Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32228406
PubMed Central
PMC7209069
DOI
10.1098/rspb.2019.2311
Knihovny.cz E-zdroje
- Klíčová slova
- altitude-for-latitude, beta-diversity turnover, facilitation, lichen symbiosis, mutualist-mediated effects, range predictions,
- MeSH
- ekosystém * MeSH
- podnebí * MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Keystone mutualisms, such as corals, lichens or mycorrhizae, sustain fundamental ecosystem functions. Range dynamics of these symbioses are, however, inherently difficult to predict because host species may switch between different symbiont partners in different environments, thereby altering the range of the mutualism as a functional unit. Biogeographic models of mutualisms thus have to consider both the ecological amplitudes of various symbiont partners and the abiotic conditions that trigger symbiont replacement. To address this challenge, we here investigate 'symbiont turnover zones'--defined as demarcated regions where symbiont replacement is most likely to occur, as indicated by overlapping abundances of symbiont ecotypes. Mapping the distribution of algal symbionts from two species of lichen-forming fungi along four independent altitudinal gradients, we detected an abrupt and consistent β-diversity turnover suggesting parallel niche partitioning. Modelling contrasting environmental response functions obtained from latitudinal distributions of algal ecotypes consistently predicted a confined altitudinal turnover zone. In all gradients this symbiont turnover zone is characterized by approximately 12°C average annual temperature and approximately 5°C mean temperature of the coldest quarter, marking the transition from Mediterranean to cool temperate bioregions. Integrating the conditions of symbiont turnover into biogeographic models of mutualisms is an important step towards a comprehensive understanding of biodiversity dynamics under ongoing environmental change.
Departement of Biological Sciences Goethe University Frankfurt am Main Germany
Department of Ecology Czech University of Life Sciences Prague | CULS Prague Czech Republic
Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
Zobrazit více v PubMed
Weber A, Karst J, Gilbert B, Kimmins JP. 2005. Thuja plicata exclusion in ectomycorrhiza-dominated forests: testing the role of inoculum potential of arbuscular mycorrhizal fungi. Oecologia 143, 148–156. (10.1007/s00442-004-1777-y) PubMed DOI
Nuñez MA, Horton TR, Simberloff D. 2009. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359. (10.1890/08-2139.1) PubMed DOI
Mueller UG, et al. 2011. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant–fungus symbiosis. Proc. Natl Acad. Sci. USA 108, 4053–4056. (10.1073/pnas.1015806108) PubMed DOI PMC
Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315, 513–515. (10.1126/science.1136237) PubMed DOI
Afkhami ME, McIntyre PJ, Strauss SY. 2014. Mutualist-mediated effects on species' range limits across large geographic scales. Ecol. Lett. 17, 1265–1273. (10.1111/ele.12332) PubMed DOI
Maher AMD, Asaiyah MAM, Brophy C, Griffin CT. 2017. An entomopathogenic nematode extends its niche by associating with different symbionts. Microb. Ecol. 73, 211–223. (10.1007/s00248-016-0829-2) PubMed DOI
Sudakaran S, Kost C, Kaltenpoth M. 2017. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25, 375–390. (10.1016/j.tim.2017.02.014) PubMed DOI
Pither J, Pickles BJ, Simard SW, Ordonez A, Williams JW. 2018. Below-ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160. (10.1111/nph.15203) PubMed DOI
Rowan R, Knowlton N. 1995. Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc. Natl Acad. Sci. USA 92, 2850–2853. (10.1073/pnas.92.7.2850) PubMed DOI PMC
Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE. 2004. Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc. R. Soc. Lond. B 271, 1757–1763. (10.1098/rspb.2004.2757) PubMed DOI PMC
Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. 2008. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl Acad. Sci. USA 105, 10 444–10 449. (10.1073/pnas.0708049105) PubMed DOI PMC
Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-Guldberg O. 2015. Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R. Soc. open sci. 2, 140297 (10.1098/rsos.140297) PubMed DOI PMC
Cox F, Barsoum N, Lilleskov EA, Bidartondo MI. 2010. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol. Lett. 13, 1103–1113. (10.1111/j.1461-0248.2010.01494.x) PubMed DOI
Kjøller R, Nilsson L-O, Hansen K, Schmidt IK, Vesterdal L, Gundersen P. 2012. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol. 194, 278–286. (10.1111/j.1469-8137.2011.04041.x) PubMed DOI
Suz LM, et al. 2014. Environmental drivers of ectomycorrhizal communities in Europe's temperate oak forests. Mol. Ecol. 23, 5628–5644. (10.1111/mec.12947) PubMed DOI
Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martín MP, Printzen C. 2011. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 20, 1208–1232. (10.1111/j.1365-294X.2010.04993.x) PubMed DOI
Grande FD, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I. 2018. Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 217, 277–289. (10.1111/nph.14770) PubMed DOI
Rolshausen G, Dal Grande F, Sadowska-Deś AD, Otte J, Schmitt I. 2018. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualist-mediated niche expansions. Ecography 41, 1380–1392. (10.1111/ecog.03457) DOI
