New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33888793
PubMed Central
PMC8062552
DOI
10.1038/s41598-021-88110-0
PII: 10.1038/s41598-021-88110-0
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- Chlorophyta klasifikace fyziologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- lišejníky klasifikace fyziologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Bolívie MeSH
We studied the biodiversity of Asterochloris photobionts found in Bolivian lichens to better understand their global spatial distribution and adaptation strategies in the context of a worldwide phylogeny of the genus. Based on nuclear ITS rDNA, the chloroplast rbcL gene and the actin type I gene we reconstructed a phylogenetic tree that recovered nine new Asterochloris lineages, while 32 Bolivian photobiont samples were assigned to 12 previously recognized Asterochloris lineages. We also show that some previously discovered Asterochloris photobiont species and lineages may occur in a broader spectrum of climatic conditions, and mycobiont species and photobionts may show different preferences along an altitude gradient. To reveal general patterns of of mycobiont specificity towards the photobiont in Asterochloris, we tested the influence of climate, altitude, geographical distance and effects of symbiotic partner (mycobiont) at the species level of three genera of lichen forming fungi: Stereocaulon, Cladonia and Lepraria. Further, we compared the specificity of mycobionts towards Asterochloris photobionts in cosmopolitan, Neotropical, and Pantropical lichen forming fungi. Interestingly, cosmopolitan species showed the lowest specificity to their photobionts, but also the lowest haplotype diversity. Neotropical and Paleotropical mycobionts, however, were more specific.
Zobrazit více v PubMed
Fernández-Brime S, Muggia L, Maier S, Grube M, Wedin M. Bacterial communities in an optional lichen symbiosis are determined by substrate, not algal photobionts. FEMS Microbiol. Ecol. 2019;95:fiz012. doi: 10.1093/femsec/fiz012. PubMed DOI
Grube M, et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 2015;9:412–424. doi: 10.1038/ismej.2014.138. PubMed DOI PMC
Spribille T, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353:488–492. doi: 10.1126/science.aaf8287. PubMed DOI PMC
Peksa O, Škaloud P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae) Mol. Ecol. 2011;20:3936–3948. doi: 10.1111/j.1365-294X.2011.05168.x. PubMed DOI
Řídká T, Peksa O, Rai H, Upreti DK, Škaloud P. Photobiont diversity in Indian Cladonialichens, with special emphasis on the geographical patterns. In: Rai H, Upreti DK, editors. Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology. New York: Springer; 2014. pp. 53–71.
Rolshausen G, et al. Expanding the mutualistic niche: Parallel symbiont turnover along climatic gradients. Proc. R. Soc. B. 2020;287:1924. doi: 10.1098/rspb.2019.2311. PubMed DOI PMC
Kosecka M, et al. Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. J. Phycol. 2020;56:979–993. doi: 10.1111/jpy.12994. PubMed DOI
Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 2014;114:463–475. doi: 10.1093/aob/mcu146. PubMed DOI PMC
Vančurová L, Muggia L, Peksa O, Řídká T, Škaloud P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota) Mol. Ecol. 2018;27:3016–3033. doi: 10.1111/mec.14764. PubMed DOI
Beck A, Kasalicky T, Rambold G. Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol. 2002;153:317–326. doi: 10.1046/j.0028-646X.2001.00315.x. DOI
Nelsen MP, Gargas A. Actin type intron sequences increase phylogenetic resolution: An example from Asterochloris (Chlorophyta: Trebouxiophyceae) Lichenologist. 2006;38:435–440. doi: 10.1017/S0024282906005779. DOI
Nelsen MP, Gargas A. Dissociation and horizontal transmission of co-dispersed lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae) New Phytol. 2008;177:264–275. doi: 10.1111/j.1469-8137.2007.02241.x. PubMed DOI
Škaloud P, Peksa O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris. Mol. Phylogenet. Evol. 2010;54:36–46. doi: 10.1016/j.ympev.2009.09.035. PubMed DOI
Škaloud P, Steinová J, Řídká T, Vančurová L, Peksa O. Assembling the challenging puzzle of algal biodiversity: Species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta) J. Phycol. 2015;51:507–527. doi: 10.1111/jpy.12295. PubMed DOI
Steinová J, Škaloud P, Yahr R, Bestová H, Muggia L. Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 2019;134:226–237. doi: 10.1016/j.ympev.2019.02.014. PubMed DOI
Vančurová L, Peksa O, Němcová Y, Škaloud P. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa. 2015;219:118–132. doi: 10.11646/phytotaxa.219.2.2. DOI
Vančurová L, et al. Symbiosis between river and dry lands: Phycobiont dynamics on river gravel bars. Algal Res. 2020;51:102062. doi: 10.1016/j.algal.2020.102062. DOI
Yahr R, Vilgalys R, Depriest PT. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol. Ecol. 2004;13:3367–3378. doi: 10.1111/j.1365-294X.2004.02350.x. PubMed DOI
Tschermak-Woess E. Asterochloris phycobiontica gen. et spec. nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst. Evol. 1980;135:279–294. doi: 10.1007/BF00983192. DOI
Moya P, et al. Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. Nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 2015;65(6):1838–1854. doi: 10.1099/ijs.0.000185. PubMed DOI
Kim JI, et al. Asterochloris sejongensis sp. nov. (Trebouxiophyceae, Chlorophyta) from King George Island, Antarctica. Phytotaxa. 2017;295:60–70. doi: 10.11646/phytotaxa.295.1.5. DOI
Kim JI, et al. Taxonomic study of three new Antarctic Asterochloris(Trebouxio-phyceae) based on morphological and molecular data. Korean Soc. Phycol. 2020;35(1):17–32.
