The application of haplotypes instead of species-level ranks modifies the interpretation of ecological preferences in lichen symbiont interactions in Parmelia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2012/07/N/NZ8/00061
Narodowe Centrum Nauki
BW/538-L150-B257-16
Wydział Biologii, Uniwersytet Gdański, Poland
RVO 67985939
Institute of Botany of the Czech Academy of Sciences
PubMed
39181961
PubMed Central
PMC11344855
DOI
10.1038/s41598-024-70667-1
PII: 10.1038/s41598-024-70667-1
Knihovny.cz E-zdroje
- Klíčová slova
- Adaptation strategies, Lichen symbiosis, Mycobiont, Photobiont, Specialization,
- MeSH
- fylogeneze MeSH
- haplotypy * MeSH
- lišejníky * genetika mikrobiologie fyziologie MeSH
- symbióza * genetika MeSH
- terčovkovité genetika MeSH
- Publikační typ
- časopisecké články MeSH
The analysis of the interaction between main bionts (mycobiont and photobiont) in the lichen symbiosis delivers substantial information about their preferences in the selection of symbiotic partners, and their ecological preferences. The selectivity in the Parmelia genus has been defined as strong so far. However, data on this lichen genus, which includes several widely distributed species, are biogeographically limited. Therefore, using specialization indicators and extended sampling, in this study, we estimated the interactions between the main bionts of selected Parmelia spp., using two levels of estimation (species/OTU and haplotype). A comparison of mycobiont-photobiont interactions at different levels showed that considering only mycobiont species and Trebouxia OTUs, greater specialization is found, while Parmelia species studied in this work present a more generalistic strategy in photobiont choice when haplotypes are considered. Despite the uneven sampling of Parmelia species, the interpretation of specialization within species and individuals of the genus leads to a more precise and accurate interpretation of their adaptation strategies. Furthermore, the data from P. sulcata indicate the existence of a different pool of compatible haplotypes in some geographical regions compared to neighboring areas. This observation suggests the potential influence of climatic factors.
Biological Museum Botanical Collections Lund University Box 117 22100 Lund Sweden
Botanical Garden University of Rostock Schwaansche Straße 2 18055 Rostock Germany
Institute of Botany The Czech Academy of Sciences Zámek 1 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Tschermak-Woess, E. The algal partner. In
Tschermak-Woess, E. Developmental studies in trebouxioid algae and taxonomical consequences. DOI
Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. DOI
Hawksworth, D. L. & Grube, M. Lichens redefined as complex ecosystems. PubMed DOI PMC
Rodríguez-Arribas, C. PubMed DOI PMC
Beck, A., Kasalicky, T. & Rambold, G. Myco-photobiontal selection in a Mediterranean cryptogam community with DOI
Kaasalainen, U., Tuovinen, V., Mwachala, G., Pellikka, P. & Rikkinen, J. Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. PubMed DOI PMC
Yahr, R., Vilgalys, R. & DePriest, P. T. Strong fungal specificity and selectivity for algal symbionts in Florida scrub PubMed DOI
Stenroos, S., Högnabba, F., Myllys, L., Hyvönen, J. & Thell, A. High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. DOI
Wornik, S. & Grube, M. Joint dispersal does not imply maintenance of partnerships in lichen symbioses. PubMed DOI
Muggia, L., Grube, M. & Tretiach, M. Genetic diversity and photobiont associations in selected taxa of the DOI
Fedrowitz, K., Kaasalainen, U. & Rikkinen, J. Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. PubMed DOI PMC
Yahr, R., Vilgalys, R. & DePriest, P. T. Geographic variation in algal partners of PubMed DOI
Fernández-Mendoza, F. PubMed DOI
Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga PubMed DOI
Chagnon, P. L., Magain, N., Miadlikowska, J. & Lutzoni, F. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus PubMed DOI
Pérez-Ortega, S. DOI
Hughes, J. B. The scale of resource specialization and the distribution and abundance of lycaenid butterflies. PubMed DOI
Maglianesi, M. A., Blüthgen, N., Böhning-Gaese, K. & Schleuning, M. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. DOI
Ventre Lespiaucq, A., Jacquemyn, H., Rasmussen, H. N. & Méndez, M. Temporal turnover in mycorrhizal interactions: A proof of concept with orchids. PubMed DOI
Devictor, V. DOI
Hale, M. E. A monograph of the lichen genus DOI
Nash, T. H.
Ossowska, E., Guzow-Krzemińska, B., Kolanowska, M., Szczepańska, K. & Kukwa, M. Morphology and secondary chemistry in species recognition of PubMed DOI PMC
Molina, M. C. DOI
Thell, A., Thor, G. & Ahti, T. In
Feuerer, T. & Thell, A.
Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. Phylogenetic relationships and species concepts in DOI
Molina, M. C., Del-Prado, R., Divakar, P. K., Sanchez-Mata, D. & Crespo, A. Another example of cryptic diversity in lichen-forming fungi: The new species DOI
Crespo, A., Rico, V. J., Garrido, E., Lumbsch, H. T. & Divakar, P. K. A revision of species of the DOI
Kurokawa, S. Japanese species of
Divakar, P. K., Molina, M. C., Lumbsch, H. T. & Crespo, A. DOI
Molina, M. C. DOI
Romeike, J., Friedl, T., Helms, G. & Ott, S. Genetic diversity of algal and fungal partners in four species of PubMed DOI
Lindgren, H. DOI
Hestmark, G., Lutzoni, F. & Miadlikowska, J. Photobiont associations in co-occurring umbilicate lichens with contrasting modes of reproduction in coastal Norway. DOI
Law, R. Evolution in a mutualistic environment. In
Ossowska, E., Guzow-Krzemińska, B., Dudek, M., Oset, M. & Kukwa, M. Evaluation of diagnostic chemical and morphological characters in five DOI
Corsie, E. I., Harrold, P. & Yahr, R. No combination of morphological, ecological or chemical characters can reliably diagnose species in the DOI
Thell, A.
Medeiros, I. D. PubMed DOI PMC
Ossowska, E., Schiefelbein, U., Szymczyk, R. & Kukwa, M. Contribution to the knowledge of the distribution of DOI
Ossowska, E. A., Guzow-Krzemińska, B., Szymczyk, R. & Kukwa, M. A molecular re-evaluation of DOI
Castellani, M. B., Bianchi, E., Coppi, A., Nascimbene, J. & Benesperi, R. Revision of the DOI
Tsurykau, A., Bely, P., Golubkov, V., Persson, P.-E. & Thell, A. The lichen genus DOI
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. PubMed DOI PMC
Piercey-Normore, M. D. & Depriest, P. T. Algal switching among lichen symbioses. PubMed DOI
Fründ, J., McCann, K. S. & Williams, N. M. Sampling bias is a challenge for quantifying specialization and network structure: Lessons from a quantitative niche model. DOI
Orange, A., James, P. W. & White, F. J.
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. PubMed DOI
Guzow-Krzemińska, B. Photobiont flexibility in the lichen DOI
Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. DOI
Parker, S. R. AutoAssembler sequence assembly software. In PubMed
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. PubMed DOI
Malíček, J., Palice, Z. & Vondrák, J. Additions and corrections to the lichen biota of the Czech Republic. DOI
Crespo, A. DOI
Muggia, L., Perez-Ortega, S., Fryday, A., Spribille, T. & Grube, M. Global assessment of genetic variation and phenotypic plasticity in the lichen forming species DOI
Ruprecht, U., Brunauer, G. & Printzen, C. Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological viewpoint. DOI
Nyati, S., Scherrer, S., Werth, S. & Honegger, R. Green-algal photobiont diversity ( DOI
Kroken, S. & Taylor, J. W. Phylogenetic species, reproductive mode, and specificity of the green alga DOI
Dahlkild, Å. DOI
Friedl, T., Besendahl, A., Pfeiffer, P. & Bhattacharya, D. The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. PubMed DOI
Werth, S. Fungal-algal interactions in DOI
Altermann, S., Leavitt, S. D. & Goward, T. Tidying up the genus DOI
Sadowska-Deś, A. D., Bálint, M., Otte, J. & Schmitt, I. Assessing intraspecific diversity in a lichen-forming fungus and its green algal symbiont: Evaluation of eight molecular markers. DOI
Domaschke, S., Fernández-Mendoza, F., García, M. A., Martín, M. P. & Printzen, C. Low genetic diversity in Antarctic populations of the lichen-forming ascomycete DOI
del Campo, E. M., del Hoyo, A., Casano, L. M., Martínez-Alberola, F. & Barreno, E. A rapid and cost-efficient DMSO-based method for isolating DNA from cultured lichen photobionts. DOI
Pérez-Ortega, S., Ortiz-Álvarez, R., Allan Green, T. G. & de Los Ríos, A. Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). PubMed DOI
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. PubMed DOI PMC
Landan, G. & Graur, D. Local reliability measures from sets of co-optimal multiple sequence alignments. PubMed
Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. PubMed DOI PMC
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. PubMed DOI PMC
Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. PubMed DOI PMC
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. PubMed DOI PMC
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. PubMed DOI PMC
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. PubMed DOI
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. PubMed DOI
Ronquist, H. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. PubMed DOI
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. DOI
Rambaut A. FigTreev1.4.4. http://tree.bio.ed.ac.uk/software/figtree/. Accessed on 12 Apr 2021. (2021).
Aktas, C. Haplotypes: Haplotype Inference and Statistical Analysis of Genetic Variation. R Package Version 1.0. Available online: https://CRAN.R-project.org/package=haplotypes, accessed on 1 November 2018 (2015).
Clement M, Snell Q, Walker P, Posada D, Crandall K. TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings, 2, 184. (2002).
Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks.
Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. PubMed DOI PMC
Krebs, C. J.
R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.Rproject.org/, accessed on 1 January 2019 (2017).
RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Available online: http://www.rstudio.com/, accessed on 1 January 2019 (2018).
Vu VQ, Friendly M. ggbiplot: A Grammar of Graphics Implementation of Biplots. Available online: https://github.com/friendly/ggbiplot, accessed on 1 July 2024 (2023).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. DOI