Morphology and secondary chemistry in species recognition of Parmelia omphalodes group - evidence from molecular data with notes on the ecological niche modelling and genetic variability of photobionts
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31866741
PubMed Central
PMC6920222
DOI
10.3897/mycokeys.61.38175
PII: 38175
Knihovny.cz E-zdroje
- Klíčová slova
- Ascomycota, Parmeliaceae, ITS rDNA, ecological niche modelling, morphology, parmelioid lichens, photobiont, secondary metabolites,
- Publikační typ
- časopisecké články MeSH
To evaluate the importance of morphological and chemical characters used in the recognition of species within the Parmelia omphalodes group, we performed phylogenetic, morphological and chemical analyses of 335 specimens, of which 34 were used for molecular analyses. Phylogenetic analyses, based on ITS rDNA sequences, show that P. pinnatifida is distinct from P. omphalodes and the most important difference between those species is the development of pseudocyphellae. In P. pinnatifida, they are mostly marginal and form white rims along lobes margins, but laminal pseudocyphellae can develop in older parts of thalli and are predominantly connected with marginal pseudocyphellae. In contrast, in P. omphalodes laminal pseudocyphellae are common and are predominantly not connected to marginal pseudocyphellae. Chemical composition of secondary lichen metabolites in both analysed species is identical and therefore this feature is not diagnostic in species recognition. Few samples of P. discordans, species morphologically similar to P. omphalodes and P. pinnatifida, were also included in the analyses and they are nested within the clade of P. omphalodes, despite the different chemistry (protocetraric acid present versus salazinic acid in P. omphalodes). All taxa of the P. omphalodes group occupy similar niches, but their potential distributions are wider than those currently known. The absence of specimens in some localities may be limited by the photobiont availability. Parmelia omphalodes and P. pinnatifida are moderately selective in photobiont choice as they form associations with at least two or three lineages of Trebouxia clade S. Parmelia pinnatifida, as well as P. discordans are associated with Trebouxia OTU S02 which seems to have a broad ecological amplitude. Other lineages of Trebouxia seem to be rarer, especially Trebouxia sp. OTU S04, which is sometimes present in P. pinnatifida. This study indicates the importance of extensive research including morphology, chemistry and analysis of molecular markers of both bionts in taxonomical studies of lichens.
Zobrazit více v PubMed
Akaike H. (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F. (Eds) Proceedings of the 2nd International Symposium on Information Theory.Akademiai Kiado, Budapest, 267–281.
Altermann S. (2009) Geographic Structure in a Symbiotic Mutualism. University of California, Santa Cruz.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberóna J, Villalobos F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810–1819. 10.1016/j.ecolmodel.2011.02.011 DOI
Beck A. (2002) Morphological variation, photobiont association and ITS phylogeny of Chaenotheca phaeocephala and C. subroscida (Coniocybaceae, lichenized ascomycetes). Nordic Journal of Botany 21: 651–660. 10.1111/j.1756-1051.2001.tb00824.x DOI
Beck A, Friedl T, Rambold G. (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist 139: 709–720. 10.1046/j.1469-8137.1998.00231.x DOI
Beck A, Kasalicky T, Rambold G. (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytologist 153: 317–326. 10.1046/j.0028-646X.2001.00315.x DOI
Blaha J, Baloch E, Grube M. (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal Linnean Society London 88(2): 283–293. 10.1111/j.1095-8312.2006.00640.x DOI
Büdel B, Scheidegger C. (2008) Thallus morphology and anatomy. In: Nash TH. (Ed.) Lichen Biology (2nd ed.). Cambridge University Press, Cambridge, 40–68. 10.1017/CBO9780511790478.005 DOI
Cao S, Zhang F, Liu C, Hao Z, Tian Y, Zhu L, Zhou Q. (2015) Distribution patterns of haplotypes for symbionts from Umbilicaria esculenta and U. muehlenbergii reflect the importance of reproductive strategy in shaping population genetic structure. BMC Microbiology 15: 1–212. 10.1186/s12866-015-0527-0 PubMed DOI PMC
Calvelo S, Liberatore S. (2002) Catálogo de los líquenes de la Argentina. Kurtziana 29(2): 7–170.
