The application of haplotypes instead of species-level ranks modifies the interpretation of ecological preferences in lichen symbiont interactions in Parmelia

. 2024 Aug 24 ; 14 (1) : 19682. [epub] 20240824

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39181961

Grantová podpora
2012/07/N/NZ8/00061 Narodowe Centrum Nauki
BW/538-L150-B257-16 Wydział Biologii, Uniwersytet Gdański, Poland
RVO 67985939 Institute of Botany of the Czech Academy of Sciences

Odkazy

PubMed 39181961
PubMed Central PMC11344855
DOI 10.1038/s41598-024-70667-1
PII: 10.1038/s41598-024-70667-1
Knihovny.cz E-zdroje

The analysis of the interaction between main bionts (mycobiont and photobiont) in the lichen symbiosis delivers substantial information about their preferences in the selection of symbiotic partners, and their ecological preferences. The selectivity in the Parmelia genus has been defined as strong so far. However, data on this lichen genus, which includes several widely distributed species, are biogeographically limited. Therefore, using specialization indicators and extended sampling, in this study, we estimated the interactions between the main bionts of selected Parmelia spp., using two levels of estimation (species/OTU and haplotype). A comparison of mycobiont-photobiont interactions at different levels showed that considering only mycobiont species and Trebouxia OTUs, greater specialization is found, while Parmelia species studied in this work present a more generalistic strategy in photobiont choice when haplotypes are considered. Despite the uneven sampling of Parmelia species, the interpretation of specialization within species and individuals of the genus leads to a more precise and accurate interpretation of their adaptation strategies. Furthermore, the data from P. sulcata indicate the existence of a different pool of compatible haplotypes in some geographical regions compared to neighboring areas. This observation suggests the potential influence of climatic factors.

Zobrazit více v PubMed

Tschermak-Woess, E. The algal partner. In

Tschermak-Woess, E. Developmental studies in trebouxioid algae and taxonomical consequences. DOI

Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. DOI

Hawksworth, D. L. & Grube, M. Lichens redefined as complex ecosystems. PubMed DOI PMC

Mark, K. PubMed DOI

Rodríguez-Arribas, C. PubMed DOI PMC

Beck, A., Kasalicky, T. & Rambold, G. Myco-photobiontal selection in a Mediterranean cryptogam community with DOI

Kaasalainen, U., Tuovinen, V., Mwachala, G., Pellikka, P. & Rikkinen, J. Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. PubMed DOI PMC

Yahr, R., Vilgalys, R. & DePriest, P. T. Strong fungal specificity and selectivity for algal symbionts in Florida scrub PubMed DOI

Stenroos, S., Högnabba, F., Myllys, L., Hyvönen, J. & Thell, A. High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. DOI

Leavitt, S. D. PubMed DOI

Wornik, S. & Grube, M. Joint dispersal does not imply maintenance of partnerships in lichen symbioses. PubMed DOI

Otálora, M. A. G. PubMed DOI

Cao, S. PubMed DOI PMC

Steinová, J. PubMed DOI

Muggia, L., Grube, M. & Tretiach, M. Genetic diversity and photobiont associations in selected taxa of the DOI

Fedrowitz, K., Kaasalainen, U. & Rikkinen, J. Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. PubMed DOI PMC

Singh, G. PubMed DOI

Yahr, R., Vilgalys, R. & DePriest, P. T. Geographic variation in algal partners of PubMed DOI

Fernández-Mendoza, F. PubMed DOI

Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga PubMed DOI

Chagnon, P. L., Magain, N., Miadlikowska, J. & Lutzoni, F. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus PubMed DOI

Pérez-Ortega, S. DOI

Hughes, J. B. The scale of resource specialization and the distribution and abundance of lycaenid butterflies. PubMed DOI

Schleuning, M. PubMed DOI

Maglianesi, M. A., Blüthgen, N., Böhning-Gaese, K. & Schleuning, M. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. DOI

Ventre Lespiaucq, A., Jacquemyn, H., Rasmussen, H. N. & Méndez, M. Temporal turnover in mycorrhizal interactions: A proof of concept with orchids. PubMed DOI

Devictor, V. DOI

Hale, M. E. A monograph of the lichen genus DOI

Nash, T. H.

Ossowska, E., Guzow-Krzemińska, B., Kolanowska, M., Szczepańska, K. & Kukwa, M. Morphology and secondary chemistry in species recognition of PubMed DOI PMC

Moya, P. PubMed DOI PMC

Molina, M. C. DOI

Thell, A., Thor, G. & Ahti, T. In

Feuerer, T. & Thell, A.

Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. Phylogenetic relationships and species concepts in DOI

Molina, M. C., Del-Prado, R., Divakar, P. K., Sanchez-Mata, D. & Crespo, A. Another example of cryptic diversity in lichen-forming fungi: The new species DOI

Crespo, A., Rico, V. J., Garrido, E., Lumbsch, H. T. & Divakar, P. K. A revision of species of the DOI

Kurokawa, S. Japanese species of

Divakar, P. K., Molina, M. C., Lumbsch, H. T. & Crespo, A. DOI

Molina, M. C. DOI

Singh, G. PubMed DOI PMC

Romeike, J., Friedl, T., Helms, G. & Ott, S. Genetic diversity of algal and fungal partners in four species of PubMed DOI

Lindgren, H. DOI

Hestmark, G., Lutzoni, F. & Miadlikowska, J. Photobiont associations in co-occurring umbilicate lichens with contrasting modes of reproduction in coastal Norway. DOI

Law, R. Evolution in a mutualistic environment. In

Ossowska, E., Guzow-Krzemińska, B., Dudek, M., Oset, M. & Kukwa, M. Evaluation of diagnostic chemical and morphological characters in five DOI

Corsie, E. I., Harrold, P. & Yahr, R. No combination of morphological, ecological or chemical characters can reliably diagnose species in the DOI

Thell, A.

Muggia, L. PubMed DOI

Medeiros, I. D. PubMed DOI PMC

Kosecka, M. PubMed DOI PMC

Ossowska, E., Schiefelbein, U., Szymczyk, R. & Kukwa, M. Contribution to the knowledge of the distribution of DOI

Ossowska, E. A., Guzow-Krzemińska, B., Szymczyk, R. & Kukwa, M. A molecular re-evaluation of DOI

Castellani, M. B., Bianchi, E., Coppi, A., Nascimbene, J. & Benesperi, R. Revision of the DOI

Tsurykau, A., Bely, P., Golubkov, V., Persson, P.-E. & Thell, A. The lichen genus DOI

Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. PubMed DOI PMC

Piercey-Normore, M. D. & Depriest, P. T. Algal switching among lichen symbioses. PubMed DOI

Fründ, J., McCann, K. S. & Williams, N. M. Sampling bias is a challenge for quantifying specialization and network structure: Lessons from a quantitative niche model. DOI

Orange, A., James, P. W. & White, F. J.

White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In

Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. PubMed DOI

Guzow-Krzemińska, B. Photobiont flexibility in the lichen DOI

Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. DOI

Parker, S. R. AutoAssembler sequence assembly software. In PubMed

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. PubMed DOI

Malíček, J., Palice, Z. & Vondrák, J. Additions and corrections to the lichen biota of the Czech Republic. DOI

Crespo, A. DOI

Muggia, L., Perez-Ortega, S., Fryday, A., Spribille, T. & Grube, M. Global assessment of genetic variation and phenotypic plasticity in the lichen forming species DOI

Ruprecht, U., Brunauer, G. & Printzen, C. Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological viewpoint. DOI

Nyati, S., Scherrer, S., Werth, S. & Honegger, R. Green-algal photobiont diversity ( DOI

Kroken, S. & Taylor, J. W. Phylogenetic species, reproductive mode, and specificity of the green alga DOI

Dahlkild, Å. DOI

Friedl, T., Besendahl, A., Pfeiffer, P. & Bhattacharya, D. The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. PubMed DOI

Werth, S. Fungal-algal interactions in DOI

Altermann, S., Leavitt, S. D. & Goward, T. Tidying up the genus DOI

Sadowska-Deś, A. D., Bálint, M., Otte, J. & Schmitt, I. Assessing intraspecific diversity in a lichen-forming fungus and its green algal symbiont: Evaluation of eight molecular markers. DOI

Domaschke, S., Fernández-Mendoza, F., García, M. A., Martín, M. P. & Printzen, C. Low genetic diversity in Antarctic populations of the lichen-forming ascomycete DOI

del Campo, E. M., del Hoyo, A., Casano, L. M., Martínez-Alberola, F. & Barreno, E. A rapid and cost-efficient DMSO-based method for isolating DNA from cultured lichen photobionts. DOI

Pérez-Ortega, S., Ortiz-Álvarez, R., Allan Green, T. G. & de Los Ríos, A. Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). PubMed DOI

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. PubMed DOI PMC

Landan, G. & Graur, D. Local reliability measures from sets of co-optimal multiple sequence alignments. PubMed

Penn, O. PubMed DOI PMC

Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. PubMed DOI PMC

Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. PubMed DOI PMC

Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. PubMed DOI PMC

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. PubMed DOI PMC

Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. PubMed DOI PMC

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. PubMed DOI

Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In

Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. PubMed DOI

Ronquist, H. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. PubMed DOI

Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. DOI

Rambaut A. FigTreev1.4.4. http://tree.bio.ed.ac.uk/software/figtree/. Accessed on 12 Apr 2021. (2021).

Aktas, C. Haplotypes: Haplotype Inference and Statistical Analysis of Genetic Variation. R Package Version 1.0. Available online: https://CRAN.R-project.org/package=haplotypes, accessed on 1 November 2018 (2015).

Clement M, Snell Q, Walker P, Posada D, Crandall K. TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings, 2, 184. (2002).

Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks.

Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. PubMed DOI PMC

Krebs, C. J.

R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.Rproject.org/, accessed on 1 January 2019 (2017).

RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Available online: http://www.rstudio.com/, accessed on 1 January 2019 (2018).

Vu VQ, Friendly M. ggbiplot: A Grammar of Graphics Implementation of Biplots. Available online: https://github.com/friendly/ggbiplot, accessed on 1 July 2024 (2023).

Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...