Peay KG. 2016. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol. Evol. Syst. 47, 143–164. (10.1146/annurev-ecolsys-121415-032100) DOI
Batstone RT, Carscadden KA, Afkhami ME, Frederickson ME. 2018. Using niche breadth theory to explain generalization in mutualisms. Ecology 99, 1039–1050. (10.1002/ecy.2188) PubMed DOI
Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L. 2001. Ecological and evolutionary processes at expanding range margins. Nature 411, 577–581. (10.1038/35079066) PubMed DOI
Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. (10.1111/j.1461-0248.2005.00739.x) PubMed DOI
Pearman PB, Guisan A, Broennimann O, Randin CF. 2008. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158. (10.1016/j.tree.2007.11.005) PubMed DOI
Angert AL. 2009. The niche, limits to species' distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. Proc. Natl Acad. Sci. USA 106, 19 693–19 698. (10.1073/pnas.0901652106) PubMed DOI PMC
Lenoir J, Svenning J-C. 2015. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28. (10.1111/ecog.00967) DOI
Rumpf SB, Hülber K, Zimmermann NE, Dullinger S. 2019. Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecol. Biogeogr. 28, 533–543. (10.1111/geb.12865) DOI
Helmuth B, Kingsolver JG, Carrington E. 2005. Biophysics, physiological ecology, and climate change: does mechanism matter? Annu. Rev. Physiol. 67, 177–201. (10.1146/annurev.physiol.67.040403.105027) PubMed DOI
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331. (10.1016/j.tree.2010.03.002) PubMed DOI
Kokko H, Chaturvedi A, Croll D, Fischer MC, Guillaume F, Karrenberg S, Kerr B, Rolshausen G, Stapley J. 2017. Can evolution supply what ecology demands? Trends Ecol. Evol. 32, 187–197. (10.1016/j.tree.2016.12.005) PubMed DOI
Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL. 2010. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474. (10.1111/j.1461-0248.2010.01538.x) PubMed DOI
Lankau RA, Keymer DP. 2016. Ectomycorrhizal fungal richness declines towards the host species’ range edge. Mol. Ecol. 25, 3224–3241. (10.1111/mec.13628) PubMed DOI
Kappen L. 1988. Ecophysiological relationships in different climatic regions. In Handbook of lichenology (ed. Galun M.), pp. 37–100. Boca Raton, FL: CRC Press.
Honegger R. 1991. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Biol. 42, 553–578. (10.1146/annurev.pp.42.060191.003005) DOI
Kranner I, Beckett R, Hochman A, Nash TH. 2008. Desiccation-tolerance in lichens: a review. The Bryologist 111, 576–593. (10.1639/0007-2745-111.4.576) DOI
Piercey-Normore MD, DePriest PT. 2001. Algal switching among lichen symbioses. Am. J. Bot. 88, 1490–1498. (10.2307/3558457) PubMed DOI
Piercey-Normore MD. 2006. The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol. 169, 331–344. (10.1111/j.1469-8137.2005.01576.x) PubMed DOI
Yahr R, Vilgalys R, DePriest PT. 2006. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 171, 847–860. (10.1111/j.1469-8137.2006.01792.x) PubMed DOI
Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M. 2014. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 114, 463–475. (10.1093/aob/mcu146) PubMed DOI PMC
Vančurová L, Muggia L, Peksa O, Řídká T, Škaloud P. 2018. The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 27, 3016–3033. (10.1111/mec.14764) PubMed DOI
Arendt J, Reznick D. 2008. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends in Ecol. Evol. 23, 26–32. (10.1016/j.tree.2007.09.011) PubMed DOI
Langerhans RB, DeWitt TJ. 2004. Shared and unique features of evolutionary diversification. Am. Nat. 164, 335–349. (10.1086/422857) PubMed DOI
Oke KB, Rolshausen G, LeBlond C, Hendry AP. 2017. How parallel is parallel evolution? A comparative analysis in Fishes. Am. Nat. 190, 1–16. (10.1086/691989) PubMed DOI
Cubero OF, Crespo A. 2002. Isolation of nucleic acids from lichens. In Protocols in lichenology (eds Kranner IC, Beckett RP, Varma AK), pp. 381–391. Berlin, Germany: Springer.
Kroken S, Taylor JW. 2000. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. The Bryologist 103, 645–660. (10.1639/0007-2745(2000)103[0645:PSRMAS]2.0.CO;2) DOI
Sadowska-Deś AD, Bálint M, Otte J, Schmitt I. 2013. Assessing intraspecific diversity in a lichen-forming fungus and its green algal symbiont: evaluation of eight molecular markers. Fungal Ecol. 6, 141–151. (10.1016/j.funeco.2012.12.001) DOI
Sadowska-Deś AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur J-S, Kim JA, Schmitt I. 2014. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol. Phyl. Evol. 76, 202–210. (10.1016/j.ympev.2014.03.020) PubMed DOI
Paul F, Otte J, Schmitt I, Dal Grande F. 2018. Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci. Rep. 8, 8624 (10.1038/s41598-018-26947-8) PubMed DOI PMC
Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch T. 2015. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24, 3779–3797. (10.1111/mec.13271) PubMed DOI
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. (10.1093/bioinformatics/btu033) PubMed DOI PMC
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. (10.1002/joc.1276) DOI
Wood SN. 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Statist. Soc. B 62, 413–428. (10.1111/1467-9868.00240) DOI
Wood SN. 2017. Generalized additive models: an introduction with R. Boca Raton, FL: Chapman and Hall/CRC.
