Co-composted Biochar Enhances Growth, Physiological, and Phytostabilization Efficiency of Brassica napus and Reduces Associated Health Risks Under Chromium Stress

. 2021 ; 12 () : 775785. [epub] 20211118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34868175

Among heavy metals, chromium (Cr) contamination is increasing gradually due to the use of untreated industrial effluents for irrigation purposes, thereby posing a severe threat to crop production. This study aimed to evaluate the potential of compost, biochar (BC), and co-composted BC on the growth, physiological, biochemical attributes, and health risks associated with the consumption of Brassica grown on Cr-contaminated soil. Results revealed that Cr stress (Cr-25) significantly reduced the growth and physiological attributes and increased antioxidant enzyme activities in Brassica, but the applied amendments considerably retrieved the negative effects of Cr toxicity through improving the growth and physiology of plants. The maximum increase in plant height (75.3%), root length (151.0%), shoot dry weight (139.4%), root dry weight (158.5%), and photosynthetic rate (151.0%) was noted with the application of co-composted BC under Cr stress (Cr-25) in comparison to the control. The application of co-composted BC significantly reduced antioxidant enzyme activities, such as APX (42.5%), GP (45.1%), CAT (45.4%), GST (47.8%), GR (47.1%), and RG (48.2%), as compared to the control under Cr stress. The same treatment reduced the accumulation of Cr in grain, shoot, and roots of Brassica by 4.12, 2.27, and 2.17 times and enhanced the accumulation in soil by 1.52 times as compared to the control. Moreover, the application of co-composted BC significantly enhanced phytostabilization efficiency and reduced associated health risks with the consumption of Brassica. It is concluded that the application of co-composted BC in Cr-contaminated soil can significantly enhance the growth, physiological, and biochemical attributes of Brassica by reducing its uptake in plants and enhanced phytostabilization efficiency. The tested product may also help in restoring the soils contaminated with Cr.

Zobrazit více v PubMed

Abbas A., Azeem M., Naveed M., Latif A., Bashir S., Ali A., et al. (2020). Synergistic use of biochar and acidified manure for improving growth of maize in chromium contaminated soil. Int. J. Phytoremediation 22 52–61. 10.1080/15226514.2019.1644286 PubMed DOI

Adrees M., Ali S., Iqbal M., Bharwana S. A., Siddiqi Z., Farid M., et al. (2015). Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol. Environ. Saf. 122 1–8. 10.1016/j.ecoenv.2015.07.003 PubMed DOI

Aebi H. (1983). Catalase in vitro. Methods Enzymol. 105 121–126. 10.1016/s0076-6879(84)05016-3 PubMed DOI

Agegnehu G., Bass A. M., Nelson P. N., Muirhead B., Wright G., Bird M. I. (2015). Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland. Austr. Agric. Ecosyst. Environ. 213 72–85. 10.1016/j.agee.2015.07.027 DOI

Agegnehu G., Srivastava A. K., Bird M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl. Soil Ecol. 119 156–170. 10.1016/j.apsoil.2017.06.008 DOI

Ahmad I., Tahir M., Daraz U., Ditta A., Hussain M. B., Khan Z. U. H. (2020). “Responses and tolerance of cereal crops to metals and metalloids toxicity” in Agronomic Crops. ed. Mirza H. (Singapore: Springer; ). 235–264. 10.1007/978-981-15-0025-1_14 DOI

Ahmad P., Jaleel C. A., Salem M. A., Nabi G., Sharma S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30 161–175. 10.3109/07388550903524243 PubMed DOI

Ahmad P., Tripathi D. K., Deshmukh R., Singh V. P., Corpas F. J. (2019). Revisiting the role of ROS and RNS in plants under changing environment. Environ. Exp. Bot. 161 1–3. 10.1016/j.envexpbot.2019.02.017 DOI

Ali S., Rizwan M., Bano R., Bharwana S. A., Ur Rehman M. Z., Hussain M. B., et al. (2018). Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arab. J. Geosci. 11 1–9.