Pino-Bodas R, Stenroos S. Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota) Microb. Ecol. 2020 doi: 10.1007/s00248-020-01633-3. PubMed DOI PMC
Fernandez-Mendoza F, et al. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 2011;20:1208–1232. doi: 10.1111/j.1365-294X.2010.04993.x. PubMed DOI
Helms, G. Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Göttingen, Doctoral thesis. Germany: Georg-August Universität Göttingen (2003).
Kroken S, Taylor JW. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist. 2000;103:645–660. doi: 10.1639/0007-2745(2000)103[0645:PSRMAS]2.0.CO;2. DOI
Leavitt SD, et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen- forming family Parmeliaceae (Ascomycota) Mol. Ecol. 2015;24:3779–3797. doi: 10.1111/mec.13271. PubMed DOI
Magain N, Miadlikowska J, Goffinet B, Sérusiaux E, Lutzoni F. Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota) Syst. Biol. 2016;66:74–99. PubMed
Mark K, et al. Contrasting cooccurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. 2020;227:1362–1375. doi: 10.1111/nph.16475. PubMed DOI
O'Brien HE, Miadlikowska J, Lutzoni F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 2013;198:557–566. doi: 10.1111/nph.12165. PubMed DOI
Piercey-Normore MD, DePriest PT. Algal switching among lichen symbionts. Am. J. Bot. 2001;88:1490–1498. doi: 10.2307/3558457. PubMed DOI
Yahr R, Vilgalys R, DePriest PT. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 2006;171:847–860. doi: 10.1111/j.1469-8137.2006.01792.x. PubMed DOI
Muggia L, et al. The symbiotic playground of lichen thalli—A highly flexible photobiont association in rock inhabiting lichens. FEMS Microbiol. Ecol. 2013;85:313–323. doi: 10.1111/1574-6941.12120. PubMed DOI
Sadowska-Deś AD, et al. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol. Phylogenet. Evol. 2014;76:202–210. doi: 10.1016/j.ympev.2014.03.020. PubMed DOI
Wirtz N, et al. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 2003;160:177–183. doi: 10.1046/j.1469-8137.2003.00859.x. PubMed DOI
Ertz D, Guzow-Krzemińska B, Thor G, Łubek A, Kukwa M. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep. 2018;8:4952. doi: 10.1038/s41598-018-23219-3. PubMed DOI PMC
Marshall WA, Chalmers MO. Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography. 1997;20:585–594. doi: 10.1111/j.1600-0587.1997.tb00427.x. DOI
Printzen C, Domaschke S, Fernandez-Mendoza F, Perez-Ortega S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys. 2013;6:33–53. doi: 10.3897/mycokeys.6.3185. DOI
Pardo-De la Hoz CJ, et al. Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Front. Microbiol. 2018;9:2770–2770. doi: 10.3389/fmicb.2018.02770. PubMed DOI PMC
Singh G, et al. Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol. 2017;214:317–329. doi: 10.1111/nph.14366. PubMed DOI
Cordeiro LMC, et al. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol. Ecol. 2005;54:381–390. doi: 10.1016/j.femsec.2005.05.003. PubMed DOI
Pullaiah, T. (ed.) (2019) Biodiversity in Bolivia in: Global Biodiversity Volume 4: Selected Countries in the Americas and Australia, Chapter 1. 1–574 (Apple Academic Press, 2001).
Ibisch, P. L. & Mérida, G. Biodiversity: the richness of Bolivia. State of knowledge and conservation. 1–638 (Ministry of Sustainable Development, Editorial FAN, 2004).
