Food and agricultural wastes-derived biochars in combination with mineral fertilizer as sustainable soil amendments to enhance soil microbiological activity, nutrient cycling and crop production
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36275592
PubMed Central
PMC9583007
DOI
10.3389/fpls.2022.1028101
Knihovny.cz E-resources
- Keywords
- agriculture, food security, nutrient cycling, sustainable crop production, waste recycling,
- Publication type
- Journal Article MeSH
The ever-increasing human population associated with high rate of waste generation may pose serious threats to soil ecosystem. Nevertheless, conversion of agricultural and food wastes to biochar has been shown as a beneficial approach in sustainable soil management. However, our understanding on how integration of biochar obtained from different wastes and mineral fertilizers impact soil microbiological indicators is limited. Therefore, in the present study the effects of agricultural (AB) and food waste derived (FWB) biochars with and without mineral fertilizer (MF) on crop growth and soil health indicators were compared in a pot experiment. In particular, the impacts of applied amendments on soil microbiological health indicators those related to microbial extracellular (C, N and P acquiring) enzymes, soil basal as well as different substrate induced respirations along with crop's agronomic performance were explored. The results showed that compared to the control, the amendment with AB combined with MF enhanced the crop growth as revealed by higher above and below ground biomass accumulation. Moreover, both the biochars (FWB and AB) modified soil chemical properties (pH and electric conductivity) in the presence or absence of MF as compared to control. However, with the sole application of MF was most influential strategy to improve soil basal and arginin-induced respiration as well as most of the soil extracellular enzymes, those related to C, N and P cycling. Use of FWB resulted in enhanced urease activity. This suggested the role of MF and FWB in nutrient cycling and plant nutrition. Thus, integration of biochar and mineral fertilizers is recommended as an efficient and climate smart package for sustainable soil management and crop production.
AdMaS Research Centre Faculty of Civil Engineering Brno University of Technology Brno Czechia
Agricultural Research Ltd Troubsko Czechia
Agrovyzkum Rapotin Ltd Rapotin Czechia
Institute for Environmental Studies Faculty of Science Charles University Prague Praha Czechia
Institute of Soil and Environmental Science University of Agriculture Faisalabad Faisalabad Pakistan
See more in PubMed
Abiad M. G., Meho L. I. (2018). Food loss and food waste research in the Arab world: A systematic review. Food Secur. 10 (2), 1–12. doi: 10.1007/s12571-018-0782-7 DOI
Agbna G.H., Dongli. S., Zhipeng. L., Elshaikh N. A., Guangcheng S., Timm L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae. 222, 90–101. doi: 10.1016/j.scienta.2017.05.004 DOI
Ahmad M., Wang X., Hilger T. H., Luqman M., Nazli F., Hussain A., et al. . (2020). Evaluating biochar-microbe synergies for improved growth, yield of maize, and post- harvest soil characteristics in a semi-arid climate. Agronomy 10 (7), 1055. doi: 10.3390/agronomy10071055 DOI
Ali H., Khan. E., Ilahi. I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 6730305. doi: 10.1155/2019/6730305 DOI
Ali I., Ullah S., He L., Zhao Q., Iqbal A., Wei S., et al. . (2020). Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and n-metabolism in a pot experiment. PeerJ 8, e10311. doi: 10.7717/peerj.10311 PubMed DOI PMC
Ali I., Zhao Q., Wu K., Ullah S., Iqbal A., Liang H., et al. . (2021). Biochar in combination with nitrogen fertilizer is a technique: to enhance physiological and morphological traits of rice (Oryza sativa l.) by improving soil physio-biochemical properties. J. Plant Growth Regul. 41, 1–15. doi: 10.1007/s00344-021-10454-8 DOI
Atkinson C. J., Fitzgerald J. D., Hipps. N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337 (1), pp.1–pp18. doi: 10.1007/s11104-010-0464-5 DOI
Bais-Moleman A. L., Schulp. C. J. E., Verburg. P. H. (2019). Assessing the environmental impacts of production- and consumption-side measures in sustainable agriculture intensification in the European union. Geoderma 338, 555–567. doi: 10.1016/j.geoderma.2018.11.042 DOI
Bilen S., Turan V. (2022). “Enzymatic analyses in soils,” in Practical handbook on agricultural microbiology (New York, NY: Humana; ), 377–385.