Amin H., Arain B. A., Jahangir T. M., Abbasi M. S., Amin F. (1954). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geol. Ecol. Landsc. 2 51–60. 10.1080/24749508.2018.1452464 DOI

Arnon D. I. (1949). Copper enzymes in isolated chloroplasts, oxidase in Beta vulgaris. Plant Physiol. 24 1–11. 10.1104/pp.24.1.1 PubMed DOI PMC

Arshad M., Khan A. H. A., Hussain I., Anees M., Iqbal M., Soja M. G., et al. (2017). The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl. Soil Ecol. 114 90–98. 10.1016/j.apsoil.2017.02.021 DOI

Barrs H. D., Weatherley P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Bio. Sci. 15 413–428.

Bashir M. A., Naveed M., Ahmad Z., Gao B., Mustafa A., Núñez-Delgado A. (2020a). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 259:110051. 10.1016/j.jenvman.2019.110051 PubMed DOI

Bashir M. A., Naveed M., Ashraf S., Mustafa A., Ali Q., Rafique M., et al. (2020b). Performance of Zea mays L. cultivars in tannery polluted soils: management of chromium phytotoxicity through the application of biochar and compost. Physiol. Plant 173 129–147. 10.1111/ppl.13277 PubMed DOI

Ben-Asher J. I., Tsuyuki B. A., Bravdo Sagih M. (2006). Irrigation of grapevines with saline water: i. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric. Water Manag. 83 13–21.

Bian R., Joseph S., Cui L., Pan G., Li L., Liu X., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 272 121–128. 10.1016/j.jhazmat.2014.03.017 PubMed DOI

Brassard P., Godbout S., Raghavan V. (2016). Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J. Environ. Manag. 181 484–497. 10.1016/j.jenvman.2016.06.063 PubMed DOI

Chapman H. D. (1965). “Cation-exchange capacity” in Methods Soil Analysis: part 2 Chemical Microbiological Properties. in (ed) Norman A. G. (Madison: American Society of Agronomy; ). 9 891–901.

Cheng S., Chen T., Xu W., Huang J., Jiang S., Yan B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules 25:3167. 10.3390/molecules25143167 PubMed DOI PMC

Chukwuka K. S., Akanmu A. O., Umukoro O. B., Asemoloye M. D., Odebode A. C. (2020). “Biochar: a vital source for sustainable agriculture,” in Biostimulants in Plant Science, eds. S. M. Mirmajlessi and R. Radhakrishnan (London, UK: IntechOpen).

Coelho M. A., Fusconi R., Pinheiro L., Ramos I. C., Ferreira A. S. (2018). The combination of compost or biochar with urea and NBPT can improve nitrogen-use efficiency in maize. An. Braz. Acad. Sci. 90 1695–1703. 10.1590/0001-3765201820170416 PubMed DOI

de Oliveira L. M., Ma L. Q., Santos J. A., Guilherme L. R., Lessl J. T. (2014). Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 184 187–192. 10.1016/j.envpol.2013.08.025 PubMed DOI

Ditta A., Khalid A. (2016). “Bio-organo-phos: a sustainable approach for managing phosphorus deficiency in agricultural soils” in Organic Fertilizers - From Basic Concepts to Applied Outcomes. eds Larramendy M., Soloneski S. (Croatia: In Tech; ), 109–136. 10.5772/62473 DOI

Ditta A., Arshad M., Zahir Z. A., Jamil A. (2015). Comparative efficacy of rock phosphate enriched organic fertilizer vs. mineral phosphatic fertilizer for nodulation, growth and yield of lentil. Int. J. Agric. Biol. 17 589–595.

Ditta A., Imtiaz M., Mehmood S., Rizwan M. S., Mubeen F., Aziz O., et al. (2018a). Rock phosphate enriched organic fertilizer with phosphate solubilizing microorganisms improves nodulation, growth and yield of legumes. Commun. Soil Sci. Plant Anal. 49 2715–2725. 10.1080/00103624.2018.1538374 DOI

Ditta A., Muhammad J., Imtiaz M., Mehmood S., Qian Z., Tu S. (2018b). Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int. J. Recycl. Org. Waste Agric. 7 33–40. 10.1007/s40093-017-0187-1 DOI

Doumer M. E., Rigol A., Vidal M., Mangrich A. S. (2016). Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars. Environ. Sci. Pollut. Res. 23 2684–2692. PubMed

Fryer M. J., Andrews J. R., Oxborough K., Blowers D. A., Baker N. R. (1998). Relationships between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 116 571–580. 10.1104/pp.116.2.571 PubMed DOI PMC

Govil P. K., Krishna A. K. (2018). Soil and water contamination by potentially hazardous elements: a case history from India. Environ. Geochem. 2018 567–597.

