Cerebellar demyelination and neurodegeneration associated with mTORC1 hyperactivity may contribute to the developmental onset of autism-like neurobehavioral phenotype in a rat model

. 2022 May ; 15 (5) : 791-805. [epub] 20220218

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35178882

Grantová podpora
LO1611 NIMH NIH HHS - United States
PROGRES 260533/SVV/2021 Neurology NIMH NIH HHS - United States

The cerebellum hosts more than half of all neurons of the human brain, with their organized activity playing a key role in coordinating motor functions. Cerebellar activity has also been implicated in the control of speech, communication, and social behavior, which are compromised in autism spectrum disorders (ASD). Despite major research advances, there is a shortage of mechanistic data relating cellular and molecular changes in the cerebellum to autistic behavior. We studied the impact of tuberous sclerosis complex 2 haploinsufficiency (Tsc2+/-) with downstream mTORC1 hyperactivity on cerebellar morphology and cellular organization in 1, 9, and 18 m.o. Eker rats, to determine possible structural correlates of an autism-like behavioural phenotype in this model. We report a greater developmental expansion of the cerebellar vermis, owing to enlarged white matter and thickened molecular layer. Histochemical and immunofluorescence data suggest age-related demyelination of central tract of the vermis, as evident from reduced level of myelin-basic protein in the arbora vitae. We also observed a higher number of astrocytes in Tsc2+/- rats of older age while the number of Purkinje cells (PCs) in these animals was lower than in wild-type controls. Unlike astrocytes and PCs, Bergmann glia remained unaltered at all ages in both genotypes, while the number of microglia was higher in Tsc2+/- rats of older age. The convergent evidence for a variety of age-dependent cellular changes in the cerebellum of rats associated with mTORC1 hyperactivity, thus, predicts an array of functional impairments, which may contribute to the developmental onset of an autism-like behavioral phenotype in this model. LAY SUMMARY: This study elucidates the impact of constitutive mTORC1 hyperactivity on cerebellar morphology and cellular organization in a rat model of autism and epilepsy. It describes age-dependent degeneration of Purkinje neurons, with demyelination of central tract as well as activation of microglia, and discusses the implications of these changes for neuro-behavioral phenotypes. The described changes provide new indications for the putative mechanisms underlying cerebellar impairments with their age-related onset, which may contribute to the pathobiology of autism, epilepsy, and related disorders.

Zobrazit více v PubMed

Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., & Ramnani, N. (2010). Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage, 49(3), 2045-2052. https://doi.org/10.1016/j.neuroimage.2009.10.045

Barron, T., Saifetiarova, J., Bhat, M. A., & Kim, J. H. (2018). Myelination of Purkinje axons is critical for resilient synaptic transmission in the deep cerebellar nucleus. Scientific Reports, 8(1), 1022. https://doi.org/10.1038/s41598-018-19314-0

Ben Haim, L., & Rowitch, D. H. (2017). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews. Neuroscience, 18(1), 31-41. https://doi.org/10.1038/nrn.2016.159

Bertelsen, N., Landi, I., Bethlehem, R. A. I., Seidlitz, J., Busuoli, E. M., Mandelli, V., & Lombardo, M. V. (2021). Imbalanced social-communicative and restricted repetitive behavior subtypes of autism spectrum disorder exhibit different neural circuitry. Communications Biology, 4(1), 574. https://doi.org/10.1038/s42003-021-02015-2

Biever, A., Valjent, E., & Puighermanal, E. (2015). Ribosomal protein S6 phosphorylation in the nervous system: From regulation to function. Frontiers in Molecular Neuroscience, 8, 75. https://doi.org/10.3389/fnmol.2015.00075

Boer, K., Troost, D., Jansen, F., Nellist, M., van den Ouweland, A. M., Geurts, J. J., & Aronica, E. (2008). Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology, 28(6), 577-590. https://doi.org/10.1111/j.1440-1789.2008.00920.x

