Biodiversity Patterns and Ecological Preferences of the Photobionts Associated With the Lichen-Forming Genus Parmelia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35003003
PubMed Central
PMC8739953
DOI
10.3389/fmicb.2021.765310
Knihovny.cz E-zdroje
- Klíčová slova
- Trebouxia, distribution, habitat, microalgae, phycobiont, symbiosis,
- Publikační typ
- časopisecké články MeSH
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
Zobrazit více v PubMed
Ahlmann-Eltze C., Patil I. (2021). Ggsignif: R package for displaying significance brackets for ‘gplot2. PsyArXiv [Preprint] 10.31234/osf.io/7awm6 DOI
Arnold A. E., Miadlikowska J., Higgins K. L., Sarvate S. D., Gugger P., Way A., et al. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst. Biol. 58 283–297. 10.1093/sysbio/syp001 PubMed DOI
Bačkor M., Peksa O., Škaloud P., Backorová M. (2010). Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol. Environ. Safe. 73 603–612. 10.1016/j.ecoenv.2009.11.002 PubMed DOI
Bastian M., Heymann S., Jacomy M. (2009). “Gephi: an open source software for exploring and manipulating networks,” in Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA.
Beck A., Kasalicky T., Rambold G. (2002). Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol. 153 317–326.
Blaha J., Baloch E., Grube M. (2006). High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol. J. Linn. Soc. 88 283–293. 10.1111/j.1095-8312.2006.00640.x DOI
Borcard D., Legendre P., Avois-Jacquet C., Tuomisto H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology 85 1826–1832.
Casano L. M., del Campo E., García-Breijo F., Reig-Armiñana J., Gasulla F., del Hoyo A., et al. (2011). Two Trebouxia algae with different physiological performances are ever present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Appl. Environ. Microbiol. 13 806–818. 10.1111/j.1462-2920.2010.02386.x PubMed DOI
Chagnon P. L., Magain N., Miadlikowska J., Lutzoni F. (2019). Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus Peltigera. J. Ecol. 107 1645–1661. 10.1111/1365-2745.13207 DOI
Crespo A., Bridge P. D., Cubero O. F., Hawksworth D. L. (1997). Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata. Bibl. Lichenol. 68 73–79.
Crespo A., Bridge P. D., Hawksworth D. L., Grube M., Cubero O. F. (1999). Comparison of rRNA genotype frequencies of Parmelia sulcata from long established and recolonizing sites following sulphur dioxide amelioration. Plant Syst. Evol. 217 177–183.
Crespo A., Kauff F., Divakar P. K., del Prado R., Pérez-Ortega S., de Paz G., et al. (2010). Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59 1735–1753. 10.1002/tax.596008 DOI
Crespo A., Molina M. C., Blanco O., Schroeter B., Sancho L. G., Hawksworth D. L. (2002). rDNA ITS and beta-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycol. Res. 106 788–795. 10.1017/s095375620200610x DOI
Crespo A., Rico V. J., Garrido E., Lumbsch H. T., Divakar P. K. (2020). A revision of species of the Parmelia saxatilis complex in the Iberian Peninsula with the description of P. rojoi, a new potentially relict species. Lichenologist 52 365–376.
Currie D. J., Mittelbach G. G., Cornell H. V., Field R., Guégan J. F., Hawkins B. A., et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7 1121–1134. 10.1111/j.1461-0248.2004.00671.x DOI
Dal Grande F., Rolshausen G., Divakar P. K., Crespo A., Otte J., Schleuning M., et al. (2018). Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 217 277–289. 10.1111/nph.14770 PubMed DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2, more models, new heuristics and parallel computing. Nat. Methods 9:772. 10.1038/nmeth.2109 PubMed DOI PMC
del Campo E. M., Gimeno J., De Nova J. P. G., Casano L. M., Gasulla F., García-Breijo F., et al. (2010). South European populations of Ramalina farinacea (L) Ach share different Trebouxia algae. Bibl. Lichenol. 105 247–256.
