Biodiversity Patterns and Ecological Preferences of the Photobionts Associated With the Lichen-Forming Genus Parmelia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35003003
PubMed Central
PMC8739953
DOI
10.3389/fmicb.2021.765310
Knihovny.cz E-zdroje
- Klíčová slova
- Trebouxia, distribution, habitat, microalgae, phycobiont, symbiosis,
- Publikační typ
- časopisecké články MeSH
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
Zobrazit více v PubMed
Ahlmann-Eltze C., Patil I. (2021). Ggsignif: R package for displaying significance brackets for ‘gplot2. DOI
Arnold A. E., Miadlikowska J., Higgins K. L., Sarvate S. D., Gugger P., Way A., et al. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? PubMed DOI
Bačkor M., Peksa O., Škaloud P., Backorová M. (2010). Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. PubMed DOI
Bastian M., Heymann S., Jacomy M. (2009). “Gephi: an open source software for exploring and manipulating networks,” in
Beck A., Kasalicky T., Rambold G. (2002). Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida.
Blaha J., Baloch E., Grube M. (2006). High photobiont diversity associated with the euryoecious lichen-forming ascomycete DOI
Borcard D., Legendre P., Avois-Jacquet C., Tuomisto H. (2004). Dissecting the spatial structure of ecological data at multiple scales.
Casano L. M., del Campo E., García-Breijo F., Reig-Armiñana J., Gasulla F., del Hoyo A., et al. (2011). Two Trebouxia algae with different physiological performances are ever present in lichen thalli of Ramalina farinacea. Coexistence versus competition? PubMed DOI
Chagnon P. L., Magain N., Miadlikowska J., Lutzoni F. (2019). Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus Peltigera. DOI
Crespo A., Bridge P. D., Cubero O. F., Hawksworth D. L. (1997). Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata.
Crespo A., Bridge P. D., Hawksworth D. L., Grube M., Cubero O. F. (1999). Comparison of rRNA genotype frequencies of
Crespo A., Kauff F., Divakar P. K., del Prado R., Pérez-Ortega S., de Paz G., et al. (2010). Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. DOI
Crespo A., Molina M. C., Blanco O., Schroeter B., Sancho L. G., Hawksworth D. L. (2002). rDNA ITS and beta-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. DOI
Crespo A., Rico V. J., Garrido E., Lumbsch H. T., Divakar P. K. (2020). A revision of species of the
Currie D. J., Mittelbach G. G., Cornell H. V., Field R., Guégan J. F., Hawkins B. A., et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. DOI
Dal Grande F., Rolshausen G., Divakar P. K., Crespo A., Otte J., Schleuning M., et al. (2018). Environment and host identity structure communities of green algal symbionts in lichens. PubMed DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2, more models, new heuristics and parallel computing. PubMed DOI PMC
del Campo E. M., Gimeno J., De Nova J. P. G., Casano L. M., Gasulla F., García-Breijo F., et al. (2010). South European populations of
Divakar P. K., Leavitt S. D., Molina M. C., Del-Prado R., Lumbsch H. T., Crespo A. (2016). A DNA barcoding approach for identification of hidden diversity in
Divakar P. K., Molina M. C., Lumbsch H. T., Crespo A. (2005). Parmelia barrenoae, a new lichen species related to
Drummond A. J., Suchard M. A., Xie D., Rambaut A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. PubMed DOI PMC
Dumitru C. (2019).
Ertz D., Guzow-Krzemińska B., Thor G., Łubek A., Kukwa M. (2018). Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. PubMed DOI PMC
Fernández-Mendoza F., Domaschke S., García M. A., Jordan P., Martín M. P., Printzen C. (2011). Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. PubMed DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. PubMed DOI
Garrido-Benavent I., Molins A., Barreno E. (2021). Genetic variation of the symbiont partners in the endangered macrolichen DOI
Grube M., Wedin M. (2016). Lichenized fungi and the evolution of symbiotic organization. PubMed DOI
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. PubMed DOI
Hale M. E., Jr. (1987). A monograph of the lichen genus DOI
Hawksworth D. L., Blanco O., Divakar P. K., Ahti T., Crespo A. (2008). A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. DOI
Hawksworth D. L., Divakar P. K., Crespo A., Ahti T. (2011). The checklist of parmelioid and similar lichens in Europe and some adjacent territories: additions and corrections. DOI
Hawksworth D. L., Honegger R. (1994). “The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers,” in
Helms G., Friedl T., Rambold G. (2003). Phylogenetic relationships of the physciaceae inferred from rDNA sequence data and selected phenotypic characters. PubMed DOI
Hillis D. M., Bull J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.