Castresana J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17(4): 540–552. 10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Clement M, Snell Q, Walker P, Posada D, Crandall K. (2002) TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings 2: 1–184. 10.1109/IPDPS.2002.1016585 DOI
Corsie EI, Harrold P, Yahr R. (2019) No combination of morphological, ecological or chemical characters can reliably diagnose species in the Parmelia saxatilis aggregate in Scotland. Lichenologist 51: 107–121. 10.1017/S0024282919000069 DOI
Crespo A, Lumbsch HT. (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1: 167–170. 10.5598/imafungus.2010.01.02.09 PubMed DOI PMC
Crespo A, Molina MC, Blanco O, Schroeter B, Sancho LG, Hawksworth DL. (2002) rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106: 788–795. 10.1017/S095375620200610X DOI
Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I. (2018) Environment and host identity structure communities of green algal symbionts in lichens. New Phytologist 217: 277–289. 10.1111/nph.14770 PubMed DOI
del Campo EM, Hoyo A del, Casano LM, Martínez-Alberola F, Barreno E. (2010) A rapid and cost-efficient DMSO-based method for isolating DNA from cultured lichen photobionts. Taxon 59: 588–591. 10.1002/tax.592023 DOI
Deduke C, Piercey-Normore MD. (2015) Substratum preference of two species of Xanthoparmelia. Fungal Biology 119: 812–822. 10.1016/j.funbio.2015.05.005 PubMed DOI
Diederich P, Sérusiaux E. (2000) The Lichens and Lichenicolous Fungi of Belgium and Luxembourg. An annotated checklist. Musée National d’Histoire, Luxembourg.
Divakar PK, Molina MC, Lumbsch HT, Crespo A. (2005) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37: 37–46. 10.1017/S0024282904014641 DOI
Divakar PK, Leavitt SD, Molina MC, Del-Prado R, Lumbsch HT, Crespo A. (2016[2015]) A DNA barcoding approach for identification of hidden diversity in Parmeliaceae (Ascomycota): Parmelia sensu stricto as a case study. Botanical Journal of the Linnean Society 180: 21–29. 10.1111/boj.12358 DOI
Doering M, Piercey‐Normore MD. (2009) Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 41: 69–80. 10.1017/S0024282909008111 DOI
Domaschke S, Fernández-Mendoza F, Garcia M, Martín M, Printzen C. (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Research 31: 1–13. 10.3402/polar.v31i0.17353 DOI
Duque-Lazo J, van Gils H, Groen TA, Navarro-Cerrillo RM. (2016) Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecological Modelling 320: 62–70. 10.1016/j.ecolmodel.2015.09.019 DOI
Edgar RC. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz M, Zimmermann NE. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. 10.1111/j.2006.0906-7590.04596.x DOI
Esslinger TL. (2015) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. Opuscula Philolichenum 15: 136–390.
Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman III JB, Barnett DT. (2008) Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions 14: 808–817. 10.1111/j.1472-4642.2008.00486.x DOI
Feuerer T, Thell A. (2002) Parmelia ernstiae – a new macrolichen from Germany. Mitteilungen des Instituts für Allgemeine Botanik, Hamburg 30–32: 49–60.
Friedl T. (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). Universität Bayreuth, Bayreuth.
Friedl T, Rokitta C. (1997) Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23: 125–148.
Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D. (2000) The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Molecular Phylogenetics and Evolution 14: 342–352. 10.1006/mpev.1999.0711 PubMed DOI
Galtier N, Gouy M, Gautier C. (1996) SeaView and Phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences 12: 543–548. 10.1093/bioinformatics/12.6.543 PubMed DOI
Gardes M, Bruns TD. (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rust. Molecular Ecology 2: 113–118. 10.1111/j.1365-294X.1993.tb00005.x PubMed DOI
Gouy M, Guindon S, Gascuel O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224. 10.1093/molbev/msp259 PubMed DOI
Guttová A, Lackovičová A, Pišút I. (2013) Revised and updated checklist of lichens of Slovakia. Biologia 68: 845–850. 10.2478/s11756-013-0218-y DOI
Guzow-Krzemińska B. (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38(5): 469–476. 10.1017/S0024282906005068 DOI
Hafellner J. (1995) A new checklist of lichens and lichenicolous fungi of insular Laurimacaronesia including a lichenological bibliography for the area. Fritschiana 5: 1–132.
Hale ME. (1987) A monograph of the lichen genus Parmelia Acharius sensu stricto (Ascomycotina: Parmeliaceae). Smithsonian Contributions to Botany 66: 1–55. 10.5479/si.0081024X.66 DOI
Hammer Ø, Harper DAT, Ryan PD. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 1–9.
Haugan R, Timdal E. (2019) The morphologically cryptic lichen species Parmelia ernstiae and P. serrana new to Norway. Graphis Scripta 31: 5–13.
