Choosing the Right Life Partner: Ecological Drivers of Lichen Symbiosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34970234
PubMed Central
PMC8712729
DOI
10.3389/fmicb.2021.769304
Knihovny.cz E-zdroje
- Klíčová slova
- Asterochloris mediterranea, Macaronesia, Stereocaulon canariense, lichen, phycobiont sharing, specificity, symbiosis, temperature gradient,
- Publikační typ
- časopisecké články MeSH
Lichens are an iconic example of symbiotic systems whose ecology is shaped by the requirements of the symbionts. Previous studies suggest that fungal (mycobionts) as well as photosynthesizing (phycobionts or cyanobionts) partners have a specific range of acceptable symbionts that can be chosen according to specific environmental conditions. This study aimed to investigate the effects of climatic conditions and mycobiont identity on phycobiont distribution within the lichen genera Stereocaulon, Cladonia, and Lepraria. The study area comprised the Canary Islands, Madeira, Sicily, and the Aeolian Islands, spanning a wide range of climatic conditions. These islands are known for their unique and diverse fauna and flora; however, lichen phycobionts have remained unstudied in most of these areas. In total, we genetically analyzed 339 lichen samples. The phycobiont pool differed significantly from that outside the studied area. Asterochloris mediterranea was identified as the most abundant phycobiont. However, its distribution was limited by climatic constraints. Other species of Asterochloris and representatives of the genera Chloroidium, Vulcanochloris, and Myrmecia were also recovered as phycobionts. The selection of symbiotic partners from the local phycobiont pool was driven by mycobiont specificity (i.e., the taxonomic range of acceptable partners) and the environmental conditions, mainly temperature. Interestingly, the dominant fungal species responded differently in their selection of algal symbionts along the environmental gradients. Cladonia rangiformis associated with its phycobiont A. mediterranea in a broader range of temperatures than Stereocaulon azoreum, which favors other Asterochloris species along most of the temperature gradient. Stereocaulon vesuvianum associated with Chloroidium spp., which also differed in their temperature optima. Finally, we described Stereocaulon canariense as a new endemic species ecologically distinct from the other Stereocaulon species on the Canary Islands.
Department of Botany Faculty of Science Charles University Prague Czechia
Institute of Botany The Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Ahmadjian V., Jacobs J. B. (1981). Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289, 169–172. doi: 10.1038/289169a0 DOI
Bačkor M., Peksa O., Škaloud P., Bačkorová M. (2010). Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol. Environ. Saf. 73, 603–612. doi: 10.1016/j.ecoenv.2009.11.002, PMID: PubMed DOI
Baruffo L., Zedda L., Elix J. A., Tretiach M. (2006). A revision of the lichen genus Lepraria s.lat. in Italy. Nova Hedwigia 83, 387–430. doi: 10.1127/0029-5035/2006/0083-0387 DOI
Beck A. (2002). Selektivität der Symbionten schwermetalltoleranter Flechten. [dissertation thesis]. Munich, Germany: Ludwig-Maxmilians-Universität München.
Beiggi S., Piercey-Normore M. D. (2007). Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia. J. Mol. Evol. 64, 528–542. doi: 10.1007/s00239-006-0115-x, PMID: PubMed DOI
Blonder B., Lamanna C., Violle C., Enquist B. J. (2014). The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609. doi: 10.1111/geb.12146 DOI
Boluda C. G., Rico V. J., Divakar P. K., Nadyeina O., Myllys L., McMullin R. T., et al. . (2019). Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi (Bryoria sect. Implexae, Parmeliaceae). Persoonia 42, 75–100. doi: 10.3767/persoonia.2019.42.04, PMID: PubMed DOI PMC
Burgaz A. R., Ahti T. (2009). Flora Liquenológica Ibérica. Vol 4. Cladoniaceae. Madrid: Sociedad Española de Liquenología.
Candotto-Carniel F., Gerdol M., Montagner A., Banchi E., De Moro G., Manfrin C., et al. . (2016). New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Mol. Biol. 91, 319–339. doi: 10.1007/s11103-016-0468-5, PMID: PubMed DOI
Carine M. A., Russell S. J., Santos-Guerra A., Francisco-Ortega J. (2004). Relationships of the Macaronesian and mediterranean floras: Molecular evidence for multiple colonizations into Macaronesia and back-colonization of the continent in Convolvulus (Convolvulaceae). Am. J. Bot. 91, 1070–1085. doi: 10.3732/ajb.91.7.1070 PubMed DOI
Casano L. M., del Campo E. M., García-Breijo F. J., Reig-Armiñana J., Gasulla F., Del Hoyo A., et al. . (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ. Microbiol. 13, 806–818. doi: 10.1111/j.1462-2920.2010.02386.x, PMID: PubMed DOI
Castresana J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. doi: 10.1093/oxfordjournals.molbev.a026334, PMID: PubMed DOI
Chazarra A., Baceló A. M., Pires V., Cunha S., Silva A., Marques J., et al. . (2011). Climate Atlas of the Archipelagos of the Canary Islands, Madeira and the Azores. Lisbon: Instituto Nacional de Meteorologia.