Bond M., Meacham T., Bhunnoo R., Benton T. (2013). “Food waste within global food systems,” in Global food security (Amsterdam, The Netherlands: Elsevier; ).
Boretti A., Rosa L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water 2, 15. doi: 10.1038/s41545-019-0039-9 DOI
Bouraoui F., Grizzetti B. (2014). Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 468, 1267–1277. doi: 10.1016/j.scitotenv.2013.07.066 PubMed DOI
Brtnicky M., Kintl A., Holatko J., Hammerschmiedt T., Mustafa A., Kucerik J., et al. . (2022). Effect of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production. Chem. Biol. Technol. Agric. 9 (1), 1–24. doi: 10.1186/s40538-022-00310-6 DOI
Bruun S., Clauson-Kaas S., Bobulska L., Thomsen I. K. (2014). Carbon dioxide emissions from biochar in soil: role of clay, microorganisms, and carbonates. Eur. J. Soil Sci. 65, 52–59. doi: 10.1111/ejss.12073 DOI
Campbell C. D., Chapman S. J., Cameron. C. M., Davidson. M. S., Potts J. M. (2003). "A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69 (6), 3593–3599. doi: 10.1128/AEM.69.6.3593-3599.2003 PubMed DOI PMC
Carter S., Shackley S., Sohi S., Suy T. B., Haefele S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3, 404–418. doi: 10.3390/agronomy3020404 DOI
Castro K. L., Sanchez-Azofeifa G. A. (2008). Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing populus balsamifera and populus tremuloides leaves. Sensors 8, 51–69. doi: 10.3390/s8010051 PubMed DOI PMC
Dong D., Feng Q., Mcgrouther K., Yang M., Wang H., Wu W. (2015). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments 15 (1), 153–162. doi: 10.1007/s11368-014-0984-3 DOI
Faloye O. T., Alatise M. O., Ajayi A. E., Ewulo B. S. (2019). Efects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under defcit irrigation. Agric. Water Manage. 217, 165–178. doi: 10.1016/j.agwat.2019.02.044 DOI
Foley J. A., DeFries R., Asner G. P., Barford C., Bonan G., Carpenter S. R., et al. . (2005). Global consequences of land use. Science, 309 (5734), 570–574. doi: 10.1126/science.111177 PubMed DOI
Garty J., Tamir O., Hassid I., Eshel A., Cohen Y., Karnieli A., et al. . (2001). Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J. Environ. Qual. 30 (3), 884–893. doi: 10.2134/jeq2001.303884x PubMed DOI
Gul S., Whalen J. K., Thomas B. W., Sachdeva V., Deng H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agricul. Ecosyst. Environ. 206, 46–59. doi: 10.1016/j.agee.2015.03.015 DOI
Gustavsson J., Cederberg. C., Sonesson. U., van Otterdijk. R., Meybeck. A. (2011). Global food losses and food waste (Rome, Italy: FAO; ).
Hammerschmiedt T., Holatko J., Kucerik J., Mustafa A., Radziemska M., Kintl A., et al. . (2022). Manure maturation with biochar: Effects on plant biomass, manure quality and soil microbiological characteristics. Agriculture 12 (3), 314. doi: 10.3390/agriculture12030314 DOI
Hardie M., Doyle R., Shabala S., Cuin T. A. (2012). “Measuring soil salinity,” in Plant salt tolerance: Methods and protocols, methods in molecular biology (Totowa, NJ: Humana Press; ), 415–425. doi: 10.1007/978-1-61779-986-0_28 PubMed DOI
Hassink J. (1993). Relationship between the amount and the activity of the microbial biomass in Dutch grassland soils: comparison of the fumigation-incubation method and the substrate- induced respiration method. Soil Biol. Biochem. 25 (5), 533–538. doi: 10.1016/0038-0717(93)90190-M DOI
Herrmann L., Lesueur D., Robin A., Robain H., Wiriyakitnateekul W., Bräu L. (2019). Impact of biochar application dose on soil microbial communities associated with rubber trees in north East Thailand. Sci. Total Environ. 689, 970–979. doi: 10.1016/j.scitotenv.2019.06.441 PubMed DOI
Holatko J., Bielska L., Hammerschmiedt T., Kucerik J., Mustafa A., Radziemska M., et al. . (2022). Cattle manure fermented with biochar and humic substances improve the crop biomass, microbiological properties and nutrient status of soil. Agronomy 12 (2), 368. doi: 10.3390/agronomy12020368 DOI
Huang Z. D., Jiang Y., Yang J., Sun S. J. (2004). Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42, 357–364. doi: 10.1023/B:PHOT.0000046153.08935.4c DOI
Hussain M., Farooq M., Nawaz A., Al-Sadi A. M., Solaiman Z. M., Alghamdi S. S., et al. . (2017). Biochar for crop production: potential benefits and risks. J. Soils Sediments. 17, 685–716. doi: 10.1007/s11368-016-1360-2 DOI
Ishangulyyev R., Kim S., Lee S. H. (2019). Understanding food loss and waste–why are we losing and wasting food? Foods 8, 297. doi: 10.3390/foods8080297 PubMed DOI PMC
ISO_10390 (2005). Soil quality - determination of ph (Geneva, Switzerland: International Organization for Standardization; ).
