Unlocking the potential of biofilm-forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.)

. 2024 Jul 05 ; 14 (1) : 15546. [epub] 20240705

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38969785
Odkazy

PubMed 38969785
PubMed Central PMC11226629
DOI 10.1038/s41598-024-66562-4
PII: 10.1038/s41598-024-66562-4
Knihovny.cz E-zdroje

Plant growth-promoting rhizobacteria (PGPR) boost crop yields and reduce environmental pressures through biofilm formation in natural climates. Recently, biofilm-based root colonization by these microorganisms has emerged as a promising strategy for agricultural enhancement. The current work aims to characterize biofilm-forming rhizobacteria for wheat growth and yield enhancement. For this, native rhizobacteria were isolated from the wheat rhizosphere and ten isolates were characterized for plant growth promoting traits and biofilm production under axenic conditions. Among these ten isolates, five were identified as potential biofilm-producing PGPR based on in vitro assays for plant growth-promoting traits. These were further evaluated under controlled and field conditions for their impact on wheat growth and yield attributes. Surface-enhanced Raman spectroscopy analysis further indicated that the biochemical composition of the biofilm produced by the selected bacterial strains includes proteins, carbohydrates, lipids, amino acids, and nucleic acids (DNA/RNA). Inoculated plants in growth chamber resulted in larger roots, shoots, and increase in fresh biomass than controls. Similarly, significant increases in plant height (13.3, 16.7%), grain yield (29.6, 17.5%), number of tillers (18.7, 34.8%), nitrogen content (58.8, 48.1%), and phosphorus content (63.0, 51.0%) in grains were observed in both pot and field trials, respectively. The two most promising biofilm-producing isolates were identified through 16 s rRNA partial gene sequencing as Brucella sp. (BF10), Lysinibacillus macroides (BF15). Moreover, leaf pigmentation and relative water contents were significantly increased in all treated plants. Taken together, our results revealed that biofilm forming PGPR can boost crop productivity by enhancing growth and physiological responses and thus aid in sustainable agriculture.

Zobrazit více v PubMed

Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol. 2015;7:096–102.

Ali, M. A., Naveed, M., Mustafa, A. & Abbas, A. The good, the bad, and the ugly of rhizosphere microbiome. Probiotics and Plant Health, pp. 253–290 (2017).

Lugtenberg, B. Life of microbes in the rhizosphere. Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, 7–15 (2015).

Raaijmakers JM, Lugtenberg BJ. Perspectives for rhizosphere research. Molecular microbial ecology of the rhizosphere. 2013;1:1227–1232. doi: 10.1002/9781118297674.ch118. DOI

Beneduzi A, Ambrosini A, Passaglia LM. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012;35:1044–1051. doi: 10.1590/S1415-47572012000600020. PubMed DOI PMC

Meena, B. Biological control of pest and diseases using fluorescent pseudomonads. Basic and Applied Aspects of Biopesticides, 17–29 (2014).

Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells. 2021;10(6):1551. doi: 10.3390/cells10061551. PubMed DOI PMC

Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013;11:789–799. doi: 10.1038/nrmicro3109. PubMed DOI

Timmusk S, et al. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front. Microbiol. 2015;6:387. doi: 10.3389/fmicb.2015.00387. PubMed DOI PMC

del Mar Cendra M, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv. 2021;49:107734. doi: 10.1016/j.biotechadv.2021.107734. PubMed DOI

Flemming H-C, et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 2016;14:563–575. doi: 10.1038/nrmicro.2016.94. PubMed DOI

Pandit A, Adholeya A, Cahill D, Brau L, Kochar M. Microbial biofilms in nature: unlocking their potential for agricultural applications. J. Appl. Microbiol. 2020;129:199–211. doi: 10.1111/jam.14609. PubMed DOI

Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms. Front. Microbiol. 2020;11:952. doi: 10.3389/fmicb.2020.00952. PubMed DOI PMC

Asari SY. Studies on plant-microbe interaction to improve stress tolerance in plants for sustainable agriculture. Uppsala: Swedish University of Agricultural Sciences; 2015.

Ansari, F. A. & Ahmad, I. in Understanding Microbial Biofilms 59–70 (Elsevier, Amsterdam, 2023).

Tovi N, Frenk S, Hadar Y, Minz D. Host specificity and spatial distribution preference of three Pseudomonas isolates. Front. Microbiol. 2019;9:3263. doi: 10.3389/fmicb.2018.03263. PubMed DOI PMC

Ahmad, I. et al. Biofilms: an overview of their significance in plant and soil health. Biofilms in Plant and Soil Health, 1–25 (2017).