Divakar P. K., Leavitt S. D., Molina M. C., Del-Prado R., Lumbsch H. T., Crespo A. (2016). A DNA barcoding approach for identification of hidden diversity in Parmeliaceae (Ascomycota): Parmelia sensu stricto as a case study. Bot. J. Linn. Soc. 180 21–29.
Divakar P. K., Molina M. C., Lumbsch H. T., Crespo A. (2005). Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37 37–46.
Drummond A. J., Suchard M. A., Xie D., Rambaut A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Dumitru C. (2019). Las Simbiosis Liquénicas Como Sistemas Mutualistas Complejos: Diversidad y Coexistencia De Microalgas En El Género Parmelia. Trabajo Fin De Máster, Facultad De Ciencias Biológicas. Valencia: Universitat de València, 1–65.
Ertz D., Guzow-Krzemińska B., Thor G., Łubek A., Kukwa M. (2018). Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci. Rep. 8 1–14. 10.1038/s41598-018-23219-3 PubMed DOI PMC
Fernández-Mendoza F., Domaschke S., García M. A., Jordan P., Martín M. P., Printzen C. (2011). Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 20 1208–1232. 10.1111/j.1365-294X.2010.04993.x PubMed DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2 113–118. 10.1111/j.1365-294x.1993.tb00005.x PubMed DOI
Garrido-Benavent I., Molins A., Barreno E. (2021). Genetic variation of the symbiont partners in the endangered macrolichen Seirophora villosa (Teloschistaceae, Ascomycota). Bot. J. Linn. Soc. 10.1093/botlinnean/boab100 DOI
Grube M., Wedin M. (2016). Lichenized fungi and the evolution of symbiotic organization. Microbiol. Spectr. 4 4–6. 10.1128/microbiolspec.FUNK-0011-2016 PubMed DOI
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704. 10.1080/10635150390235520 PubMed DOI
Hale M. E., Jr. (1987). A monograph of the lichen genus Parmelia Acharius sensu stricto (Ascomycotina: Parmeliaceae). Smithsonian Contr. Bot. 66 1–55. 10.5479/si.0081024x.66 DOI
Hawksworth D. L., Blanco O., Divakar P. K., Ahti T., Crespo A. (2008). A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist 40 1–21. 10.1017/s0024282908007329 DOI
Hawksworth D. L., Divakar P. K., Crespo A., Ahti T. (2011). The checklist of parmelioid and similar lichens in Europe and some adjacent territories: additions and corrections. Lichenologist 43 639–645. 10.1017/s0024282911000454 DOI
Hawksworth D. L., Honegger R. (1994). “The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers,” in Plant Galls, ed. Williams M. A. J. (Oxford: Clarendon Press; ), 77–98.
Helms G., Friedl T., Rambold G. (2003). Phylogenetic relationships of the physciaceae inferred from rDNA sequence data and selected phenotypic characters. Mycologia 95 1078–1099. 10.1080/15572536.2004.11833022 PubMed DOI
Hillis D. M., Bull J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42 182–192.
Jackson D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74 2204–2214. 10.2307/1939574 DOI
Jüriado I., Kaasalainen U., Jylhä M., Rikkinen J. (2019). Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe). Fungal Ecol. 39 45–54. 10.1016/j.funeco.2018.11.005 DOI
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. (2017). Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4 1–20. PubMed PMC
Katoh K., Misawa K., Kuma K., Miyata T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30 3059–3066. 10.1093/nar/gkf436 PubMed DOI PMC
Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9 286–298. 10.1093/bib/bbn013 PubMed DOI
Khakhina L. N., Margulis L., McMenamin M. (1993). Concepts of Symbiogenesis: History of Symbiosis as an Evolutionary Mechanism. New Haven: Yale University Press.