ISO_20130 (2018). Soil quality — measurement of enzyme activity patterns in soil samples using colorimetric substrates in micro-well plates (Geneva, Switzerland: International Organization for Standardization; ).
Jaafar N. M., Clode P. L., Abbott L. K. (2015). Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere 25 (5), 770–780. doi: 10.1016/S1002-0160(15)30058-8 DOI
Jeffery S., Abalos D., Prodana M., Bastos A. C., Van Groenigen J. W., Hungate B. A., et al. . (2017). Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12 (5), 053001. doi: 10.1088/1748-9326/aa67bd DOI
Jones D. L., Rousk. J., Edwards-Jones. G., DeLuca. T., Murphy D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124. doi: 10.1016/j.soilbio.2011.10.012 DOI
Joseph S., Pow D., Dawson K., Rust J., Munroe P., Taherymoosavi S., et al. . (2020). Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 724, 138153. doi: 10.1016/j.scitotenv.2020.138153 PubMed DOI
Kang S. M., Adhikari A., Bhatta D., Gam H. J., Gim M. J., Son J. I., et al. . (2022). Comparison of effects of chemical and food waste-derived fertilizers on the growth and nutrient content of lettuce (Lactuca sativa l.). Resources 11 (2), 21. doi: 10.3390/resources11020021 DOI
Karimi A., Moezzi A., Chorom M., Enayatizamir N. (2020). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. J. Soil Sci. Plant Nutr. 20 (2), 450–459. doi: 10.1007/s42729-019-00129-5 DOI
Khadem A., Raiesi F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Appl. Soil Ecol. 114, 16–27. doi: 10.1016/j.apsoil.2017.02.018 DOI
Kibler K. M., Reinhart. D., Hawkins. C., Motlagh. A. M., Wright. J. (2018). Food waste and the food- energy-water nexus: A review of food waste management alternatives. Waste Manage. 74, 52–62. doi: 10.1016/j.wasman.2018.01.014 PubMed DOI
Kizito S., Hongzhen L., Jiaxin L., Bah H., Dong R., Wu S. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 11 p, 3211. doi: 10.3390/su11113211 DOI
Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Naidu R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 87, 1–12. doi: 10.1016/j.envint.2015.10.018 PubMed DOI
Lai L., Ismail M. R., Muharam F. M., Yusof M. M., Ismail R., Jaafar N. (2017). Effects of rice straw biochar and nitrogen fertilizer on rice growth and yield. Asian J. Crop Sci. 9 (4), 159–166. doi: 10.3923/ajcs.2017.159.166 DOI
Lehmann J., Rillig M. C., Thies J., Masiello C. A., Hockaday W. C., Crowley D. (2011). Biochar effects on soil biota–a review. Soil Biol. Biochem. 43(9) pp.1812-, 1836. doi: 10.1016/j.soilbio.2011.04.022 DOI
Lipinski B., Hanson C., Waite R., Searchinger T., Lomax J. (2013). Reducing food loss and waste. Washington, DC: World Resources Institute. Available online at: http://www.worldresourcesreport.org.