Boronat, S., Thiele, E. A., & Caruso, P. (2017). Cerebellar lesions are associated with TSC2 mutations in tuberous sclerosis complex: A retrospective record review study. Developmental Medicine and Child Neurology, 59(10), 1071-1076. https://doi.org/10.1111/dmcn.13499

Casanova, M. F., Casanova, E. L., Frye, R. E., Baeza-Velasco, C., LaSalle, J. M., Hagerman, R. J., & Natowicz, M. R. (2020). Editorial: Secondary vs. idiopathic autism. Frontiers in Psychiatry, 11, 297. https://doi.org/10.3389/fpsyt.2020.00297

Chu-Shore, C. J., Major, P., Montenegro, M., & Thiele, E. (2009). Cyst-like tubers are associated with TSC2 and epilepsy in tuberous sclerosis complex. Neurology, 72(13), 1165-1169. https://doi.org/10.1212/01.wnl.0000345365.92821.86

Cook, A. A., Fields, E., & Watt, A. J. (2021). Losing the beat: Contribution of Purkinje cell firing dysfunction to disease, and its reversal. Neuroscience, 462, 247-261. https://doi.org/10.1016/j.neuroscience.2020.06.008

Cupolillo, D., Hoxha, E., Faralli, A., De Luca, A., Rossi, F., Tempia, F., & Carulli, D. (2016). Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN Knock-out mice. Neuropsychopharmacology, 41(6), 1457-1466. https://doi.org/10.1038/npp.2015.339

D'Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Frontiers in Neuroscience, 9, 408. https://doi.org/10.3389/fnins.2015.00408

Dickson, P. E., Rogers, T. D., Del Mar, N., Martin, L. A., Heck, D., Blaha, C. D., & Mittleman, G. (2010). Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiology of Learning and Memory, 94(2), 220-228. https://doi.org/10.1016/j.nlm.2010.05.010

Edmonson, C., Ziats, M. N., & Rennert, O. M. (2014). Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Molecular Autism, 5(1), 3. https://doi.org/10.1186/2040-2392-5-3

Eluvathingal, T. J., Behen, M. E., Chugani, H. T., Janisse, J., Bernardi, B., Chakraborty, P., & Chugani, D. C. (2006). Cerebellar lesions in tuberous sclerosis complex: Neurobehavioral and neuroimaging correlates. Journal of Child Neurology, 21(10), 846-851. https://doi.org/10.1177/08830738060210100301

Ertan, G., Arulrajah, S., Tekes, A., Jordan, L., & Huisman, T. A. (2010). Cerebellar abnormality in children and young adults with tuberous sclerosis complex: MR and diffusion weighted imaging findings. Journal of Neuroradiology, 37(4), 231-238. https://doi.org/10.1016/j.neurad.2009.12.006

Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., & Welsh, J. P. (2012). Consensus paper: Pathological role of the cerebellum in autism. Cerebellum, 11(3), 777-807. https://doi.org/10.1007/s12311-012-0355-9

Galliano, E., & De Zeeuw, C. I. (2014). Questioning the cerebellar doctrine. Progress in Brain Research, 210, 59-77. https://doi.org/10.1016/b978-0-444-63356-9.00003-0

Gandhi, T., & Lee, C. C. (2020). Neural mechanisms underlying repetitive behaviors in rodent models of autism Spectrum disorders. Frontiers in Cellular Neuroscience, 14, 592710. https://doi.org/10.3389/fncel.2020.592710

Gargus, J. J., & Schmunk, G. (2014). Dysregulation of neurogenic calcium signaling and autism. Springer.

Guang, S., Pang, N., Deng, X., Yang, L., He, F., Wu, L., & Peng, J. (2018). Synaptopathology involved in autism Spectrum disorder. Frontiers in Cellular Neuroscience, 12, 470. https://doi.org/10.3389/fncel.2018.00470

Hampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 420. https://doi.org/10.3389/fnins.2015.00420

Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R., & Thiele, E. A. (2016). Tuberous sclerosis complex. Nature Reviews. Disease Primers, 2, 16035. https://doi.org/10.1038/nrdp.2016.35

Herculano-Houzel, S. (2010). Coordinated scaling of cortical and cerebellar numbers of neurons. Frontiers in Neuroanatomy, 4, 12. https://doi.org/10.3389/fnana.2010.00012

Hodos, W. (2009). Evolution of cerebellum. Springer.