Hawksworth DL, Blanco O, Divakar PK, Ahti T, Crespo A. (2008) A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist 40: 1–21. 10.1017/S0024282908007329 DOI
Hawksworth DL, Divakar PK, Crespo A, Ahti T. (2011) The checklist of parmelioid and similar lichens in Europe and some adjacent territories: additions and corrections. Lichenologist 43: 639–645. 10.1017/S0024282911000454 DOI
Heibl C, Calenge C. (2015) Phyloclim: integrating phylogenetics and climatic niche modeling package version 0.9-4. https://cran.r-project.org/web/packages/phyloclim/phyloclim.pdf
Helms G. (2003) Taxonomy and Symbiosis in Associations of Physciaceae and Trebouxia. Inauguraldissertation am Albrecht-von-Haller Institut für Pflanzenwissenschaften, Experimentelle Phykologie und Sammlung von Algenkulturen der Georg-August-Universität Göttingen, Göttingen, 156 pp.
Helms G, Friedl T, Rambold G, Mayrhofer H. (2001) Identification of photobionts from the lichen family Physciacea using algal-specific ITS rDNA sequencing. Lichenologist 33: 73–86. 10.1006/lich.2000.0298 DOI
Hernandez PA, Graham CH, Master LL, Albert DL. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773–785. 10.1111/j.0906-7590.2006.04700.x DOI
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. 10.1002/joc.1276 DOI
Hosmer DW, Lemeshow S. (2000) Applied Logistic Regression. John Wiley and Sons, New York, 397 pp 10.1002/0471722146 DOI
Huelsenbeck JP, Ronquist F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI
Katoh K, Misawa K, Kuma K., Miyata T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066. 10.1093/nar/gkf436 PubMed DOI PMC
Knežević B, Mayrhofer H. (2009) Catalogue of the lichenized and lichenicolous fungi of Montenegro. Phyton (Horn, Austria) 48: 283–328. PubMed PMC
Kroken S, Taylor JW. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia Bryologist 103: 645–660. 10.1639/0007-2745(2000)103[0645:PSRMAS]2.0.CO;2 DOI
Kurokawa S. (1976) A note on Parmelia omphalodes and its related species. Journal of Japanese Botany 51: 377–380.
Lanfear R, Calcott B, Ho SY, Guindon S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6): 1695–1701. 10.1093/molbev/mss020 PubMed DOI
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772–773. 10.1093/molbev/msw260 PubMed DOI
Leavitt SD, Johnson LA, Goward T, St Clair LL. (2011) Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Molecular Phylogenetics and Evolution 60: 317–332. 10.1016/j.ympev.2011.05.012 PubMed DOI
Leavitt SD, Lumbsch HT, Stenroos S, St Clair LL. (2013a) Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8(12): e85240. 10.1371/journal.pone.0085240 PubMed DOI PMC
Leavitt SD, Nelsen MP, Lumbsch HT, Johnson LA, St Clair LL. (2013b) Symbiont flexibility in subalpine rock shield lichen communities in the Southwestern USA. Bryologist 116: 149–161. 10.1639/0007-2745-116.2.149 DOI
Leavitt SD, Esslinger TL, Hansen ES, Divakar PK, Crespo A, Loomis BF, Lumbsch HT. (2014) DNA barcoding of brown Parmeliae (Parmeliaceae) species: a molecular approach for accurate specimen identification, emphasizing species in Greenland. Organisms Diversity and Evolution 14: 11–20. 10.1007/s13127-013-0147-1 DOI
Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch HT. (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Molecular Ecology 24: 3779–3797. 10.1111/mec.13271 PubMed DOI
Lindgren H, Velmala S, Högnabba F, Goward T, Holien H, Myllys L. (2014) High fungal selectivity for algal symbionts in the genus Bryoria. Lichenologist 46: 681–695. 10.1017/S0024282914000279 DOI
Lutsak T, Fernández-Mendoza F, Nadyeina O, Şenkardeşler A, Printzen C. (2017) Testing the correlation between norstictic acid content and species evolution in the Cetraria aculeata group in Europe. Lichenologist 49: 39–56.10.1017/S0024282916000566 DOI
Miller MA, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November, 2010, New Orleans, 8 pp 10.1109/GCE.2010.5676129 DOI
Molina MC, Crespo A, Blanco O, Lumbsch HT, Hawksworth DL. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. Lichenologist 36: 37–54. 10.1017/S0024282904013933 DOI
Molina MC, Del-Prado R, Divakar PK, Sanchez-Mata D, Crespo A. (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms Diversity and Evolution 11: 331–342. 10.1007/s13127-011-0060-4 DOI
Molina MC, Divakar PK, Goward T, Millanes AM, Lumbsch HT, Crespo A. (2017) Neogene diversification in the temperate lichen-forming fungal genus Parmelia (Parmeliaceae, Ascomycota). Systematics and Biodiversity 15: 166–181. 10.1080/14772000.2016.1226977 DOI
Molins A, Moya P, García-Breijo FJ, Reig-Armiñana J, Barreno E. (2018) Molecular and morphological diversity of Trebouxia microalgae in sphaerothallioid Circinaria spp. lichens. Journal of Phycology 54: 494–504. 10.1111/jpy.12751 PubMed DOI
Muggia L, Vancurova L, Škaloud P, Peksa O, Wedin M, Grube M. (2013) The symbiotic playground of lichen thalli – a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiology Ecology 85: 313–323. 10.1111/1574-6941.12120 PubMed DOI
Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M. (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Annals of Botany 114: 463–75. 10.1093/aob/mcu146 PubMed DOI PMC
Nash TH. (2008) Lichen Biology (2nd edn). Cambridge University Press, Cambridge, 486 pp.
