Co-composted Biochar Enhances Growth, Physiological, and Phytostabilization Efficiency of Brassica napus and Reduces Associated Health Risks Under Chromium Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34868175
PubMed Central
PMC8637747
DOI
10.3389/fpls.2021.775785
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica, chromium, health risks, heavy metals, phytostabilization,
- Publikační typ
- časopisecké články MeSH
Among heavy metals, chromium (Cr) contamination is increasing gradually due to the use of untreated industrial effluents for irrigation purposes, thereby posing a severe threat to crop production. This study aimed to evaluate the potential of compost, biochar (BC), and co-composted BC on the growth, physiological, biochemical attributes, and health risks associated with the consumption of Brassica grown on Cr-contaminated soil. Results revealed that Cr stress (Cr-25) significantly reduced the growth and physiological attributes and increased antioxidant enzyme activities in Brassica, but the applied amendments considerably retrieved the negative effects of Cr toxicity through improving the growth and physiology of plants. The maximum increase in plant height (75.3%), root length (151.0%), shoot dry weight (139.4%), root dry weight (158.5%), and photosynthetic rate (151.0%) was noted with the application of co-composted BC under Cr stress (Cr-25) in comparison to the control. The application of co-composted BC significantly reduced antioxidant enzyme activities, such as APX (42.5%), GP (45.1%), CAT (45.4%), GST (47.8%), GR (47.1%), and RG (48.2%), as compared to the control under Cr stress. The same treatment reduced the accumulation of Cr in grain, shoot, and roots of Brassica by 4.12, 2.27, and 2.17 times and enhanced the accumulation in soil by 1.52 times as compared to the control. Moreover, the application of co-composted BC significantly enhanced phytostabilization efficiency and reduced associated health risks with the consumption of Brassica. It is concluded that the application of co-composted BC in Cr-contaminated soil can significantly enhance the growth, physiological, and biochemical attributes of Brassica by reducing its uptake in plants and enhanced phytostabilization efficiency. The tested product may also help in restoring the soils contaminated with Cr.
College of Life Sciences Yan'an University Yan'an China
Department of Environmental Sciences Shaheed Benazir Bhutto University Sheringal Upper Dir Pakistan
Faculty of Life Sciences University of Central Punjab Lahore Pakistan
Institute of Environmental Engineering Warsaw University of Life Sciences Warsaw Poland
Institute of Soil and Environmental Sciences University of Agriculture Faisalabad Pakistan
School of Biological Sciences The University of Western Australia Perth WA Australia
Zobrazit více v PubMed
Abbas A., Azeem M., Naveed M., Latif A., Bashir S., Ali A., et al. (2020). Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int. J. Phytoremediation 22 52–61. 10.1080/15226514.2019.1644286 PubMed DOI
Adrees M., Ali S., Iqbal M., Bharwana S. A., Siddiqi Z., Farid M., et al. (2015). Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol. Environ. Saf. 122 1–8. 10.1016/j.ecoenv.2015.07.003 PubMed DOI
Aebi H. (1983). Catalase in vitro. Methods Enzymol. 105 121–126. 10.1016/s0076-6879(84)05016-3 PubMed DOI
Agegnehu G., Bass A. M., Nelson P. N., Muirhead B., Wright G., Bird M. I. (2015). Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland. Austr. Agric. Ecosyst. Environ. 213 72–85. 10.1016/j.agee.2015.07.027 DOI
Agegnehu G., Srivastava A. K., Bird M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl. Soil Ecol. 119 156–170. 10.1016/j.apsoil.2017.06.008 DOI
Ahmad I., Tahir M., Daraz U., Ditta A., Hussain M. B., Khan Z. U. H. (2020). “Responses and tolerance of cereal crops to metals and metalloids toxicity” in Agronomic Crops. ed. Mirza H. (Singapore: Springer; ). 235–264. 10.1007/978-981-15-0025-1_14 DOI
Ahmad P., Jaleel C. A., Salem M. A., Nabi G., Sharma S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30 161–175. 10.3109/07388550903524243 PubMed DOI
Ahmad P., Tripathi D. K., Deshmukh R., Singh V. P., Corpas F. J. (2019). Revisiting the role of ROS and RNS in plants under changing environment. Environ. Exp. Bot. 161 1–3. 10.1016/j.envexpbot.2019.02.017 DOI
Ali S., Rizwan M., Bano R., Bharwana S. A., Ur Rehman M. Z., Hussain M. B., et al. (2018). Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arab. J. Geosci. 11 1–9.