Hoebeek, F. E., Stahl, J. S., van Alphen, A. M., Schonewille, M., Luo, C., Rutteman, M., & De Zeeuw, C. I. (2005). Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron, 45(6), 953-965. https://doi.org/10.1016/j.neuron.2005.02.012

Hoxha, E., Balbo, I., Miniaci, M. C., & Tempia, F. (2018). Purkinje cell signaling deficits in animal models of ataxia. Frontiers in Synaptic Neuroscience, 10, 6. https://doi.org/10.3389/fnsyn.2018.00006

Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78(3-5), 272-303. https://doi.org/10.1016/j.pneurobio.2006.02.006

Jay, V., Edwards, V., Musharbash, A., & Rutka, J. T. (1998). Cerebellar pathology in tuberous sclerosis. Ultrastructural Pathology, 22(4), 331-339. https://doi.org/10.3109/01913129809103354

Jurkiewicz, E., Jóźwiak, S., Bekiesińska-Figatowska, M., Pakieła-Domańska, D., Pakuła-Kościesza, I., & Walecki, J. (2006). Cerebellar lesions in children with tuberous sclerosis complex. The Neuroradiology Journal, 19(5), 577-582. https://doi.org/10.1177/197140090601900503

Kitamura, K., & Häusser, M. (2011). Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. The Journal of Neuroscience, 31(30), 10847-10858. https://doi.org/10.1523/jneurosci.2525-10.2011

Kútna, V., O'Leary, V. B., Newman, E., Hoschl, C., & Ovsepian, S. V. (2021). Revisiting brain tuberous sclerosis complex in rat and human: Shared molecular and cellular pathology leads to distinct neurophysiological and behavioral phenotypes. Neurotherapeutics, 18(2), 845-858. https://doi.org/10.1007/s13311-020-01000-7

Kútna, V., Uttl, L., Waltereit, R., Krištofiková, Z., Kaping, D., Petrásek, T., & Ovsepian, S. V. (2020). Tuberous sclerosis (tsc2+/−) model Eker rats reveals extensive neuronal loss with microglial invasion and vascular remodeling related to brain neoplasia. Neurotherapeutics, 17(1), 329-339. https://doi.org/10.1007/s13311-019-00812-6

Mark, M. D., Schwitalla, J. C., Groemmke, M., & Herlitze, S. (2017). Keeping our calcium in balance to maintain our balance. Biochemical and Biophysical Research Communications, 483(4), 1040-1050. https://doi.org/10.1016/j.bbrc.2016.07.020

Martí-Bonmatí, L., Menor, F., & Dosdá, R. (2000). Tuberous sclerosis: Differences between cerebral and cerebellar cortical tubers in a pediatric population. AJNR. American Journal of Neuroradiology, 21(3), 557-560.

Martin-Cano, F. E., Camello-Almaraz, C., Hernandez, D., Pozo, M. J., & Camello, P. J. (2013). mTOR pathway and ca(2)(+) stores mobilization in aged smooth muscle cells. Aging (Albany NY), 5(5), 339-346. https://doi.org/10.18632/aging.100555

Martin, L. A., Goldowitz, D., & Mittleman, G. (2010). Repetitive behavior and increased activity in mice with Purkinje cell loss: A model for understanding the role of cerebellar pathology in autism. The European Journal of Neuroscience, 31(3), 544-555. https://doi.org/10.1111/j.1460-9568.2009.07073.x

Mitoma, H., Adhikari, K., Aeschlimann, D., Chattopadhyay, P., Hadjivassiliou, M., Hampe, C. S., & Yuki, N. (2016). Consensus paper: Neuroimmune mechanisms of cerebellar ataxias. Cerebellum, 15(2), 213-232. https://doi.org/10.1007/s12311-015-0664-x

NIH. (2019). National Institute of Health. About autism. National Human Genome Research Institute. https://www.genome.gov/Genetic-Disorders/Autism.