Jackson D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. DOI
Jüriado I., Kaasalainen U., Jylhä M., Rikkinen J. (2019). Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus DOI
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. (2017). Climatologies at high resolution for the earth’s land surface areas. PubMed PMC
Katoh K., Misawa K., Kuma K., Miyata T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. PubMed DOI PMC
Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. PubMed DOI
Khakhina L. N., Margulis L., McMenamin M. (1993).
Kosecka M., Jabłońska A., Flakus A., Rodriguez-Flakus P., Kukwa M., Guzow-Krzemińska B. (2020). Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. PubMed DOI
Kroken S., Taylor J. W. (2000). Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus DOI
Leavitt S. D., Kraichak E., Nelsen M. P., Altermann S., Divakar P. K., Alors D., et al. (2015). Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family PubMed DOI
Leavitt S. D., Kraichak E., Vondrak J., Nelsen M. P., Sohrabi M., Pérez-Ortega S., et al. (2016). Cryptic diversity and symbiont interactions in rock-posy lichens. PubMed DOI
Lefeuvre P. (2018).
Lücking R., Hodkinson B. P., Leavitt S. D. (2017). The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera.
Magain N., Miadlikowska J., Goffinet B., Sérusiaux E., Lutzoni F. (2017). Macroevolution of specificity in cyanolichens of the genus Peltigera section polydactylon (Lecanoromycetes, Ascomycota). PubMed DOI
Mark K., Laanisto L., Bueno C. G., Niinemets Ü, Keller C., Scheidegger C. (2020). Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. PubMed DOI
Miadlikowska J., Kauff F., Hofstetter V., Fraker E., Grube M., Hafellner J., et al. (2006). New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA-and two protein-coding genes. PubMed DOI
Miller M., Pfeiffer W., Schwartz T. (2011). “CIPRES science gateway: a community resource for phylogenetic analyses,” in
Molina M. C., Divakar P. K., Millanes A. M., Sanchez E., Del-Prado R., Hawksworth D. L., et al. (2011a). DOI
Molina M. C., Del-Prado R., Divakar P. K., Sánchez-Mata D., Crespo A. (2011b). Another example of cryptic diversity in lichen-forming fungi: the new species DOI
Molina M. C., Divakar P. K., Goward T., Millanes A. M., Lumbsch H. T., Crespo A. (2017). Neogene diversification in the temperate lichen-forming fungal genus DOI
Molina M. D., Crespo A., Blanco O., Lumbsch H. T., Hawksworth D. L. (2004). Phylogenetic relationships and species concepts in
Molins A., Moya P., Muggia L., Barreno E. (2021). Thallus growth stage and geographic origin shape microalgal diversity in Ramalina farinacea lichen holobionts. PubMed DOI
Monaghan M. T., Wild R., Elliot M., Fujisawa T., Balke M., Inward D. J. G., et al. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. PubMed DOI
Moya P., Chiva S., Molins A., Garrido-Benavent I., Barreno E. (2021). Unravelling the symbiotic microalgal diversity in Buellia zoharyi (lichenized Ascomicota) from the Iberian Peninsula and Balearic Islands using DNA Metabarcoding. DOI
Moya P., Chiva S., Molins A., Jadrná I., Škaloud P., Peksa O., et al. (2018). Myrmecia israeliensis as the primary symbiotic microalga in squamulose lichens growing in European and Canary Island terricolous communities. DOI
Moya P., Molins A., Chiva S., Bastida J., Barreno E. (2020). Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. PubMed DOI PMC
Moya P., Molins A., Martínez-Alberola F., Muggia L., Barreno E. (2017). Unexpected associated microalgal diversity in the lichen PubMed DOI PMC
Muggia L., Grube M. (2018). Fungal diversity in lichens: from extremotolerance to interactions with algae. PubMed DOI PMC
Muggia L., Leavitt S., Barreno E. (2018). The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). DOI
Muggia L., Nelsen M., Kirika P. M., Barreno E., Beck A., Lindgren H., et al. (2020). Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus PubMed DOI
Muggia L., Pérez-Ortega S., Fryday A., Spribille T., Grube M. (2014). Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species DOI
Muggia L., Vančurová L., Škaloud P., Peksa O., Wedin M., Grube M. (2013). The symbiotic playground of lichen thalli – a highly flexible photobiont association in rock-inhabiting lichens. PubMed DOI
Nash T. H. (2008).