Amin H., Arain B. A., Jahangir T. M., Abbasi M. S., Amin F. (1954). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geol. Ecol. Landsc. 2 51–60. 10.1080/24749508.2018.1452464 DOI
Arnon D. I. (1949). Copper enzymes in isolated chloroplasts, oxidase in Beta vulgaris. Plant Physiol. 24 1–11. 10.1104/pp.24.1.1 PubMed DOI PMC
Arshad M., Khan A. H. A., Hussain I., Anees M., Iqbal M., Soja M. G., et al. (2017). The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl. Soil Ecol. 114 90–98. 10.1016/j.apsoil.2017.02.021 DOI
Barrs H. D., Weatherley P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Bio. Sci. 15 413–428.
Bashir M. A., Naveed M., Ahmad Z., Gao B., Mustafa A., Núñez-Delgado A. (2020a). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 259:110051. 10.1016/j.jenvman.2019.110051 PubMed DOI
Bashir M. A., Naveed M., Ashraf S., Mustafa A., Ali Q., Rafique M., et al. (2020b). Performance of Zea mays L. cultivars in tannery polluted soils: management of chromium phytotoxicity through the application of biochar and compost. Physiol. Plant 173 129–147. 10.1111/ppl.13277 PubMed DOI
Ben-Asher J. I., Tsuyuki B. A., Bravdo Sagih M. (2006). Irrigation of grapevines with saline water: i. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric. Water Manag. 83 13–21.
Bian R., Joseph S., Cui L., Pan G., Li L., Liu X., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 272 121–128. 10.1016/j.jhazmat.2014.03.017 PubMed DOI
Brassard P., Godbout S., Raghavan V. (2016). Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J. Environ. Manag. 181 484–497. 10.1016/j.jenvman.2016.06.063 PubMed DOI
Chapman H. D. (1965). “Cation-exchange capacity” in Methods Soil Analysis: part 2 Chemical Microbiological Properties. in (ed) Norman A. G. (Madison: American Society of Agronomy; ). 9 891–901.
Cheng S., Chen T., Xu W., Huang J., Jiang S., Yan B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules 25:3167. 10.3390/molecules25143167 PubMed DOI PMC
Chukwuka K. S., Akanmu A. O., Umukoro O. B., Asemoloye M. D., Odebode A. C. (2020). “Biochar: a vital source for sustainable agriculture,” in Biostimulants in Plant Science, eds. S. M. Mirmajlessi and R. Radhakrishnan (London, UK: IntechOpen).
Coelho M. A., Fusconi R., Pinheiro L., Ramos I. C., Ferreira A. S. (2018). The combination of compost or biochar with urea and NBPT can improve nitrogen-use efficiency in maize. An. Braz. Acad. Sci. 90 1695–1703. 10.1590/0001-3765201820170416 PubMed DOI
de Oliveira L. M., Ma L. Q., Santos J. A., Guilherme L. R., Lessl J. T. (2014). Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 184 187–192. 10.1016/j.envpol.2013.08.025 PubMed DOI
Ditta A., Khalid A. (2016). “Bio-organo-phos: a sustainable approach for managing phosphorus deficiency in agricultural soils” in Organic Fertilizers - From Basic Concepts to Applied Outcomes. eds Larramendy M., Soloneski S. (Croatia: In Tech; ), 109–136. 10.5772/62473 DOI
Ditta A., Arshad M., Zahir Z. A., Jamil A. (2015). Comparative efficacy of rock phosphate enriched organic fertilizer vs. mineral phosphatic fertilizer for nodulation, growth and yield of lentil. Int. J. Agric. Biol. 17 589–595.
Ditta A., Imtiaz M., Mehmood S., Rizwan M. S., Mubeen F., Aziz O., et al. (2018a). Rock phosphate enriched organic fertilizer with phosphate solubilizing microorganisms improves nodulation, growth and yield of legumes. Commun. Soil Sci. Plant Anal. 49 2715–2725. 10.1080/00103624.2018.1538374 DOI
Ditta A., Muhammad J., Imtiaz M., Mehmood S., Qian Z., Tu S. (2018b). Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int. J. Recycl. Org. Waste Agric. 7 33–40. 10.1007/s40093-017-0187-1 DOI
Doumer M. E., Rigol A., Vidal M., Mangrich A. S. (2016). Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars. Environ. Sci. Pollut. Res. 23 2684–2692. PubMed
Fryer M. J., Andrews J. R., Oxborough K., Blowers D. A., Baker N. R. (1998). Relationships between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 116 571–580. 10.1104/pp.116.2.571 PubMed DOI PMC
Govil P. K., Krishna A. K. (2018). Soil and water contamination by potentially hazardous elements: a case history from India. Environ. Geochem. 2018 567–597.