Crespo A., Arguello A., Lumbsch H. T., Llimona X., Tønsberg T. (2006). A new species of Lepraria (Lecanorales: Stereocaulaceae) from the Canary Islands and the typification of Lepraria isidiata. Lichenologist 38, 213–221. doi: 10.1017/S0024282906005846 DOI
Cubero O. F., Crespo A., Fatehi J., Bridge P. D. (1999). DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 216, 243–249. doi: 10.1007/BF01084401 DOI
Dal Grande F., Rolshausen G., Divakar P. K., Crespo A., Grande F. D., Otte J., et al. . (2017). Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 217, 277–289. doi: 10.1111/nph.14770, PMID: PubMed DOI
Darienko T., Lukešová A., Pröschold T. (2018). The polyphasic approach revealed new species of Chloroidium (Trebouxiophyceae, Chlorophyta). Phytotaxa 372, 51–66. doi: 10.11646/phytotaxa.372.1.4 DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. doi: 10.1038/nmeth.2109, PMID: PubMed DOI PMC
de Vera J.-P. (2012). Lichens as survivors in space and on Mars. Fungal Ecol. 5, 472–479. doi: 10.1016/j.funeco.2012.01.008 DOI
del Arco Aguilar M. J., Rodríguez Delgado O. (2018). “Vegetation of the Canary Islands” in Vegetation of the Canary Islands (Cham: Springer; ).
Di Gristina E., Gottschlich G., Raimondo F. M. (2016). Rediscovery of Hieracium nebrodense (Asteraceae), a little-known endemic of Sicily (Italy). Phytotaxa 265, 59–66. doi: 10.11646/phytotaxa.265.1.5 DOI
Dormann C. F., Gruber B., Fruend J. (2008). Introducing the bipartite package: analysing ecological networks. R News 8, 8–11.
Ellis C. (2019). Climate change, bioclimatic models and the risk to lichen diversity. Diversity 11:54. doi: 10.3390/d11040054 DOI
Elshobary M. E., Osman M. E. H., Abushady A. M., Piercey-Normore M. D. (2015). Comparison of lichen-forming cyanobacterial and green algal photobionts with free-living algae. Cryptogam. Algol. 36, 81–100. doi: 10.7872/crya.v36.iss1.2015.81 DOI
Emerson B. C. (2002). Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol. Ecol. 11, 951–966., PMID: PubMed
Engelen A., Convey P., Ott S. (2010). Life history strategy of Lepraria borealis at an Antarctic inland site, coal Nunatak. Lichenologists 42, 339–346. doi: 10.1017/S0024282909990600 DOI
Fernández-Palacios J. M., Whittaker R. J. (2008). The Canaries: An important biogeographical meeting place. J. Biogeogr. 35, 379–387. doi: 10.1111/j.1365-2699.2008.01890.x, PMID: PubMed DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x, PMID: PubMed DOI
Gasulla F., Barrasa J. M., Casano L. M., del Campo E. M. (2020). Symbiont composition of the basidiolichen Lichenomphalia meridionalis varies with altitude in the Iberian Peninsula. Lichenologists 52, 17–26. doi: 10.1017/S002428291900046X DOI
Giovino A., Marino P., Domina G., Scialabba A., Schicchi R., Diliberto G., et al. . (2016). Evaluation of the DNA barcoding approach to develop a reference data-set for the threatened flora of Sicily. Plant Biosyst. 150, 631–640. doi: 10.1080/11263504.2014.989285 DOI
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. doi: 10.1080/10635150390235520, PMID: PubMed DOI
Hafellner J. (2008). Additions and corrections to the checklist and bibliography of lichens and Lichenicolous fungi of insular Laurimacaronesia. IV. Fritschiana 64, 1–28.
Hernández Padrón C. E., Pérez-Vargas I. (2010). “Lichenes, lichenicolous fungi,” in Lista de especies silvestres de Canarias. Hongos, plantas y animales terrestres. 2009. eds. Arechavaleta Hernández M., Rodríguez Núñez S., Zurita Pérez N., García Ramírez A. (Santa Cruz de Tenerife: Gobierno de Canarias; ), 71–105.