Li X., Shao X. H., Ding F., Yuan Y., Li R., Yang X., et al. . (2020). Effects of effective microorganisms biochar-based fertilizer on photosynthetic characteristics and chlorophyll content of flue-cured tobacco under water-saving irrigation strategies. Chilean J. of Agric. Res. 80 (3), 422–432. doi: 10.4067/S0718-58392020000300422 DOI
Liu M., Linna C., Ma S., Ma Q., Guo J., Wang F., et al. . (2022). Effects of biochar with inorganic and organic fertilizers on agronomic traits and nutrient absorption of soybean and fertility and microbes in purple soil. Front. Plant Science 13. doi: 10.3389/fpls.2022.871021 PubMed DOI PMC
Liu E., Yan C., Mei X., He W., Bing S. H., Ding L., et al. . (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 158 (3-4), 173–180. doi: 10.1016/j.geoderma.2010.04.029 DOI
Lundqvist J., de Fraiture C., Molden D. (2008). Saving water: From field to fork – curbing losses and wastage in the food chain. SIWI policy brief (Sweden: Stockholm International Water Institute; )2008. https://hdl.handle.net/10535/5088
Małachowska-Jutsz A., Matyja K. (2019). Discussion on methods of soil dehydrogenase determination. Int. J. Environ. Sci. Technol. 16, 7777–7790. doi: 10.1007/s13762-019-02375-7 DOI
Meena R. S., Kumar. S., Datta. R., Lal. R., Vijayakumar. V., Brtnicky M., et al. . (2020). Impact of agrochemicals on soil microbiota and management: A review. Land 9 (2), 34. doi: 10.3390/land9020034 DOI
Mohan D., Abhishek K., Sarswat A., Patel M., Singh P., Pittman C. U. (2018). Biochar production and applications in soil fertility and carbon sequestration–a sustainable solution to crop-residue burning in India. RSC Advances 8, 508–520. doi: 10.1039/C7RA10353K DOI
Mu X. H., Chen Y. L. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 158, 76–82. doi: 10.1016/j.plaphy.2020.11.019 PubMed DOI
Mustafa A., Naveed M., Saeed Q., Ashraf M. N., Hussain A., Abbas T., et al. . (2019). Application potentials of plant growth promoting rhizobacteria and fungi as an alternative to conventional weed control methods. Sustain. Crop Production. 10, 247–60. doi: 10.5772/intechopen.86339 DOI
Naveed M., Tanvir B., Xiukang W., Brtnicky M., Ditta A., Kucerik J., et al. . (2021). Co-Composted biochar enhances growth, physiological, and phytostabilization efficiency of brassica napus and reduces associated health risks under chromium stress. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.775785 PubMed DOI PMC
Ndoung O. C. N., de Figueiredo C. C., Ramos M. L. G. (2021). Ramos a scoping review on biochar- based fertilizers: enrichment techniques and agro-environmental application. Heliyon 7 (12), e08473. doi: 10.1016/j.heliyon.2021.e08473 PubMed DOI PMC
Parry M., Parry M. L., Canziani O., Palutikof J., van der Linden P., Hanson C. (2007). “Climate Change (2007). -Impacts,Adaptation and vulnerability,” in Working group II contribution to the fourth assessment report of the IPCC, vol. Volume 4. (Cambridge, UK: Cambridge University Press; ).