Habig W. H., Pabst M. J., Jacoby W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 7130–7139. PubMed
Hu B., Ai Y., Jin J., Hayat T., Alsaedi A., Zhuang L., et al. (2020). Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2 47–64. 10.1016/j.wasman.2021.01.037 DOI
Ijaz M., Rizwan M. S., Sarfraz M., Ul-Allah S., Sher A., Sattar A., et al. (2020). Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. Int. J. Agric. Biol. 24 1633–1640. 10.17957/IJAB/15.1605 DOI
Irshad S., Xie Z., Mehmood S., Nawaz A., Ditta A., Mahmood Q. (2021). Insights into conventional and recent technologies for arsenic bioremediation: a systematic review. Environ. Sci. Pollut. Res. 28 18870–18892. 10.1007/s11356-021-12487-8 PubMed DOI
Jackson M. L. (1962). Interlayering of expansible layer silicates in soils by chemical weathering. Clays Clay Miner 11 29–46. 10.1346/ccmn.1962.0110104 DOI
Jan F. A., Ishaq M., Khan S., Ihsanullah I., Ahmad I., Shakirullah M. (2010). A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J. Hazard. Mater. 179 612–621. 10.1016/j.jhazmat.2010.03.047 PubMed DOI
Jia W., Wang B., Wang C., Sun H. (2017). Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J. Environ. Chem. Eng. 5 2107–2114. 10.1016/j.jece.2017.04.015 DOI
Jun R., Ling T., Guanghua Z. (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Technol. 6 571–578. 10.1007/bf03326097 DOI
Junaid M., Hashmi M. Z., Malik R. N., Pei D. S. (2016). Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: a review. Environ. Sci. Pollut. Res. 23 20151–20167. 10.1007/s11356-016-7463-x PubMed DOI
Kamran M., Malik Z., Parveen A., Huang L., Riaz M., Bashir S., et al. (2019). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 39 266–281.
Kohli S. K., Khanna K., Bhardwaj R., Abd Allah E. F., Ahmad P., Corpas F. J. (2019). Assessment of Subcellular ROS and NO Metabolism in Higher Plants: multifunctional Signaling Molecules. Antioxidants 8:641. 10.3390/antiox8120641 PubMed DOI PMC
Latif A., Bilal M., Asghar W., Azeem M., Ahmad M. I., Abbas A., et al. (2018). Heavy metal accumulation in vegetables and assessment of their potential health risk. J. Environ. Ana. Chem. 5:234.
Little T. M., Hills F. J. (1978). Agricultural Experimentation: design and analysis. New York: John Wiley Sons. Ins.
Lutts S., Kinet J. M., Bouharmont J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78 389–398.
Maqbool A., Ali S., Rizwan M., Ishaque W., Rasool N., Ur Rehman M. Z., et al. (2018). Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ. Sci. Pollut. Res. 25 10848–10856. 10.1007/s11356-018-1352-4 PubMed DOI
Medda S., Mondal N. K. (2017). Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann. Agrar. Sci. 15 396–401. 10.1016/j.aasci.2017.05.022 DOI
Mehmood S., Rizwan M., Bashir S., Ditta A., Aziz O., Yong L. Z., et al. (2018a). Comparative Effects of Biochar, Slag and Ferrous–Mn Ore on Lead and Cadmium Immobilization in Soil. Bull. Environ. Contam. Toxicol. 100 286–292. 10.1007/s00128-017-2222-3 PubMed DOI
Mehmood S., Saeed D. A., Rizwan M., Khan M. N., Aziz O., Bashir S., et al. (2018b). Impact of different amendments on biochemical responses of sesame (Sesamum Indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol. Biochem. 132 345–355. 10.1016/j.plaphy.2018.09.019 PubMed DOI
Mehmood S., Wang X., Ahmed W., Imtiaz M., Ditta A., Rizwan M., et al. (2021). Removal mechanisms of slag against potentially toxic elements in soil and plants for sustainable agriculture development: a critical review. Sustainability 13:5255. 10.3390/su13095255 DOI
Moodie C. D., Smith H. W., Mcreery R. A. (1959). Laboratory Manual for Soil Fertility. Washington: State college of Washington. 31–39.