Högnabba F. (2006). Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycol. Res. 110, 1080–1092. doi: 10.1016/j.mycres.2006.04.013, PMID: PubMed DOI
Hutchinson G. E. (1957). Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. doi: 10.1101/SQB.1957.022.01.039 DOI
Kaasalainen U., Tuovinen V., Mwachala G., Pellikka P., Rikkinen J. (2021). Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. Front. Microbiol. 12:672333. doi: 10.3389/fmicb.2021.672333, PMID: PubMed DOI PMC
Kanz B., von Brackel W., Cezanne R., Eichler M., Hohmann M.-L., Teuber D., et al. . (2015). DNA barcodes for the distinction of reindeer lichens: a case study using Cladonia rangiferina and C. stygia. Herz 28, 445–464. doi: 10.13158/heia.28.2.2015.445 DOI
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. . (2017). Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4:170122. doi: 10.1038/sdata.2017.122, PMID: PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC
Kelly L. J., Hollingsworth P. M., Coppins B. J., Ellis C. J., Harrold P., Tosh J., et al. . (2011). DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol. 191, 288–300. doi: 10.1111/j.1469-8137.2011.03677.x PubMed DOI
Kim J. I., Kim Y. J., Nam S. W., So J. E., Hong S. G., Choi H. G., et al. . (2020). Taxonomic study of three new antarctic Asterochloris (Trebouxiophyceae) based on morphological and molecular data. Algae 35, 17–32. doi: 10.4490/algae.2020.35.2.23 DOI
Korchikov E. S., Bolgov E. V., Ilyina E. S., Pankratov T. A. (2018). Species diversity and photobiont localization specificities in epigene lichens (on the example of the genus Cladonia). Samara J. Sci. 7, 59–64. doi: 10.17816/snv201873111 DOI
Kosecka M., Guzow-Krzemińska B., Černajová I., Škaloud P., Jabłońska A., Kukwa M. (2021). New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae. Sci. Rep. 11:8701. doi: 10.1038/s41598-021-88110-0, PMID: PubMed DOI PMC
Lamb I. M. (1977). A conspectus of the lichen genus Stereocaulon (Schreb.) Hoffm. J. Hattori Bot. Lab. 43, 191–355.
Lamb I. M. (1978). Keys to the species of the lichen genus Stereocaulon (Schreb.) Hoffm. J. Hattori Bot. Lab. 22, 209–250.
Leavitt S. D., Kraichak E., Nelsen M. P., Altermann S., Divakar P. K., Alors D. (2015). Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24, 3779–3797. doi: 10.1111/mec.13271, PMID: PubMed DOI
Leavitt S. D., Kraichak E., Vondrák J., Nelsen M. P., Sohrabi M., Perez-Ortega S., et al. . (2016). Cryptic diversity and symbiont interactions in rock-posy lichens. Mol. Phylogenet. Evol. 99, 261–274. doi: 10.1016/j.ympev.2016.03.030, PMID: PubMed DOI
Lindgren H., Moncada B., Lücking R., Magain N., Simon A., Goffinet B., et al. . (2020). Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol. Phylogenet. Evol. 150:106860. doi: 10.1016/j.ympev.2020.106860, PMID: PubMed DOI
Lücking R. (2019). Stop the abuse of time! Strict temporal banding is not the future of rank-based classifications in fungi (including lichens) and other organisms. Crit. Rev. Plant Sci. 38, 199–253. doi: 10.1080/07352689.2019.1650517 DOI
Molins A., Chiva S., Calatayud Á., Marco F., García-Breijo F., Reig-Armiñana J., et al. . (2020). Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zoharyi from the Canary Islands. Symbiosis 82, 19–34. doi: 10.1007/s13199-020-00722-8 DOI
Moya P., Chiva S., Molins A., Jadrná I., Škaloud P., Peksa O., et al. . (2018). Myrmecia israeliensis as the primary symbiotic microalga in squamulose lichens growing in European and Canary Island terricolous communities. Fottea 18, 72–85. doi: 10.5507/fot.2017.022 DOI
Moya P., Škaloud P., Chiva S., García-Breijo F. J., Reig-Armiñana J., Vančurová L., et al. . (2015). Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 65, 1838–1854. doi: 10.1099/ijs.0.000185, PMID: PubMed DOI
Muggia L., Perez-Ortega S., Kopun T., Zellnig G., Grube M. (2014). Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 114, 463–475. doi: 10.1093/aob/mcu146, PMID: PubMed DOI PMC
Nelsen M. P., Gargas A. (2006). Actin type I introns offer potential for increasing phylogenetic resolution in Asterochloris (Chlorophyta: Trebouxiophyceae). Lichenologists 38, 435–440. doi: 10.1017/S0024282906005779 DOI
Nelsen M. P., Gargas A. (2008). Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol. 177, 264–275. doi: 10.1111/j.1469-8137.2007.02241.x, PMID: PubMed DOI
Orange A., James P. W., White F. J. (2001). Microchemical Methods for the Identification of Lichens. British Lichen Society. Available at: https://books.google.cz/books/about/Microchemical_Methods_for_the_Identifica.html?id=IktFAQAAIAAJ&pgis=1 (Accessed February 19, 2016).