Habig W. H., Pabst M. J., Jacoby W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 7130–7139. PubMed

Hu B., Ai Y., Jin J., Hayat T., Alsaedi A., Zhuang L., et al. (2020). Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2 47–64. 10.1016/j.wasman.2021.01.037 DOI

Ijaz M., Rizwan M. S., Sarfraz M., Ul-Allah S., Sher A., Sattar A., et al. (2020). Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. Int. J. Agric. Biol. 24 1633–1640. 10.17957/IJAB/15.1605 DOI

Irshad S., Xie Z., Mehmood S., Nawaz A., Ditta A., Mahmood Q. (2021). Insights into conventional and recent technologies for arsenic bioremediation: a systematic review. Environ. Sci. Pollut. Res. 28 18870–18892. 10.1007/s11356-021-12487-8 PubMed DOI

Jackson M. L. (1962). Interlayering of expansible layer silicates in soils by chemical weathering. Clays Clay Miner 11 29–46. 10.1346/ccmn.1962.0110104 DOI

Jan F. A., Ishaq M., Khan S., Ihsanullah I., Ahmad I., Shakirullah M. (2010). A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J. Hazard. Mater. 179 612–621. 10.1016/j.jhazmat.2010.03.047 PubMed DOI

Jia W., Wang B., Wang C., Sun H. (2017). Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J. Environ. Chem. Eng. 5 2107–2114. 10.1016/j.jece.2017.04.015 DOI

Jun R., Ling T., Guanghua Z. (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Technol. 6 571–578. 10.1007/bf03326097 DOI

Junaid M., Hashmi M. Z., Malik R. N., Pei D. S. (2016). Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: a review. Environ. Sci. Pollut. Res. 23 20151–20167. 10.1007/s11356-016-7463-x PubMed DOI

Kamran M., Malik Z., Parveen A., Huang L., Riaz M., Bashir S., et al. (2019). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 39 266–281.

Kohli S. K., Khanna K., Bhardwaj R., Abd Allah E. F., Ahmad P., Corpas F. J. (2019). Assessment of Subcellular ROS and NO Metabolism in Higher Plants: multifunctional Signaling Molecules. Antioxidants 8:641. 10.3390/antiox8120641 PubMed DOI PMC

Latif A., Bilal M., Asghar W., Azeem M., Ahmad M. I., Abbas A., et al. (2018). Heavy metal accumulation in vegetables and assessment of their potential health risk. J. Environ. Ana. Chem. 5:234.

Little T. M., Hills F. J. (1978). Agricultural Experimentation: design and analysis. New York: John Wiley Sons. Ins.

Lutts S., Kinet J. M., Bouharmont J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78 389–398.

Maqbool A., Ali S., Rizwan M., Ishaque W., Rasool N., Ur Rehman M. Z., et al. (2018). Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ. Sci. Pollut. Res. 25 10848–10856. 10.1007/s11356-018-1352-4 PubMed DOI

Medda S., Mondal N. K. (2017). Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann. Agrar. Sci. 15 396–401. 10.1016/j.aasci.2017.05.022 DOI

Mehmood S., Rizwan M., Bashir S., Ditta A., Aziz O., Yong L. Z., et al. (2018a). Comparative Effects of Biochar, Slag and Ferrous–Mn Ore on Lead and Cadmium Immobilization in Soil. Bull. Environ. Contam. Toxicol. 100 286–292. 10.1007/s00128-017-2222-3 PubMed DOI

Mehmood S., Saeed D. A., Rizwan M., Khan M. N., Aziz O., Bashir S., et al. (2018b). Impact of different amendments on biochemical responses of sesame (Sesamum Indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol. Biochem. 132 345–355. 10.1016/j.plaphy.2018.09.019 PubMed DOI

Mehmood S., Wang X., Ahmed W., Imtiaz M., Ditta A., Rizwan M., et al. (2021). Removal mechanisms of slag against potentially toxic elements in soil and plants for sustainable agriculture development: a critical review. Sustainability 13:5255. 10.3390/su13095255 DOI

Moodie C. D., Smith H. W., Mcreery R. A. (1959). Laboratory Manual for Soil Fertility. Washington: State college of Washington. 31–39.