Kosecka M., Jabłońska A., Flakus A., Rodriguez-Flakus P., Kukwa M., Guzow-Krzemińska B. (2020). Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. J. Phycol. 56 979–993. 10.1111/jpy.12994 PubMed DOI
Kroken S., Taylor J. W. (2000). Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103 645–660. 10.1639/0007-2745(2000)103[0645:psrmas]2.0.co;2 DOI
Leavitt S. D., Kraichak E., Nelsen M. P., Altermann S., Divakar P. K., Alors D., et al. (2015). Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24 3779–3797. 10.1111/mec.13271 PubMed DOI
Leavitt S. D., Kraichak E., Vondrak J., Nelsen M. P., Sohrabi M., Pérez-Ortega S., et al. (2016). Cryptic diversity and symbiont interactions in rock-posy lichens. Mol. Phylogenet. Evol. 99 261–274. 10.1016/j.ympev.2016.03.030 PubMed DOI
Lefeuvre P. (2018). BoSSA: A Bunch of Structure and Sequence Analysis. R package version, 1. Available online at: http://cran.r-project.org/web/packages/BoSSA/index.html (accessed October 20, 2020)
Lücking R., Hodkinson B. P., Leavitt S. D. (2017). The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. Bryologist 119 361–416.
Magain N., Miadlikowska J., Goffinet B., Sérusiaux E., Lutzoni F. (2017). Macroevolution of specificity in cyanolichens of the genus Peltigera section polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 66 74–99. 10.1093/sysbio/syw065 PubMed DOI
Mark K., Laanisto L., Bueno C. G., Niinemets Ü, Keller C., Scheidegger C. (2020). Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. 227 1362–1375. 10.1111/nph.16475 PubMed DOI
Miadlikowska J., Kauff F., Hofstetter V., Fraker E., Grube M., Hafellner J., et al. (2006). New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA-and two protein-coding genes. Mycologia 98 1088–1103. 10.3852/mycologia.98.6.1088 PubMed DOI
Miller M., Pfeiffer W., Schwartz T. (2011). “CIPRES science gateway: a community resource for phylogenetic analyses,” in Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, July 18- 21, Salt Lake City, UT.
Molina M. C., Divakar P. K., Millanes A. M., Sanchez E., Del-Prado R., Hawksworth D. L., et al. (2011a). Parmelia sulcata (Ascomycota: Parmeliaceae), a sympatric monophyletic species complex. Lichenologist 43 585–601. 10.1017/s0024282911000521 DOI
Molina M. C., Del-Prado R., Divakar P. K., Sánchez-Mata D., Crespo A. (2011b). Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Org. Divers. Evol. 11 331–342. 10.1007/s13127-011-0060-4 DOI
Molina M. C., Divakar P. K., Goward T., Millanes A. M., Lumbsch H. T., Crespo A. (2017). Neogene diversification in the temperate lichen-forming fungal genus Parmelia (Parmeliaceae, Ascomycota). System. Biodivers. 15 166–181. 10.1080/14772000.2016.1226977 DOI
Molina M. D., Crespo A., Blanco O., Lumbsch H. T., Hawksworth D. L. (2004). Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and beta-tubulin sequences. Lichenologist 36 37–54.