Ovsepian, S. V., & Friel, D. D. (2008). The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts. The European Journal of Neuroscience, 27(1), 93-103. https://doi.org/10.1111/j.1460-9568.2007.05998.x

Ovsepian, S. V., & Friel, D. D. (2012). Enhanced synaptic inhibition disrupts the efferent code of cerebellar Purkinje neurons in leaner Cav2.1 ca 2+ channel mutant mice. Cerebellum, 11(3), 666-680. https://doi.org/10.1007/s12311-010-0210-9

Ovsepian, S. V., Steuber, V., Le Berre, M., O'Hara, L., O'Leary, V. B., & Dolly, J. O. (2013). A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets. The Journal of Physiology, 591(7), 1771-1791. https://doi.org/10.1113/jphysiol.2012.249706

Pan, Y. H., Wu, N., & Yuan, X. B. (2019). Toward a better understanding of neuronal migration deficits in autism Spectrum disorders. Frontiers in Cell and Development Biology, 7, 205. https://doi.org/10.3389/fcell.2019.00205

Paxinos, G., & Watson, C. (2007). Paxinos & Watson the rat brain in stereotaxic coordinates. Elsevier.

Peça, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., & Feng, G. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344), 437-442. https://doi.org/10.1038/nature09965

Pellionisz, A., & Llinás, R. (1982). Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience, 7(12), 2949-2970. https://doi.org/10.1016/0306-4522(82)90224-x

Prestori, F., Moccia, F., & D'Angelo, E. (2019). Disrupted calcium signaling in animal models of human spinocerebellar ataxia (SCA). International Journal of Molecular Sciences, 21(1), 216. https://doi.org/10.3390/ijms21010216

Ramos, T. C., Balardin, J. B., Sato, J. R., & Fujita, A. (2018). Abnormal Cortico-cerebellar functional connectivity in autism spectrum disorder. Frontiers in Systems Neuroscience, 12, 74. https://doi.org/10.3389/fnsys.2018.00074

Reemst, K., Noctor, S. C., Lucassen, P. J., & Hol, E. M. (2016). The indispensable roles of microglia and astrocytes during brain development. Frontiers in Human Neuroscience, 10, 566. https://doi.org/10.3389/fnhum.2016.00566

Reith, R. M., McKenna, J., Wu, H., Hashmi, S. S., Cho, S. H., Dash, P. K., & Gambello, M. J. (2013). Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 51, 93-103. https://doi.org/10.1016/j.nbd.2012.10.014

Reith, R. M., Way, S., McKenna, J., 3rd, Haines, K., & Gambello, M. J. (2011). Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiology of Disease, 43(1), 113-122. https://doi.org/10.1016/j.nbd.2011.02.014

Roome, C. J., & Kuhn, B. (2018). Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice. Nature Communications, 9(1), 3388. https://doi.org/10.1038/s41467-018-05900-3

Sare, R. M., Lemons, A., Figueroa, C., Song, A., Levine, M., & Beebe Smith, C. (2020). Sex-selective effects on behavior in a mouse model of tuberous sclerosis complex. eNeuro, 7(2), 1-9. https://doi.org/10.1523/ENEURO.0379-19.2020

Sauter, M., Belousova, E., Benedik, M. P., Carter, T., Cottin, V., Curatolo, P., Dahlin, M., D'Amato, L., d'Augères, G. B., de Vries, P. J., Ferreira, J. C., Feucht, M., Fladrowski, C., Hertzberg, C., Jozwiak, S., Lawson, J. A., Macaya, A., Marques, R., Nabbout, R., … TOSCA investigators. (2021). Rare manifestations and malignancies in tuberous sclerosis complex: Findings from the TuberOus SClerosis registry to increAse disease awareness (TOSCA). Orphanet Journal of Rare Diseases, 16(1), 301. https://doi.org/10.1186/s13023-021-01917-y

Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62-75. https://doi.org/10.1016/j.neulet.2018.07.005

Singh, S., Halder, A., Sinha, O., Chakrabarty, N., Chatterjee, T., Adhikari, A., & Pal, S. K. (2020). Spectroscopic studies on the biomolecular recognition of toluidine blue: Key information towards development of a non-contact, non-invasive device for Oral cancer detection. Frontiers in Oncology, 10, 529132. https://doi.org/10.3389/fonc.2020.529132

Skefos, J., Cummings, C., Enzer, K., Holiday, J., Weed, K., Levy, E., & Bauman, M. (2014). Regional alterations in purkinje cell density in patients with autism. PLoS One, 9(2), e81255. https://doi.org/10.1371/journal.pone.0081255

Sridharan, G., & Shankar, A. A. (2012). Toluidine blue: A review of its chemistry and clinical utility. Journal of Oral and Maxillofacial Pathology, 16(2), 251-255. https://doi.org/10.4103/0973-029x.99081

Striedter, G. (2017). Evolution of nervous systems (Second edition. ed.). Academic Press is an imprint of Elsevier.

Sundberg, M., & Sahin, M. (2015). Cerebellar development and autism Spectrum disorder in tuberous sclerosis complex. Journal of Child Neurology, 30(14), 1954-1962. https://doi.org/10.1177/0883073815600870

Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., & Borgatti, R. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130(Pt 10), 2646-2660. https://doi.org/10.1093/brain/awm201

Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. NeuroImage, 49(1), 63-70. https://doi.org/10.1016/j.neuroimage.2009.08.016

Traut, N., Beggiato, A., Bourgeron, T., Delorme, R., Rondi-Reig, L., Paradis, A. L., & Toro, R. (2018). Cerebellar volume in autism: Literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biological Psychiatry, 83(7), 579-588. https://doi.org/10.1016/j.biopsych.2017.09.029

Tsai, P. T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M., & Sahin, M. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488(7413), 647-651. https://doi.org/10.1038/nature11310

Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 67-81. https://doi.org/10.1002/ana.20315

Wang, S. S., Kloth, A. D., & Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518-532. https://doi.org/10.1016/j.neuron.2014.07.016

Way, S. W., McKenna, J., 3rd, Mietzsch, U., Reith, R. M., Wu, H. C., & Gambello, M. J. (2009). Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Human Molecular Genetics, 18(7), 1252-1265. https://doi.org/10.1093/hmg/ddp025

Weber, A. M., Egelhoff, J. C., McKellop, J. M., & Franz, D. N. (2000). Autism and the cerebellum: Evidence from tuberous sclerosis. Journal of Autism and Developmental Disorders, 30(6), 511-517. https://doi.org/10.1023/a:1005679108529

Weisenfeld, N. I., Peters, J. M., Tsai, P. T., Prabhu, S. P., Dies, K. A., Sahin, M., & Warfield, S. K. (2013). A magnetic resonance imaging study of cerebellar volume in tuberous sclerosis complex. Pediatric Neurology, 48(2), 105-110. https://doi.org/10.1016/j.pediatrneurol.2012.10.011

Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., & Kim, E. (2012). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 486(7402), 261-265. https://doi.org/10.1038/nature11208

Yeung, R. S., Katsetos, C. D., & Klein-Szanto, A. (1997). Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. The American Journal of Pathology, 151(5), 1477-1486.

Zollner, J. P., Franz, D. N., Hertzberg, C., Nabbout, R., Rosenow, F., Sauter, M., & Strzelczyk, A. (2020). A systematic review on the burden of illness in individuals with tuberous sclerosis complex (TSC). Orphanet Journal of Rare Diseases, 15(1), 23. https://doi.org/10.1186/s13023-019-1258-3

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...