Osyczka P., Lenart-Boroń A., Boroń P., Rola K. (2020). Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Mycologia 113, 43–55. doi: 10.1080/00275514.2020.1813486, PMID: PubMed DOI
Park C. H., Kim K. M., Elvebakk A., Kim O.-S., Jeong G., Hong S. G. (2015). Algal and fungal diversity in Antarctic lichens. J. Eukaryot. Microbiol. 62, 196–205. doi: 10.1111/jeu.12159, PMID: PubMed DOI
Pateiro-Lopez B., Rodriguez-Casal A. (2016). Alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. Available at: https://cran.r-project.org/package=alphahull (Accessed June 01, 2020).
Paul F., Otte J., Schmitt I., Dal Grande F. (2018). Comparing sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci. Rep. 8:8624. doi: 10.1038/s41598-018-26947-8, PMID: PubMed DOI PMC
Peksa O., Škaloud P. (2011). Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol. Ecol. 20, 3936–3948. doi: 10.1111/j.1365-294X.2011.05168.x, PMID: PubMed DOI
Piercey-Normore M. D., DePriest P. T. (2001). Algal switching among lichen symbioses. Am. J. Bot. 88, 1490–1498. doi: 10.2307/3558457, PMID: PubMed DOI
Pino-Bodas R., Martín M. P., Burgaz A. R., Lumbsch H. T. (2013). Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. 13, 1058–1068. Mol. Ecol. Resour. doi: 10.1111/1755-0998.12086 PubMed DOI
Pino-Bodas R., Stenroos S. (2020). Global biodiversity patterns of the photobionts associated with the genus cladonia (Lecanorales, Ascomycota). Microb. Ecol. 82, 173–187. doi: 10.1007/s00248-020-01633-3, PMID: PubMed DOI PMC
Rambold G., Friedl T., Beck A. (1998). Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101, 392–397. doi: 10.1639/0007-2745(1998)101[392:PILPIO]2.0.CO;2 DOI
Rolshausen G., Hallman U., Grande F. D., Otte J., Knudsen K., Schmitt I. (2020). Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients. Proc. R. Soc. B Biol. Sci. 287:20192311. doi: 10.1098/rspb.2019.2311, PMID: PubMed DOI PMC
Romeike J., Friedl T., Helms G., Ott S. (2002). Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula. Mol. Biol. 19, 1209–1217. doi: 10.1093/oxfordjournals.molbev.a004181, PMID: PubMed DOI
Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi: 10.1093/bioinformatics/btg180, PMID: PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. . (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice Across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029, PMID: PubMed DOI PMC
Sadowsky A., Hussner A., Ott S. (2012). Submersion tolerance in a habitat of Stereocaulon paschale (Stereocaulaceae) and Cladonia stellaris (Cladoniaceae) from the high mountain region Rondane, Norway. Nova Hedwigia 94, 323–334. doi: 10.1127/0029-5035/2012/0014 DOI
Sadowsky A., Ott S. (2012). Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58, 81–90. doi: 10.1007/s13199-012-0198-7 DOI
Sérusiaux E., Villarreal A. J. C., Wheeler T., Goffinet B. (2011). Recent origin, active speciation and dispersal for the lichen genus Nephroma (Peltigerales) in Macaronesia. J. Biogeogr. 38, 1138–1151. doi: 10.1111/j.1365-2699.2010.02469.x DOI
Shishido T. K., Wahlsten M., Laine P., Rikkinen J., Lundell T., Auvinen P. (2021). Microbial communities of Cladonia lichens and their biosynthetic gene clusters potentially encoding natural products. Microorganisms 9:1347. doi: 10.3390/microorganisms9071347, PMID: PubMed DOI PMC
Silverstein R. N., Cunning R., Baker A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang. Biol. 21, 236–249. doi: 10.1111/gcb.12706 PubMed DOI
Škaloud P., Peksa O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris. Mol. Phylogenet. Evol. 54, 36–46. doi: 10.1016/j.ympev.2009.09.035, PMID: PubMed DOI
Škaloud P., Steinová J., Řídká T., Vančurová L., Peksa O. (2015). Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J. Phycol. 51, 507–527. doi: 10.1111/jpy.12295, PMID: PubMed DOI
Smith H. B., Dal Grande F., Muggia L., Keuler R., Divakar P. K., Grewe F., et al. . (2020). Metagenomic data reveal diverse fungal and algal communities associated with the lichen symbiosis. Symbiosis 82, 133–147. doi: 10.1007/s13199-020-00699-4 DOI
Sparrius L. B., Aptroot A., Sipman H. J. M., Pérez-Vargas I., Matos P., Gerlach A., et al. . (2017). Estimating the population size of the endemic lichens Anzia centrifuga (Parmeliaceae) and Ramalina species (Ramalinaceae) on Porto Santo (Madeira archipelago). Bryologist 120, 293–301. doi: 10.1639/0007-2745-120.3.293 DOI
Steinová J., Škaloud P., Yahr R., Bestová H., Muggia L. (2019). Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 134, 226–237. doi: 10.1016/j.ympev.2019.02.014, PMID: PubMed DOI
Swofford D. L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Associates.