Altaf MM, Ahmad I. In vitro and in vivo biofilm formation by Azotobacter isolates and its relevance to rhizosphere colonization. Rhizosphere. 2017;3:138–142. doi: 10.1016/j.rhisph.2017.04.009. DOI

Naveed, M., Mustafa, A., Azhar, S.Q.T.A., Kamran, M., Zahir, Z.A. and Núñez-Delgado, A., 2020. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.).J. Environ. Manage.,257, p.109974. PubMed

Kang Y, Shen M, Yang X, Cheng D, Zhao Q. A plant growth-promoting rhizobacteria (PGPR) mixture does not display synergistic effects, likely by biofilm but not growth inhibition. Microbiology. 2014;83:666–673. doi: 10.1134/S0026261714050166. DOI

Wu CH, Bernard SM, Andersen GL, Chen W. Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2009;2:428–440. doi: 10.1111/j.1751-7915.2009.00109.x. PubMed DOI PMC

Nazli F, Mustafa A, Ahmad M, Hussain A, Jamil M, Wang X, Shakeel Q, Imtiaz M, El-Esawi MA. A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability. 2020;12(21):9056. doi: 10.3390/su12219056. DOI

Saeed Q, et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 2021;22:10529. doi: 10.3390/ijms221910529. PubMed DOI PMC

Danhorn T, Fuqua C. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 2007;61:401–422. doi: 10.1146/annurev.micro.61.080706.093316. PubMed DOI

Fujishige NA, et al. Rhizobium common nod genes are required for biofilm formation. Mol. Microbiol. 2008;67:504–515. doi: 10.1111/j.1365-2958.2007.06064.x. PubMed DOI

Ansari, F. A., Jafri, H., Ahmad, I. & Abulreesh, H. H. Factors affecting biofilm formation in in vitro and in the rhizosphere. Biofilms in Plant and Soil Health, 275–290 (2017).

Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. 2014;22:84–91. doi: 10.1016/j.tim.2013.12.004. PubMed DOI

Ren D, Madsen JS, Sørensen SJ, Burmølle M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 2015;9:81–89. doi: 10.1038/ismej.2014.96. PubMed DOI PMC

Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann. Agric. Sci. 2016;61:217–227. doi: 10.1016/j.aoas.2016.07.003. DOI

Flemming H-C, Wingender J. The biofilm matrix. The biofilm matrix. Nat. Rev. Microbiol. 2010;8:623–633. doi: 10.1038/nrmicro2415. PubMed DOI

Naumann D. FT-infrared and FT-Raman spectroscopy in biomedical research. Appl. Spectrosc. Rev. 2001;36:239–298. doi: 10.1081/ASR-100106157. DOI

Xie, C., Xie, Z., Xu, X. & Yang, D. Persimmon (Diospyros kaki L.) leaves: a review on traditional uses, phytochemistry and pharmacological properties. J. Ethnopharmacol.163, 229–240 (2015). PubMed

Gupta S, Kaushal R, Spehia R, Pathania S, Sharma V. Productivity of capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers. J. Plant Nutr. 2017;40:921–927. doi: 10.1080/01904167.2015.1093139. DOI

Chandra, D., Srivastava, R., Glick, B. R. & Sharma, A. K. Drought-tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (L.) Gaertn.) under non-stressed and drought-stressed conditions. Pedosphere28, 227–240 (2018).

Saikia J, et al. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci. Rep. 2018;8:3560. doi: 10.1038/s41598-018-21921-w. PubMed DOI PMC

Ojuederie OB, Olanrewaju OS, Babalola OO. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy. 2019;9:712. doi: 10.3390/agronomy9110712. DOI

Mahanty T, et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2017;24:3315–3335. doi: 10.1007/s11356-016-8104-0. PubMed DOI

Khatoon Z, et al. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manage. 2020;273:111118. doi: 10.1016/j.jenvman.2020.111118. PubMed DOI

Iqbal, M., Naveed, M., Sanaullah, M., Brtnicky, M., Hussain, M.I., Kucerik, J., Holatko, J. and Mustafa, A., 2023. Plant microbe mediated enhancement in growth and yield of canola (Brassica napus L.) plant through auxin production and increased nutrient acquisition.J. Soils Sediments,23(3), pp.1233–1249.

Santoyo, G., Sánchez-Yáñez, J. M. & de los Santos-Villalobos, S. Methods for detecting biocontrol and plant growth-promoting traits in Rhizobacteria. Methods in rhizosphere biology research, 133–149 (2019).

Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front.Plant Sci., 1473 (2018). PubMed PMC

Zhang N, et al. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genom. 2015;16:1–20. doi: 10.1186/s12864-015-1825-5. PubMed DOI PMC

Jehlička J, Edwards HG, Oren A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 2014;80:3286–3295. doi: 10.1128/AEM.00699-14. PubMed DOI PMC

Zeiri L, Bronk B, Shabtai Y, Eichler J, Efrima S. Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl. Spectrosc. 2004;58:33–40. doi: 10.1366/000370204322729441. PubMed DOI

Nazli, F. et al. Efficacy of indole acetic acid and exopolysaccharides-producing Bacillus safensis strain FN13 for inducing Cd-stress tolerance and plant growth promotion in Brassica juncea (L.). Appl. Sci.11, 4160 (2021).

Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 2013;11:157–168. doi: 10.1038/nrmicro2960. PubMed DOI PMC

Cairns LS, Hobley L, Stanley-Wall NR. Biofilm formation by B acillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol. Microbiol. 2014;93:587–598. doi: 10.1111/mmi.12697. PubMed DOI PMC

Rai, V., Lokesh, S. & Begum, M. Effect of plant growth promoting rhizobacteria on seedborne fungal pathogens in okra. Indian Phytopathology (2003).

Duarah, I., Deka, M., Saikia, N. & Deka Boruah, H. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech1, 227–238 (2011). PubMed PMC

Akazawa T, Hara-Nishimura I. Topographic aspects of biosynthesis, extracellular secretion, and intracellular storage of proteins in plant cells. Annu. Rev. Plant Physiol. 1985;36:441–472. doi: 10.1146/annurev.pp.36.060185.002301. DOI

Patten CL, Glick BR. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol. 2002;48:635–642. doi: 10.1139/w02-053. PubMed DOI

Ruzzi M, Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015;196:124–134. doi: 10.1016/j.scienta.2015.08.042. DOI

Ng, L., Sariah, M., Sariam, O., Radziah, O. & Zainal Abidin, M. Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system. Aust. J.Crop Sci.6, 170–175 (2012).

Zahid, M., Abbasi, M. K., Hameed, S. & Rahim, N. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Fronti. Microbiol.6, 207 (2015). PubMed PMC

Carrillo AE, Li CY, Bashan Y. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften. 2002;89:428–432. doi: 10.1007/s00114-002-0347-6. PubMed DOI

Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 2021;22(19):10529. doi: 10.3390/ijms221910529. PubMed DOI PMC

Pandya N, Desai P. Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol Appl Sci. 2014;3:110–115.

Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G. Ability of bacterium Bacillus subtili s to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil. 2005;272:201–209. doi: 10.1007/s11104-004-5047-x. DOI

Shabanamol S, et al. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa) Physiol. Mol. Plant Pathol. 2018;102:46–54. doi: 10.1016/j.pmpp.2017.11.003. DOI

Hanh HTT, Mongkolthanaruk W. Correlation of growth and iaa production of lysinibacillus fusiformis ud 270. Journal of Applied and Physical Sciences. 2017;3:98–106.

Sahu, P. K. et al. Effect of bacterial endophytes Lysinibacillus sp. on plant growth and fruit yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl.Sci.7, 3399–3408 (2018).

Borah A, Das R, Mazumdar R, Thakur D. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J. Appl. Microbiol. 2019;127:825–844. doi: 10.1111/jam.14356. PubMed DOI

Zhou D, et al. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil. 2016;401:259–272. doi: 10.1007/s11104-015-2743-7. DOI

Kalam, S., Basu, A. & Ankati, S. Plant Root–Associated Biofilms in Bioremediation. Biofilms Plant Soil Health, 337–355 (2017).

Van Nieuwenhove, C. et al. Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.). Biol. Fertil. Soils31, 143–149 (2000).

Yang, J., Kharbanda, P. & Mirza, M. in XXVI International Horticultural Congress: Managing Soil-Borne Pathogens: A Sound Rhizosphere to Improve Productivity in 635. 59–66.