Nelsen M, Gargas A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264–275. 10.1111/j.1469-8137.2007.02241.x PubMed DOI
Nylander JAA. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
Ohmura Y, Kawachi M, Kasai F, Watanabe MM, Takeshita S. (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109: 43–59. 10.1639/0007-2745(2006)109[0043:GCOSIA]2.0.CO;2 DOI
Ohmura Y, Takeshita S, Kawachi M. (2018) Photobiont diversity within populations of a vegetatively reproducing lichen, Parmotrema tinctorum, can be generated by photobiont switching. Symbiosis 77: 59–72. 10.1007/s13199-018-0572-1 DOI
Okonechnikov K, Golosova O, Fursov M. (2012) Unipro GENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166–1167. 10.1093/bioinformatics/bts091 PubMed DOI
Onuț-Brännström I, Benjamin M, Scofield DG, Heiðmarsson S, Andersson MGI, Lindström ES, Johannesson H. (2018) Sharing of photobionts in sympatric populations of Thamnolia and Cetraria lichens: evidence from high-throughput sequencing. Scientific Reports 8: 4406. 10.1038/s41598-018-22470-y PubMed DOI PMC
Opanowicz M, Grube M. (2004) Photobiont genetic variation in Flavocetraria nivalis from Poland (Parmeliaceae, lichenized Ascomycota). Lichenologist 36: 125–131. 10.1017/S0024282904013763 DOI
Orange A, James PW, White FJ. (2001) Microchemical Methods for the Identification of Lichens. British Lichen Society, London, 101 pp.
Oset M. (2014) The lichen genus Stereocaulon (Schreb.) Hoffm. in Poland – a taxonomic and ecological study. Monographiae Botanicae 104: 1–81. 10.5586/mb.2014.001 DOI
Ossowska E, Bohdan A, Szymczyk R, Kukwa M. (2014) The lichen family Parmeliaceae in Poland. III. Parmelia serrana, new to Poland. Acta Societatis Botanicorum Poloniae 83: 81–84. 10.5586/asbp.2014.006 DOI
Ossowska E, Kukwa M. (2016) Parmelia barrenoae and P. pinnatifida, two lichen species new to Poland. Herzogia 29: 198–203. 10.13158/heia.29.1.2016.198 DOI
Ossowska E, Guzow-Krzemińska B, Dudek M, Oset M, Kukwa M. (2018) Evaluation of diagnostic chemical and morphological characters in five Parmelia species (Parmeliaceae, lichenized Ascomycota) with special emphasis on the thallus pruinosity. Phytotaxa 383: 165–180. 10.11646/phytotaxa.383.2.3 DOI
Paul F, Otte J, Schmitt I, Dal Grande F. (2018) Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Scientific Reports 8(1): 8624 10.1038/s41598-018-26947-8 PubMed DOI PMC
Peksa O, Škaloud P. (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology 20: 3936–3948. 10.1111/j.1365-294X.2011.05168.x PubMed DOI
Phillips SJ, Dudík M, Schapire RE. (2004) A maximum entropy approach to species distribution modeling. ICML ′04 Proceedings of the twenty-first international conference on Machine learning. ACM, New York, 655–662. 10.1145/1015330.1015412 DOI
Phillips SJ, Anderson R, Schapire RE. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. 10.1016/j.ecolmodel.2005.03.026 DOI
Piercey-Normore MD. (2009) Vegetatively reproducing fungi in three genera of the Parmeliaceae show divergent algal partners. Bryologist 112: 773–785. 10.1639/0007-2745-112.4.773 DOI
Pietras M, Kolanowska M. (2019) Predicted potential occurrence of the North American false truffle Rhizopogon salebrosus in Europe. Fungal Ecology 39: 225–230. 10.1016/j.funeco.2018.12.002 DOI
Pino-Bodas R, Martin MP, Burgaz AR, Lumbsch HT. (2013) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Molecular Ecology Resources 13: 1058–1068. 10.1111/1755-0998.12086 PubMed DOI
Rambaut A. (2012) FigTree v1.4.2. http://tree.bio.ed.ac.uk/software/figtree/
Rambaut A, Drummond AJ. (2007) Tracer v1.6. http://beast.bio.ed.ac.uk/