Tretiach M., Muggia L., Baruffo L. (2009). Species delimitation in the Lepraria isidiata-L. santosii group: a population study in the Mediterranean-Macaronesian region. Lichenologist 41, 1–15. doi: 10.1017/S0024282909008093 DOI
Troia A. (2012). Insular endemism in the Mediterranean vascular flora: the case of the Aeolian Islands (Sicily, Italy). Biodivers. J. 3, 369–374.
Vaiglová Z. (2017). Dynamics of a lichen symbiosis. [master’s thesis]. Prague, Czech Republic: Charles University.
van den Boom P. P. G., Clerc P. (2015). New records of lichens and lichenicolous fungi from La Gomera (Canary Islands, Spain), including the new species: Usnea boomiana P. Clerc. Candollea 70, 165–177. doi: 10.15553/c2015v702a1 DOI
van den Boom P. P. G., Ertz D. (2013). Further new or interesting lichens and Lichenicolous fungi of Tenerife (Canary Islands, Spain). Stapfia Rep. 99, 52–60.
van den Boom P. P. G., Etayo J. (2006). New records of lichens and lichenicolous fungi from Fuerteventura (Canary Islands), with descriptions of some new species. Cryptogam. Mycol. 27, 341–374.
van den Boom P. P. G., Magain N. (2020). Three new lichen species from Macaronesia belonging in Ramalinaceae, with the description of a new genus. Plant Fungal Syst. 65, 167–175. doi: 10.35535/pfsyst-2020-0011 DOI
Vančurová L., Kalníková V., Peksa O., Škvorová Z., Malíček J., Moya P., et al. . (2020). Symbiosis between river and dry lands: Phycobiont dynamics on river gravel bars. Algal Res. 51:102062. doi: 10.1016/j.algal.2020.102062 DOI
Vančurová L., Muggia L., Peksa O., Řídká T., Škaloud P. (2018). The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 27, 3016–3033. doi: 10.1111/mec.14764, PMID: PubMed DOI
Vančurová L., Peksa O., Němcová Y., Škaloud P. (2015). Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219, 118–132. doi: 10.11646/phytotaxa.219.2.2 DOI
Vargas Castillo R., Beck A. (2012). Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 116, 665–676. doi: 10.1016/j.funbio.2012.04.001, PMID: PubMed DOI
Vondrák J., Frolov I., Košnar J., Arup U., Veselská T., Halıcı G., et al. . (2020). Substrate switches, phenotypic innovations and allopatric speciation formed taxonomic diversity within the lichen genus Blastenia. J. Syst. Evol. 58, 295–330. doi: 10.1111/jse.12503 DOI
Weber K., Kabsch W. (1994). Intron positions in actin genes seem unrelated to the secondary structure of the protein. EMBO J. 13, 1280–1286. doi: 10.1002/j.1460-2075.1994.tb06380.x, PMID: PubMed DOI PMC
White T. J., Bruns T., Lee S., Taylor J. W. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications. eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (San Diego: Academic Press; ), 315–322.
Yahr R., Vilgalys R., Depriest P. T. (2004). Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol. Ecol. 13, 3367–3378. doi: 10.1111/j.1365-294X.2004.02350.x, PMID: PubMed DOI
Yahr R., Vilgalys R., DePriest P. T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 171, 847–860. doi: 10.1111/j.1469-8137.2006.01792.x, PMID: PubMed DOI
Zwickl D. J. (2006). Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. Austin, TX: The University of Texas at Austin.