Molins A., Moya P., Muggia L., Barreno E. (2021). Thallus growth stage and geographic origin shape microalgal diversity in Ramalina farinacea lichen holobionts. J. Phycol. 57 975–987. 10.1111/jpy.13140 PubMed DOI
Monaghan M. T., Wild R., Elliot M., Fujisawa T., Balke M., Inward D. J. G., et al. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58 298–311. 10.1093/sysbio/syp027 PubMed DOI
Moya P., Chiva S., Molins A., Garrido-Benavent I., Barreno E. (2021). Unravelling the symbiotic microalgal diversity in Buellia zoharyi (lichenized Ascomicota) from the Iberian Peninsula and Balearic Islands using DNA Metabarcoding. Diversity 13:220. 10.3390/d13060220 DOI
Moya P., Chiva S., Molins A., Jadrná I., Škaloud P., Peksa O., et al. (2018). Myrmecia israeliensis as the primary symbiotic microalga in squamulose lichens growing in European and Canary Island terricolous communities. Fottea 18 72–85. 10.5507/fot.2017.022 DOI
Moya P., Molins A., Chiva S., Bastida J., Barreno E. (2020). Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Sci. Rep. 10:14060. 10.1038/s41598-020-71046-2 PubMed DOI PMC
Moya P., Molins A., Martínez-Alberola F., Muggia L., Barreno E. (2017). Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12:e0175091. 10.1371/journal.pone.0175091 PubMed DOI PMC
Muggia L., Grube M. (2018). Fungal diversity in lichens: from extremotolerance to interactions with algae. Life 8:15. 10.3390/life8020015 PubMed DOI PMC
Muggia L., Leavitt S., Barreno E. (2018). The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). Phycologia, 57, 503–524. 10.2216/17-134.1 DOI
Muggia L., Nelsen M., Kirika P. M., Barreno E., Beck A., Lindgren H., et al. (2020). Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): an impetus for developing an integrated taxonomy. Mol. Phylogenet. Evol. 149:106821. 10.1016/j.ympev.2020.106821 PubMed DOI
Muggia L., Pérez-Ortega S., Fryday A., Spribille T., Grube M. (2014). Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers. 64 233–251. 10.1007/s13225-013-0271-4 DOI
Muggia L., Vančurová L., Škaloud P., Peksa O., Wedin M., Grube M. (2013). The symbiotic playground of lichen thalli – a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol. Ecol. 85 313–323. 10.1111/1574-6941.12120 PubMed DOI
Nash T. H. (2008). Lichen Biology, 2nd Edn. Cambridge: Cambridge University Press.
Nelsen M. P. (2021). Sharing and double-dating in the lichen world. Mol. Ecol. 30 1751–1754. 10.1111/mec.15884 PubMed DOI
Nelsen M. P., Gargas A. (2009). Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112 404–417. 10.1639/0007-2745-112.2.404 DOI
O’Brien H. E., Miadlikowska J., Lutzoni F. (2013). Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198 557–566. 10.1111/nph.12165 PubMed DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., Mcglinn D., et al. (2017). Community Ecology Package ‘vegan’. Version 2.4-4. Available online at: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed November 28, 2020).
Ossowska E., Guzow-Krzemińska B., Kolanowska M., Szczepańska K., Kukwa M. (2019). Morphology and secondary chemistry in species recognition of Parmelia omphalodes group – evidence from molecular data with notes on the ecological niche modelling and genetic variability of photobionts. Mycokeys 61 39–74. 10.3897/mycokeys.61.38175 PubMed DOI PMC
Otálora M. A., Aragón G., Martínez I., Wedin M. (2013). Cardinal characters on a slippery slope – a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Mol. Phylogenet. Evol. 68 185–198. 10.1016/j.ympev.2013.04.004 PubMed DOI
Otálora M. A., Martínez I., O’Brien H., Molina M. C., Aragón G., Lutzoni F. (2010). Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol. Phyl. Evol. 56 1089–1095. 10.1016/j.ympev.2010.05.013 PubMed DOI
Pardo-De la Hoz C. J., Magain N., Lutzoni F., Goward T., Restrepo S., Miadlikowska J. (2018). Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Front. Microbiol. 9:2770. 10.3389/fmicb.2018.02770 PubMed DOI PMC
Peksa O., Škaloud P. (2011). Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol. Ecol. 20 3936–3948. 10.1111/j.1365-294X.2011.05168.x PubMed DOI
Piercey-Normore M. D. (2004). Selection of algal genotypes by three species of lichen fungi in the genus Cladonia. Can. J. Bot. 82 947–961.
Piercey-Normore M. D., DePriest P. T. (2001). Algal switching among lichen symbioses. Am. J. Bot. 88 1490–1498. 10.2307/3558457 PubMed DOI
Pino-Bodas R., Stenroos S. (2020). Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microb. Ecol. 82 1–15. 10.1007/s00248-020-01633-3 PubMed DOI PMC
Printzen C., Domaschke S., Fernández-Mendoza F., Pérez-Ortega S. (2013). Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. Mycokeys 6 33–53. 10.3897/mycokeys.6.3185 DOI
R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rambaut A. (2012). FigTree Version 1.4.0. Available online at: http://tree.bio.ed.ac.uk/software/figtree (accessed December 1, 2021).
Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67 901–904. 10.1093/sysbio/syy032 PubMed DOI PMC
Řídká T., Peksa O., Rai H., Upreti D. K., Škaloud P. (2014). “Photobiont diversity in Indian Cladonia lichens, with special emphasis on the geographical patterns,” in Terricolous Lichens in India, eds Rai H., Upreti D. K. (New York, NY: Springer; ), 53–71. 10.1007/978-1-4614-8736-4_4 DOI
Rivas-Martínez S., Penas Á, del Río S., González T. E. D., Rivas-Sáenz S. (2017). “Bioclimatology of the Iberian Peninsula and the Balearic Islands,” in The Vegetation of the Iberian Peninsula, ed. Lloidi J. (Cham: Springer; ), 29–80. 10.1007/978-3-319-54784-8_2 DOI
Rolshausen G., Hallman U., Grande F. D., Otte J., Knudsen K., Schmitt I. (2020). Expanding the mutualistic niche: parallel symbiont turnover along climatic gradients. Proc. R. Soc. B 287:20192311. 10.1098/rspb.2019.2311 PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3 2, efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Sadowska-Deś A. D., Dal Grande F., Lumbsch H. T., Beck A., Otte J., Hur J. S., et al. (2014). Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol. Phylogenet. Evol. 76 202–210. 10.1016/j.ympev.2014.03.020 PubMed DOI
Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., et al. (2011). Database resources of the national center for biotechnology information. Nucleic Acids Res. 39 38–51. PubMed PMC
Singh G., Dal Grande F., Divakar P. K., Otte J., Crespo A., Schmitt I. (2017). Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol. 214 317–329. 10.1111/nph.14366 PubMed DOI
Smith C. W., Aptroot A., Coppins B. J., Fletcher A., Gilbert O. L., James P. W., et al. (2009). The lichens of Great Britain and Ireland, 2nd Edn. London: British Lichen Society.
Sork V. L., Werth S. (2014). Phylogeography of Ramalina menziesii, a widely distributed lichen-forming fungus in western North America. Mol. Ecol. 23 2326–2339. 10.1111/mec.12735 PubMed DOI
Stamatakis A. (2006). RAxML-VI-HPC, maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Stamatakis A., Hoover P., Rougemont J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57 758–771. 10.1080/10635150802429642 PubMed DOI
Steinová J., Škaloud P., Yahr R., Bestová H., Muggia L. (2019). Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 134 226–237. 10.1016/j.ympev.2019.02.014 PubMed DOI
Vančurová L., Muggia L., Peksa O., Řídká T., Škaloud P. (2018). The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 27 3016–3033. 10.1111/mec.14764 PubMed DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, Vol. 18 eds Innis M. A., Gelfand D. H., Snisky J. J., White T. J. (San Diego, CA: Academic Press; ), 315–322. 10.1016/b978-0-12-372180-8.50042-1 DOI
Wirtz N., Lumbsch H. T., Green T. A., Türk R., Pintado A., Sancho L., et al. (2003). Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 160 177–183. 10.1046/j.1469-8137.2003.00859.x PubMed DOI
Xu M., De Boer H., Olafsdottir E. S., Omarsdottir S., Heidmarsson S. (2020). Phylogenetic diversity of the lichenized algal genus Trebouxia (Trebouxiophyceae, Chlorophyta): a new lineage and novel insights from fungal-algal association patterns of Icelandic cetrarioid lichens (Parmeliaceae, Ascomycota). Bot. J. Linn. Soc. 194 460–468. 10.1093/botlinnean/boaa050 DOI
Yahr R., Vilgalys R., Depriest P. T. (2004). Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol. Ecol. 13 3367–3378. 10.1111/j.1365-294X.2004.02350.x PubMed DOI
Yahr R., Vilgalys R., DePriest P. T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 171 847–860. 10.1111/j.1469-8137.2006.01792.x PubMed DOI