Williams A, et al. Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J. Bacteriol. 2008;190:4706–4715. doi: 10.1128/JB.01694-07. PubMed DOI PMC

Fan B, et al. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 2011;151:303–311. doi: 10.1016/j.jbiotec.2010.12.022. PubMed DOI

Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C. Biofilm formation in plant–microbe associations. Curr. Opin. Microbiol. 2004;7:602–609. doi: 10.1016/j.mib.2004.10.014. PubMed DOI

Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica2012 (2012). PubMed PMC

Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009;63:541–556. doi: 10.1146/annurev.micro.62.081307.162918. PubMed DOI

Khan N, Bano A. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int. J. Phytorem. 2016;18:1258–1269. doi: 10.1080/15226514.2016.1203287. PubMed DOI

Khan N, Bano A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int. J. Phytorem. 2016;18:211–221. doi: 10.1080/15226514.2015.1064352. PubMed DOI

Stefan M, Munteanu N, Stoleru V, Mihasan M. Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom. Biotechnol. Lett. 2013;18:8132–8143.

Saravanakumar D, et al. Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. J. Appl. Entomol. 2008;132:469–479. doi: 10.1111/j.1439-0418.2008.01278.x. DOI

Nazli F, et al. A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability. 2020;12:9056. doi: 10.3390/su12219056. DOI

Khan N, Bano A, Babar MA. The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis. 2017;72:195–205. doi: 10.1007/s13199-016-0457-0. DOI

Khan N, Bano A, Zandi P. Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. J. Plant Interact. 2018;13:239–247. doi: 10.1080/17429145.2018.1471527. DOI

Selvakumar, G., Panneerselvam, P. & Ganeshamurthy, A. N. Bacteria in Agrobiology: Stress Management 205–224 (Springer, 2011).

Bernhard A. The nitrogen cycle: processes, players, and human impact. Nat. Edu. Knowl. 2010;3:25.

Sharma N, Saharan B. Role of Lysinibacillus sphaericus SNCh5 bacterial strain as bio-inoculant for agriculture practice. Int. J. Curr. Microbiol. App. Sci. 2015;4:484–499.

Tan K, Radziah O, Halimi M, Khairuddin A, Shamsuddin Z. Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Aust. J. Crop Sci. 2015;9:1257–1264.

Shabanamol, S., Sreekumar, J. & Jisha, M. Bioprospecting endophytic diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight disease. 3 Biotech7, 337 (2017). PubMed PMC

Park M, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 2005;160:127–133. doi: 10.1016/j.micres.2004.10.003. PubMed DOI

Faisal M, Hasnain S. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett. Appl. Microbiol. 2006;43:461–466. doi: 10.1111/j.1472-765X.2006.01977.x. PubMed DOI

Ngom A, et al. A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J. Gen. Appl. Microbiol. 2004;50:17–27. doi: 10.2323/jgam.50.17. PubMed DOI

Chakraborty U, Chakraborty B, Basnet M, Chakraborty A. Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J. Appl. Microbiol. 2009;107:625–634. doi: 10.1111/j.1365-2672.2009.04242.x. PubMed DOI

Zhao L, Teng S, Liu Y. Characterization of a versatile rhizospheric organism from cucumber identified as Ochrobactrum haematophilum. J. Basic Microbiol. 2012;52:232–244. doi: 10.1002/jobm.201000491. PubMed DOI

Saini, A., Nain, L., Garg, V. & Saxena, J. Improvement of growth, yield, and pigmentation of mung bean plants using Ochrobactrum intermedium CP‐2 as bioinoculant. CLEAN–Soil, Air, Water45, 1500670 (2017).

O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998;30:295–304. doi: 10.1046/j.1365-2958.1998.01062.x. PubMed DOI

Mody B, Bindra M, Modi V. Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch. Microbiol. 1989;153:38–42. doi: 10.1007/BF00277538. DOI

Mudili, J. Introductory Practical Microbiology. (Alpha Science International Limited, 2007).

Cappuccino, J. G. & Sherman, N. Microbiology: A Laboratory Manual. (Pearson Higher Ed, Bengaluru, 2013).

Sarwar M, Arshad M, Martens DA, Frankenberger W. Tryptophan-dependent biosynthesis of auxins in soil. Plant Soil. 1992;147:207–215. doi: 10.1007/BF00029072. DOI

Schwyn B, Neilands J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987;160:47–56. doi: 10.1016/0003-2697(87)90612-9. PubMed DOI

Graham RD, Webb MJ. Micronutrients and disease resistance and tolerance in plants. Micronutrients in agriculture. 1991;4:329–370.

Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

Sparks, D. L., Page, A. L., Helmke, P. A. and Loeppert, R. H. eds., Methods of soil analysis, part 3: Chemical methods (Vol. 14), (John Wiley & Sons, 2020).

Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI

Ryan, J., Harmsen, K. & Rashid, A. Soil and plant analysis manual. International Center for Agriculture Research in the Dry Areas and National Agriculture Research Center: Islamabad, Pakistan, 42–165 (2001).

Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 591–592 (1983).

Davenport D. Relative water content of leaves; underestimation caused by antitranspirant film. J. Exp. Bot. 1972;23:651–654. doi: 10.1093/jxb/23.3.651. DOI

Hou D, et al. Effects of soil moisture content on germination and physiological characteristics of rice seeds with different specific gravity. Agronomy. 2022;12:500. doi: 10.3390/agronomy12020500. DOI

Wolf B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982;13:1035–1059. doi: 10.1080/00103628209367332. DOI

Jackson ML. Prentice Hall of India. Pvt. Ltd., New Delhi. 1967;498.

Steel, R. Analysis of variance I: The one-way classification. Principles and Procedures of Statistics a Biometrical Approach, 139–203 (1997).

Nawaz H, et al. Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma. Analyst. 2010;135:3070–3076. doi: 10.1039/c0an00541j. PubMed DOI

Paret ML, Sharma SK, Green LM, Alvarez AM. Biochemical characterization of gram-positive and gram-negative plant-associated bacteria with micro-Raman spectroscopy. Appl. Spectrosc. 2010;64:433–441. doi: 10.1366/000370210791114293. PubMed DOI

Sohmer H, et al. Effect of noise on the vestibular system-Vestibular evoked potential studies in rats. Noise Health. 1999;2:41. PubMed

Kalyani DC, Phugare SS, Shedbalkar UU, Jadhav JP. Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp SUK1 and its application for textile dye decolorization. Ann. Microbiol. 2011;61:483–491. doi: 10.1007/s13213-010-0162-9. DOI

Kahraman M, Zamaleeva AI, Fakhrullin RF, Culha M. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal. Bioanal. Chem. 2009;395:2559–2567. doi: 10.1007/s00216-009-3159-0. PubMed DOI

Ramya S, George R, Rao RS, Dayal R. Detection of algae and bacterial biofilms formed on titanium surfaces using micro-Raman analysis. Appl. Surf. Sci. 2010;256:5108–5115. doi: 10.1016/j.apsusc.2010.03.079. DOI

Sockalingum, G. et al. Spectroscopy of Biological Molecules: New Directions: 8th European Conference on the Spectroscopy of Biological Molecules, 599–600 29 August–2 September (Springer, Enschede) (1999).

De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. Int. J. Orig. Work Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2007;38:1133–1147.

Wang H, Ding S, Wang G, Xu X, Zhou G. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. Int. J. Food Microbiol. 2013;167:293–302. doi: 10.1016/j.ijfoodmicro.2013.10.005. PubMed DOI

Neugebauer U, et al. Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. Chemphyschem. 2007;8:124–137. doi: 10.1002/cphc.200600507. PubMed DOI

Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA. Shining light on the microbial world: The application of Raman microspectroscopy. Adv. Appl. Microbiol. 2010;70:153–186. doi: 10.1016/S0065-2164(10)70005-8. PubMed DOI

Edwards H, Russell N, Weinstein R, Wynn-Williams D. Fourier transform Raman spectroscopic study of fungi. J. Raman Spectrosc. 1995;26:911–916. doi: 10.1002/jrs.1250260843. DOI

Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2005;59:1222–1228. doi: 10.1366/000370205774430891. PubMed DOI

Nawaz M, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol. 2011;62:1081–1089. doi: 10.1007/s00284-010-9856-2. PubMed DOI

López-Díez EC, Goodacre R. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal. Chem. 2004;76:585–591. doi: 10.1021/ac035110d. PubMed DOI

Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Amsterdam: Elsevier; 1991.

Podstawka E, Ozaki Y, Proniewicz LM. Part I: Surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Appl. Spectrosc. 2004;58:570–580. doi: 10.1366/000370204774103408. PubMed DOI

Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Hoboken: Wiley; 2004.

Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal. Chem. 2004;76:5198–5202. doi: 10.1021/ac049663f. PubMed DOI

De Gussem K, Vandenabeele P, Verbeken A, Moens L. Raman spectroscopic study of Lactarius spores (Russulales, Fungi) Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005;61:2896–2908. doi: 10.1016/j.saa.2004.10.038. PubMed DOI

Wang P, Pang S, Zhang H, Fan M, He L. Characterization of Lactococcus lactis response to ampicillin and ciprofloxacin using surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2016;408:933–941. doi: 10.1007/s00216-015-9184-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...