Nelsen M. P. (2021). Sharing and double-dating in the lichen world. PubMed DOI
Nelsen M. P., Gargas A. (2009). Symbiont flexibility in DOI
O’Brien H. E., Miadlikowska J., Lutzoni F. (2013). Assessing population structure and host specialization in lichenized cyanobacteria. PubMed DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., Mcglinn D., et al. (2017).
Ossowska E., Guzow-Krzemińska B., Kolanowska M., Szczepańska K., Kukwa M. (2019). Morphology and secondary chemistry in species recognition of PubMed DOI PMC
Otálora M. A., Aragón G., Martínez I., Wedin M. (2013). Cardinal characters on a slippery slope – a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). PubMed DOI
Otálora M. A., Martínez I., O’Brien H., Molina M. C., Aragón G., Lutzoni F. (2010). Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). PubMed DOI
Pardo-De la Hoz C. J., Magain N., Lutzoni F., Goward T., Restrepo S., Miadlikowska J. (2018). Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus PubMed DOI PMC
Peksa O., Škaloud P. (2011). Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga PubMed DOI
Piercey-Normore M. D. (2004). Selection of algal genotypes by three species of lichen fungi in the genus
Piercey-Normore M. D., DePriest P. T. (2001). Algal switching among lichen symbioses. PubMed DOI
Pino-Bodas R., Stenroos S. (2020). Global biodiversity patterns of the photobionts associated with the genus PubMed DOI PMC
Printzen C., Domaschke S., Fernández-Mendoza F., Pérez-Ortega S. (2013). Biogeography and ecology of DOI
R Core Team (2013).
Rambaut A. (2012).
Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. PubMed DOI PMC
Řídká T., Peksa O., Rai H., Upreti D. K., Škaloud P. (2014). “Photobiont diversity in Indian DOI
Rivas-Martínez S., Penas Á, del Río S., González T. E. D., Rivas-Sáenz S. (2017). “Bioclimatology of the Iberian Peninsula and the Balearic Islands,” in DOI
Rolshausen G., Hallman U., Grande F. D., Otte J., Knudsen K., Schmitt I. (2020). Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3 2, efficient Bayesian phylogenetic inference and model choice across a large model space. PubMed DOI PMC
Sadowska-Deś A. D., Dal Grande F., Lumbsch H. T., Beck A., Otte J., Hur J. S., et al. (2014). Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont PubMed DOI
Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., et al. (2011). Database resources of the national center for biotechnology information. PubMed PMC
Singh G., Dal Grande F., Divakar P. K., Otte J., Crespo A., Schmitt I. (2017). Fungal–algal association patterns in lichen symbiosis linked to macroclimate. PubMed DOI
Smith C. W., Aptroot A., Coppins B. J., Fletcher A., Gilbert O. L., James P. W., et al. (2009).
Sork V. L., Werth S. (2014). Phylogeography of Ramalina menziesii, a widely distributed lichen-forming fungus in western North America. PubMed DOI
Stamatakis A. (2006). RAxML-VI-HPC, maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC
Stamatakis A., Hoover P., Rougemont J. (2008). A rapid bootstrap algorithm for the RAxML web servers. PubMed DOI
Steinová J., Škaloud P., Yahr R., Bestová H., Muggia L. (2019). Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in PubMed DOI
Vančurová L., Muggia L., Peksa O., Řídká T., Škaloud P. (2018). The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in PubMed DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in DOI
Wirtz N., Lumbsch H. T., Green T. A., Türk R., Pintado A., Sancho L., et al. (2003). Lichen fungi have low cyanobiont selectivity in maritime Antarctica. PubMed DOI
Xu M., De Boer H., Olafsdottir E. S., Omarsdottir S., Heidmarsson S. (2020). Phylogenetic diversity of the lichenized algal genus DOI
Yahr R., Vilgalys R., Depriest P. T. (2004). Strong fungal specificity and selectivity for algal symbionts in Florida scrub PubMed DOI
Yahr R., Vilgalys R., DePriest P. T. (2006). Geographic variation in algal partners of PubMed DOI