Murtaza G., Ahmed Z., Usman M., Tariq W., Ullah Z., Shareef M., et al. (2021a). Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant Nutr. 44 1677–1691. 10.1080/01904167.2021.1871746 DOI
Murtaza G., Ditta A., Ullah N., Usman M., Ahmed Z. (2021b). Biochar for the management of nutrient impoverished and metal contaminated soils: preparation, applications, and prospects. J. Soil Sci. Plant Nutrit. 21 2191–2213.
Mustafa A., Minggang X., Shah S. A. A., Abrar M. M., Nan S., Baoren W., et al. (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 270:110894. 10.1016/j.jenvman.2020.110894 PubMed DOI
Nakano Y., Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22 867–880. 10.1016/s0005-2728(00)00256-5 DOI
Niamat B., Naveed M., Ahmad Z., Yaseen M., Ditta A., Mustafa A., et al. (2019). Calcium-enriched animal manure alleviates the adverse effects of salt stress on growth, physiology and nutrients homeostasis of Zea mays L. Plants 8:480. 10.3390/plants8110480 PubMed DOI PMC
Novak J. M., Ippolito J. A., Watts D. W., Sigua G. C., Ducey T. F., Johnson M. G. (2019). Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 1 97–114. PubMed PMC
Rahman I., Kode A., Biswas S. K. (2006). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1:3159. PubMed
Rizwan M. S., Imtiaz M., Zhu J., Yousaf B., Hussain M., Ali L., et al. (2021). Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma 385:114803. 10.1016/j.geoderma.2020.114803 DOI
Rizwan M., Ali S., Qayyum M. F., Ibrahim M., Zia-ur-Rehman M., Abbas T., et al. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 23 2230–2248. 10.1007/s11356-015-5697-7 PubMed DOI
Sabir A., Naveed M., Bashir M. A., Hussain A., Mustafa A., Zahir Z. A., et al. (2020). Cadmium mediated phytotoxic impacts in Brassica napus: managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J. Environ. Manag. 265:110522. 10.1016/j.jenvman.2020.110522 PubMed DOI
Sanchez M. E., Lindao E., Margaleff D., Martinez O., Moran A. (2009). Pyrolysis of agricultural residues from rape and sunflowers: production and characterization of bio-fuels and biochar soil management. J. Anal. Appl. Pyrol. 85 142–144.
Sarfraz R., Hussain A., Sabir A., Fekih I. B., Ditta A., Xing S. (2019). Role of Biochar and plant growth-promoting rhizobacteria to enhance soil carbon sequestration– a review. Environ. Monit. Assess. 191:251. 10.1007/s10661-019-7400-9 PubMed DOI
Seneviratne M., Weerasundara L., Ok Y. S., Rinklebe J., Vithanage M. (2017). Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. J. Environ. Manag. 186 293–300. 10.1016/j.jenvman.2016.07.024 PubMed DOI
Soltanpour P. N., Schwab A. P. (1977). A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8 195–207. 10.1080/00103627709366714 DOI
Tepanosyan G., Sahakyan L., Maghakyan N., Saghatelyan A. (2020). Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environ. Pollut. 261:114210. 10.1016/j.envpol.2020.114210 PubMed DOI
Ullah N., Ditta A., Khalid A., Mehmood S., Rizwan M. S., Mubeen F., et al. (2020). Integrated effect of algal biochar and plant growth promoting rhizobacteria on physiology and growth of maize under deficit irrigations. J. Plant. Nutr. Soil Sci. 20 346–356. 10.1007/s42729-019-00112-0 DOI
US Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA handbook no. 60, Washington, USA: Government Printing Office. 160.
Watanabe F. S., Olsen S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. 29 677–678. 10.2136/sssaj1965.03615995002900060025x DOI
Wolf B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 13 1035–1059. 10.1080/00103628209367332 DOI
Yem E. O., Willis A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57 508–514. 10.1042/bj0570508 PubMed DOI PMC
Zhuang X., Chen J., Shim H., Bai Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 33 406–413. 10.1016/j.envint.2006.12.005 PubMed DOI