Rikkinen J, Oksanen I, Lohtander K. (2002) Lichen guilds share related cyanobacterial symbionts. Science 297: 1–357. 10.1126/science.1072961 PubMed DOI
Romeike J, Friedl T, Helms G, Ott S. (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Molecular Biology and Evolution 19: 1209–1217. 10.1093/oxfordjournals.molbev.a004181 PubMed DOI
Ronquist H, Huelsenbeck JP. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI
Ruprecht U, Brunauer G, Printzen C. (2012) Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological view point. Lichenologist 44: 661–678. 10.1017/S0024282912000291 DOI
Sanders WB, Lücking R. (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf‐dwelling lichen communities. New Phytologist 155: 425–435. 10.1046/j.1469-8137.2002.00472.x PubMed DOI
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246. 10.1073/pnas.1117018109 PubMed DOI PMC
Schoener TW. (1968) The anolis lizards of bimini: Resource partitioning in a complex fauna. Ecology 49: 704–726. 10.2307/1935534 DOI
Seaward MRD. (2010) Census catalogue of Irish Lichens (3rd edn.). National Museums Northern Ireland, Belfast, 64 pp.
Seifried J. (2009) Genetische Diversität in beringischen und extraberingischen arktischen Populationen der Strauchflechte Cetraria aculeata. Тhesis, Goethe-Universität, Frankfurt am Main.
Singh G, Dal Grande F, Divakar PK, Otte J, Crespo A, Schmitt I. (2017) Fungal-algal association patterns in lichen symbiosis linked to macroclimate. New Phytologist 214: 317–329. 10.1111/nph.14366 PubMed DOI
Skult H. (1984) The Parmelia omphalodes (Ascomycetes) complex in the Eastern Fennoscandia. Chemical and morphological variation. Annales Botanici Fennici 21: 117–142.
Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP. (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353: 488–492. 10.1126/science.aaf8287 PubMed DOI PMC
Stamatakis A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 30(9): 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Thell A, Feuerer T, Karnefelt L, Myllys L, Stenroos S. (2004) Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences. Mycological Progress 3(4): 297–314. 10.1007/s11557-006-0100-1 DOI
Thell A, Elix JA, Feuerer T, Hansen ES, Karnefelt I, Schuler N, Westberg M. (2008) Notes on the systematics, chemistry and distribution of European Parmelia and Punctelia species (lichenized ascomycetes). Sauteria 15: 545–559.
Thell A, Thor G, Ahti T. (2011) Parmelia Ach. In: Thell A, Moberg R. (Eds) Nordic Lichen Flora.Nordic Lichen Society, 83–90.
Thell A, Crespo A, Divakar PK, Karnefelt I, Leavitt SD, Lumbsch HT, Seaward MRD. (2012) A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy. Nordic Journal of Botany 30: 64–664. 10.1111/j.1756-1051.2012.00008.x DOI
Thell A, Tsurykau A, Persson PE, Hansson M, Åsegård E, Kärnefelt I, Seaward MRD. (2017) Parmelia ernstiae, P. serrana and P. submontana, three species increasing in the Nordic countries. Graphis Scripta 29: 24–32.
Warren DL, Glor RE, Turelli M. (2008) Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62: 2868–2883. 10.1111/j.1558-5646.2008.00482.x PubMed DOI
Warren DL, Glor RE, Turelli M. (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611. 10.1111/j.1600-0587.2009.06142.x DOI
White TJ, Bruns T, Lee S, Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols: a Guide to Methods and Applications Academic Press, New York, 315–322. 10.1016/B978-0-12-372180-8.50042-1 DOI
Wornik S, Grube M. (2010) Joint Dispersal Does Not Imply Maintenance of Partnerships in Lichen Symbioses. Microbial Ecology 59: 150–157. 10.1007/s00248-009-9584-y PubMed DOI
Yahr R, Vilgalys R, DePriest PT. (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171: 847–860. 10.1111/j.1469-8137.2006.01792.x PubMed DOI