Murtaza G., Ahmed Z., Usman M., Tariq W., Ullah Z., Shareef M., et al. (2021a). Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant Nutr. 44 1677–1691. 10.1080/01904167.2021.1871746 DOI

Murtaza G., Ditta A., Ullah N., Usman M., Ahmed Z. (2021b). Biochar for the management of nutrient impoverished and metal contaminated soils: preparation, applications, and prospects. J. Soil Sci. Plant Nutrit. 21 2191–2213.

Mustafa A., Minggang X., Shah S. A. A., Abrar M. M., Nan S., Baoren W., et al. (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 270:110894. 10.1016/j.jenvman.2020.110894 PubMed DOI

Nakano Y., Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22 867–880. 10.1016/s0005-2728(00)00256-5 DOI

Niamat B., Naveed M., Ahmad Z., Yaseen M., Ditta A., Mustafa A., et al. (2019). Calcium-enriched animal manure alleviates the adverse effects of salt stress on growth, physiology and nutrients homeostasis of Zea mays L. Plants 8:480. 10.3390/plants8110480 PubMed DOI PMC

Novak J. M., Ippolito J. A., Watts D. W., Sigua G. C., Ducey T. F., Johnson M. G. (2019). Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 1 97–114. PubMed PMC

Rahman I., Kode A., Biswas S. K. (2006). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1:3159. PubMed

Rizwan M. S., Imtiaz M., Zhu J., Yousaf B., Hussain M., Ali L., et al. (2021). Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma 385:114803. 10.1016/j.geoderma.2020.114803 DOI

Rizwan M., Ali S., Qayyum M. F., Ibrahim M., Zia-ur-Rehman M., Abbas T., et al. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 23 2230–2248. 10.1007/s11356-015-5697-7 PubMed DOI

Sabir A., Naveed M., Bashir M. A., Hussain A., Mustafa A., Zahir Z. A., et al. (2020). Cadmium mediated phytotoxic impacts in Brassica napus: managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J. Environ. Manag. 265:110522. 10.1016/j.jenvman.2020.110522 PubMed DOI

Sanchez M. E., Lindao E., Margaleff D., Martinez O., Moran A. (2009). Pyrolysis of agricultural residues from rape and sunflowers: production and characterization of bio-fuels and biochar soil management. J. Anal. Appl. Pyrol. 85 142–144.

Sarfraz R., Hussain A., Sabir A., Fekih I. B., Ditta A., Xing S. (2019). Role of Biochar and plant growth-promoting rhizobacteria to enhance soil carbon sequestration– a review. Environ. Monit. Assess. 191:251. 10.1007/s10661-019-7400-9 PubMed DOI

Seneviratne M., Weerasundara L., Ok Y. S., Rinklebe J., Vithanage M. (2017). Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. J. Environ. Manag. 186 293–300. 10.1016/j.jenvman.2016.07.024 PubMed DOI

Soltanpour P. N., Schwab A. P. (1977). A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8 195–207. 10.1080/00103627709366714 DOI

Tepanosyan G., Sahakyan L., Maghakyan N., Saghatelyan A. (2020). Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environ. Pollut. 261:114210. 10.1016/j.envpol.2020.114210 PubMed DOI

Ullah N., Ditta A., Khalid A., Mehmood S., Rizwan M. S., Mubeen F., et al. (2020). Integrated effect of algal biochar and plant growth promoting rhizobacteria on physiology and growth of maize under deficit irrigations. J. Plant. Nutr. Soil Sci. 20 346–356. 10.1007/s42729-019-00112-0 DOI

US Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA handbook no. 60, Washington, USA: Government Printing Office. 160.

Watanabe F. S., Olsen S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. 29 677–678. 10.2136/sssaj1965.03615995002900060025x DOI

Wolf B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 13 1035–1059. 10.1080/00103628209367332 DOI

Yem E. O., Willis A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57 508–514. 10.1042/bj0570508 PubMed DOI PMC

Zhuang X., Chen J., Shim H., Bai Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 33 406–413. 10.1016/j.envint.2006.12.005 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...