R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See https://www.r-project.org.
Oksanen J, Blanchet FG, Kindt R, Legendre P, O'hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2010. vegan: community ecology package (version 1.17-4). See https://cran.r-project.org.
Baselga A, Orme CDL. 2012. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812. (10.1111/j.2041-210X.2012.00224.x) DOI
Wilson MV, Shmida A. 1984. Measuring beta diversity with presence-absence data. J. Ecol. 72, 1055–1064. (10.2307/2259551) DOI
Williams PH. 1996. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc. R. Soc. Lond. B 263, 579–588. (10.1098/rspb.1996.0087) DOI
Baselga A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness: species replacement and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232. (10.1111/j.1466-8238.2011.00756.x) DOI
Schindler DE, Armstrong JB, Reed TE. 2015. The portfolio concept in ecology and evolution. Front. Ecol. Env. 13, 257–263. (10.1890/140275) DOI
Werth S, Sork VL. 2014. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am. J. Bot. 101, 1127–1140. (10.3732/ajb.1400025) PubMed DOI
Beck A, Friedl T, Rambold G. 1998. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol. 139, 709–720. (10.1046/j.1469-8137.1998.00231.x) DOI
Rambold G, Friedl T, Beck A. 1998. Photobionts in lichens: possible indicators of phylogenetic relationships? The Bryologist 101, 392–397. (10.1639/0007-2745(1998)101[392:PILPIO]2.0.CO;2) DOI
Doering M, Piercey-Normore MD. 2009. Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. The Lichenologist 41, 69–80. (10.1017/S0024282909008111) DOI
Metzger MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R. 2013. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring: high-resolution bioclimate map of the world. Glob. Ecol. Biogeogr. 22, 630–638. (10.1111/geb.12022) DOI
Sonesson M. 1986. Photosynthesis in lichen populations from different altitudes in Swedish lapland. Polar Biol. 5, 113–124. (10.1007/BF00443383) DOI
Schipperges B, Kappen L, Sonesson M. 1995. Intraspecific variations of morphology and physiology of temperate to arctic populations of Cetraria nivalis. Lichenologist 27, 517–529. (10.1016/S0024-2829(95)80011-5) DOI
Gaio-Oliveira G, Dahlman L, Máguas C, Palmqvist K. 2004. Growth in relation to microclimatic conditions and physiological characteristics of four Lobaria pulmonaria populations in two contrasting habitats. Ecography 27, 13–28. (10.1111/j.0906-7590.2004.03577.x) DOI
Sonesson M, Sveinbjörnsson B, Tehler A, Carlsson BÅ. 2007. A comparison of the physiology, anatomy and ribosomal DNA in alpine and subalpine populations of the lichen Nephroma arcticum—the effects of an eight-year transplant experiment. Bryologist 110, 244–253. (10.1639/0007-2745(2007)110[244:ACOTPA]2.0.CO;2) DOI
Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, del Hoyo A, Guéra A, Barreno E. 2011. Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea: coexistence versus competition? Env. Microbiol. 13, 806–818. (10.1111/j.1462-2920.2010.02386.x) PubMed DOI
Determeyer-Wiedmann N, Sadowsky A, Convey P, Ott S. 2019. Physiological life history strategies of photobionts of lichen species from Antarctic and moderate European habitats in response to stressful conditions. Pol. Biol. 42, 395–405. (10.1007/s00300-018-2430-2) DOI
Domaschke S, Vivas M, Sancho LG, Printzen C. 2013. Ecophysiology and genetic structure of polar versus temperate populations of the lichen Cetraria aculeata. Oecologia 173, 699–709. (10.1007/s00442-013-2670-3) PubMed DOI
Svensson M, Caruso A, Yahr R, Ellis C, Thor G, Snäll T. 2016. Combined observational and experimental data provide limited support for facilitation in lichens. Oikos 125, 278–283. (10.1111/oik.02279) DOI
Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599. (10.1111/1365-2435.12345) DOI
Cadotte MW, Tucker CM. 2017. Should environmental filtering be abandoned? Trends Ecol. Evol. 32, 429–437. (10.1016/j.tree.2017.03.004) PubMed DOI
Rolshausen G, Hallman U, Grande FD, Otte J, Knudsen K, Schmitt I. 2020. Data from: Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients Dryad Digital Repository. (10.5061/dryad.qv9s4mw9s PubMed DOI PMC
Choosing the Right Life Partner: Ecological Drivers of Lichen Symbiosis
Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients