol Environ Saf. 2023;253:114652. doi: 10.1016/j.ecoenv.2023.114652. PubMed DOI

Wei Z, Sixi Z, Baojing G, Xiuqin Y, Guodong X, Baichun W. Effects of Cr stress on bacterial community structure and composition in rhizosphere soil of iris tectorum under different cultivation modes. Microbiol Res. 2023;14:243–261. doi: 10.3390/microbiolres14010020. DOI

Wei HY, Li Y, Yan J, Peng SY, Wei SJ, Yin Y, Li KT, Cheng X. Root cell wall remodeling: a way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. J Hazard Mater. 2023;443:130186. doi: 10.1016/j.jhazmat.2022.130186. PubMed DOI

Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Pollut. 2022;301:119035. doi: 10.1016/j.envpol.2022.119035. PubMed DOI

Yang L, Huang QS, Liu Y, Zheng SA, Liu H, Rensing C, Fan Z, Feng R. Selenate regulates the activity of cell wall enzymes to influence cell wall component concentration and thereby affects the uptake and translocation of Cd in the roots of Brassica rapa L. Sci Total Environ. 2022;821:153156. doi: 10.1016/j.scitotenv.2022.153156. PubMed DOI

Yu Y, Fu PN, Huang QQ, Zhang JS, Li HF. Accumulation, subcellular distribution, and oxidative stress of cadmium in Brassica chinensis supplied with selenite and selenate at different growth stages. Chemosphere. 2019;216:331–340. doi: 10.1016/j.chemosphere.2018.10.138. PubMed DOI

Yu Y, Wang Q, Wan Y, Huang Q, Li H. Transcriptome analysis reveals different mechanisms of selenite and selenate regulation of cadmium translocation in Brassica rapa. J Hazard Mater. 2023;452:131218. doi: 10.1016/j.jhazmat.2023.131218. PubMed DOI

Yu M, Zhuo RY, Lu ZC, Li SC, Chen JJ, Wang YJ. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana. J Hazard Mater. 2023;441:129909. doi: 10.1016/j.jhazmat.2022.129909. PubMed DOI

Yuan Y, Imtiaz M, Rizwan M, Dai Z, Hossain MM, Zhang Y, Huang H, Tu S. The role and its transcriptome mechanisms of cell wall polysaccharides in vanadium detoxication of rice. J Hazard Mater. 2022;425:127966. doi: 10.1016/j.jhazmat.2021.127966. PubMed DOI

Yue ZH, Chen YJ, Chen C, Ma KS, Tian EL, Wang Y, et al. Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. J Hazard Mater. 2021;405:124272. doi: 10.1016/j.jhazmat.2020.124272. PubMed DOI

Zhang Z, Yuan L, Qi S, Yin X. The threshold effect between the soil bioavailable molar Se: Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils. Sci Total Environ. 2019;688:1228–1235. doi: 10.1016/j.scitotenv.2019.06.331. PubMed DOI

Zhang X, Li X, Tang L, Peng Y, Qian M, Guo Y, Rui H, Zhang F, Hu Z, Chen Y, Xia Y, Shen Z. The root iron transporter 1 governs cadmium uptake in Vicia sativa roots. J Hazard Mater. 2020;398:122873. doi: 10.1016/j.jhazmat.2020.122873. PubMed DOI

Zhang L, Chu C. Selenium uptake, transport, metabolism, reutilization, and biofortification in rice. Rice (N Y) 2022;15:30. doi: 10.1186/s12284-022-00572-6. PubMed DOI PMC

Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum's resistance to Cr stress. Sci Total Environ. 2023;895:164970. doi: 10.1016/j.scitotenv.2023.164970. PubMed DOI

Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J Hazard Mater. 2021;402:123546. doi: 10.1016/j.jhazmat.2020.123546. PubMed DOI

Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009;14:436–442. doi: 10.1016/j.tplants.2009.06.006. PubMed DOI

Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front Plant Sci. 2022;13:773815. doi: 10.3389/fpls.2022.773815. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...