Prendergast-Miller M. T., Duvalla M., Sohi S. P. (2014). Biochar – root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Science 65, 173–185. doi: 10.1111/ejss.12079 DOI
Qian Z. H. U., Kong L. J., Shan Y. Z., Yao X. D., Zhang H. J., Xie F. T., et al. . (2019). Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. J. Integr. Agric. 18 (10), 2242–2254. doi: 10.1016/S2095-3119(19)62563-3 DOI
Rasool B., Mahmood-ur-Rahman, Zubair M. (2022). Synergetic efficacy of amending Pb-polluted soil with p-loaded jujube (Ziziphus mauritiana) twigs biochar and foliar chitosan application for reducing Pb distribution in moringa leaf extract and improving its anti-cancer potential. Water Air Soil Pollut. 233, 344. doi: 10.1007/s11270-022-05807-2 DOI
Sadaf J., Shah G. A., Shahzad K., Ali N., Shahid M., Ali S., et al. . (2017). Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 607, 715–724. doi: 10.1016/j.scitotenv.2017.06.178 PubMed DOI
Sayara T., Basheer-Salimia R., Hawamde F., Sánchez A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 10, 1838. doi: 10.3390/agronomy10111838 DOI
Singh R., Singh P., Singh H., Raghubanshi A. S. (2019. a). Impact of sole and combined application of biochar, organic and chemical fertilizers on wheat crop yield and water productivity in a dry tropical agro-ecosystem. Biochar 1 (2), pp.229–pp.235. doi: 10.1007/s42773-019-00013-6 DOI
Singh R., Srivastava P., Bhadouria R., Yadav A., Singh H., Raghubanshi A. S. (2020). Combined application of biochar and farmyard manure reduces wheat crop eco- physiological performance in a tropical dryland agro-ecosystem. Energy Ecol. Environ. 5 (3), pp.171–pp.183. doi: 10.1007/s40974-020-00159-1 DOI
Singh R., Srivastava P., Singh P., Sharma A. K., Singh H., Raghubanshi A. S. (2019. b). Impact of rice-husk ash on the soil biophysical and agronomic parameters of wheat crop under a dry tropical ecosystem. Ecol. Indic. 105, 505–515. doi: 10.1016/j.ecolind.2018.04.043 DOI
Song D., Chen L., Zhang S., Zheng Q., Ullah S., Zhou W., et al. . (2020). Combined biochar and nitrogen fertilizer change soil enzyme and microbial activities in a 2-year field trial. Eur. J. Soil Biol. 99, 103212. doi: 10.1016/j.ejsobi.2020.103212 DOI
Sönmez O.S.M.A.N., Turan V., Kaya C. (2016). The effects of sulfur, cattle, and poultry manure addition on soil phosphorus. Turkish J. Agric. Forestry 40 (4), 536–541. doi: 10.3906/tar-1601-41 DOI
Srivastav A. L. (2020). “Chemicalfertilizers and pesticides: role in groundwater contamination,” in Agrochemicals detection, treatment and remediation (Oxford, United Kingdom: Butterworth-Heinemann; ), 143–159.
Sulok K. M. T., Ahmed O. H., Khew C. Y., Zehnder J. A. M., Jalloh M. B., Musah A. A., et al. . (2021). Chemical and biological characteristics of organic amendments produced from selected agro-wastes with potential for sustaining soil health: A laboratory assessment. Sustainability 13 (9), 4919. doi: 10.3390/su13094919 DOI
Tan J. K. N., Lee J. T. E., Chiam Z., Song S., Arora S., Tong Y. W., et al. . (2021). Applications of food waste-derived black soldier fly larval frass as incorporated compost, side-dress fertilizer and frass-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media. Waste Manage. 130, 155–166. doi: 10.1016/j.wasman.2021.05.025 PubMed DOI
Tian J., Wang J., Dippold M., Gao Y., Blagodatskaya E., Kuzyakov Y. (2016). Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci. Total Environ. 556, 89–97. doi: 10.1016/j.scitotenv.2016.03.010 PubMed DOI
Toscano P., Casacchia T., Diacono M., Montemurro F. (2013). Composted olive mill by-products: Compost characterization and application on olive orchards. J. Agric. Sci. Technol. 15, 627–638.
Tripathi A. D., Mishra R., Maurya K. K., Singh R. B., Wilson D. W. (2019). “Chapter 1— estimates for world population and global food availability for global health,” in In the role of functional food security in global health. Eds. Singh R. B., Watson R. R., Takahashi T. (Cambridge, MA, USA: Academic Press; ), 3–24.
Urra J., Alkorta I., Garbisu C. (2019). Urra potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 9, 542. doi: 10.3390/agronomy9090542 DOI
Wali F., Sardar S., Naveed M., Asif M., Nezhad M., T. K., et al. . (2022). Effect of consecutive application of phosphorus-enriched biochar with different levels of p on growth performance of maize for two successive growing seasons. Sustainability 14 (4), p.1987. doi: 10.3390/su14041987 DOI
Xu N., Tan G., Wang H., Gai X. (2016). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 74, 1–8. doi: 10.1016/j.ejsobi.2016.02.004 DOI
Zhang L., Sun X.-Y., Tian Y., Gong X.-Q. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant calathea insignis. Scientia Hortic. 176, 70–78. doi: 10.1016/j.scienta.2014.06.021 DOI
Zulfiqar U., Jiang W., Xiukang W., Hussain S., Ahmad M., Maqsood M. F., et al. . (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.773815 PubMed DOI PMC