Werth S, Sork VL. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am. J. Bot. 2014;101:1127–1140. doi: 10.3732/ajb.1400025. PubMed DOI
Rolshausen G, Dal Grande F, Sadowska-Deś AD, Otte J, Schmitt I. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualistmediated niche expansions. Ecography. 2018;41:1380–1392. doi: 10.1111/ecog.03457. DOI
Blaha J, Baloch E, Grube M. High photobiont diversity insymbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota) Biol. J. Linn. Soc. 2006;88:283–293. doi: 10.1111/j.1095-8312.2006.00640.x. DOI
Vargas Castillo R, Beck A. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 2012;116:665–676. doi: 10.1016/j.funbio.2012.04.001. PubMed DOI
Bačkor M, Klemová K, Bačkorová M, Ivanova V. Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. J. Chem. Ecol. 2010;36:405–411. doi: 10.1007/s10886-010-9776-4. PubMed DOI
Galloway, D. J. Lichen biogeography. In: Nash T. H. (ed.) Lichen Biology, 315–335 (Cambridge University Press, 2008).
Dal Grande F, et al. Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 2017;217:277–289. doi: 10.1111/nph.14770. PubMed DOI
Dal Grande F, Widmer I, Wagner HH, Scheidegger C. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol. Ecol. 2012;21:3159–3172. doi: 10.1111/j.1365-294X.2012.05482.x. PubMed DOI
Otálora MAG, et al. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes) Mol. Phylogenet. Evol. 2010;56:1089–1095. doi: 10.1016/j.ympev.2010.05.013. PubMed DOI
Ruprecht U, Fernández-Mendoza F, Türk R, Fryday A. High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. Lichenologist. 2020;52:287–303. doi: 10.1017/S0024282920000225. PubMed DOI PMC
Ahti, T., Cladoniaceae in Flora Neotropica Monograph 78. 2–362 (New York Botanical Garden Press, 2000).
Parnmen S, Leavitt SD, Rangsiruji A, Lumbsch HT. Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales) Phytotaxa. 2013;115:1–14. doi: 10.11646/phytotaxa.115.1.1. DOI
Guzow-Krzemińska B, et al. New species and records of lichens from Bolivia. Phytotaxa. 2019;397:257–279. doi: 10.11646/phytotaxa.397.4.1. DOI
Sipman HJM. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia. 2004;17:23–35.
Saag L, Saag A, Randlane T. World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota) Lichenologist. 2009;41:25–60. doi: 10.1017/S0024282909007993. DOI
Guzow-Krzemińska B, et al. Phylogenetic placement of Lepraria cryptovouauxii sp. nov. (Lecanorales, Lecanoromycetes, Ascomycota) with notes on other Lepraria species from South America. MycoKeys. 2019;53:1–22. doi: 10.3897/mycokeys.53.33508. PubMed DOI PMC
Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens. 1–101 (British Lichen Society, 2001).
Cubero OF, Crespo A, Fatehi J, Bridge PD. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 1999;216:243–249. doi: 10.1007/BF01084401. DOI
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 345–322 (Academic Press, 1990).
Sherwood AR, Garbary DJ, Sheath RG. Assessing the phylogenetic position of the Prasiolales (Chlorophyta) using rbcL and 18S rRNA gene sequence data. Phycologia. 2000;39:139–146. doi: 10.2216/i0031-8884-39-2-139.1. DOI
Nelsen MP, Rivas Plata E, Andrew CJ, Lücking R, Lumbsch HT. Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J. Phycol. 2011;47:282–290. doi: 10.1111/j.1529-8817.2011.00962.x. PubMed DOI
Widmer I, Dal Grande F, Cornejo C, Scheidegger C. Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biol. 2010;114:538–544. doi: 10.1016/j.funbio.2010.04.003. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Okonechnikov K, Golosova O, Fursov M. UGENE team. Unipro GENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE): 1–8 (2010).
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:772–773. PubMed
Rambaut, A. FigTreev1.4.2. Retrieved from: http://tree.bio.ed.ac.uk/software/figtree/ (2006–2014).
Oksanen, et al., vegan: Community ecology package manual. Retrieved from https://cran.rproject.org/package=vegan (2017).
Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H. Dissecting the spatial structure of ecological data at multiple scales. Ecology. 2004;85:1826–1832. doi: 10.1890/03-3111. DOI
Lefeuvre, P. BoSSA: A bunch of structure and sequence analysis manual. Retrieved from https://cran.r-project.org/package=BoSSA (2018).
McArdle BH, Anderson MJ. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology. 2001;82:290–297. doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2. DOI
Stenroos S, Pino-Bodas R, Hyvönen J, Lumbsch TH, Ahti T. Phylogeny of family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics. 2019;35:351–384. doi: 10.1111/cla.12363. PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing.
https://www.R-project.org/ (2017).
RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ (2018).
Aktas, C. Manipulating DNA Sequences and Estimating Unambiguous Haplotype Network with Statistical Parsimony. Retrieved from https://CRAN.R project.org/package=haplotypes (2020).
Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A., and V. Tannen. TreeBASE v. 2: A Database of Phylogenetic Knowledge. In: e-BioSphere (2009)
Choosing the Right Life Partner: Ecological Drivers of Lichen Symbiosis