Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in red swamp crayfish (Procambarus clarkii)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24757669
PubMed Central
PMC3976930
DOI
10.1155/2014/680131
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- herbicidy škodlivé účinky farmakologie MeSH
- oxidační stres účinky léků MeSH
- oxidoreduktasy metabolismus MeSH
- prometryn škodlivé účinky farmakologie MeSH
- proteiny členovců metabolismus MeSH
- severní raci metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- herbicidy MeSH
- oxidoreduktasy MeSH
- prometryn MeSH
- proteiny členovců MeSH
The aim of the study was to investigate effects of the triazine herbicide prometryne on red swamp crayfish on the basis of oxidative stress, antioxidant indices in hepatopancreas and muscle, and histopathology of hepatopancreas. Crayfish were exposed to prometryne concentrations of 0.51 μ g L(-1), 0.144 mg L(-1), and 1.144 mg L(-1) for 11 and 25 days. Indices of oxidative stress (thiobarbituric acid reactive substances (TBARS)), and antioxidant parameters (superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR)) in crayfish muscle and hepatopancreas were measured. Chronic exposure to prometryne did not showed the impact of oxidative damage to cells. Changes activity of the antioxidant enzymes SOD, CAT, and GR were observed in all tested concentrations to prometryne for 11 and 25 days (P < 0.01) as compared with the control group. We did not see any differences in histopatological examination to hepatopancreas. Prolonged exposure of prometryne did not result in oxidative damage to cell lipids and proteins, but it led to changes in antioxidant activity in crayfish tissues. Changes in antioxidant systems were also observed in the environmental prometryne concentration of 0.51 μ g L(-1). The results suggest that antioxidant responses may have potential as biomarkers for monitoring residual triazine herbicides in aquatic environments.
Zobrazit více v PubMed
Schwarzenbach RP, Escher BI, Fenner K, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–1077. PubMed
Ongley ED. Control of Water Pollution From Agriculture. Food and Agriculture Organization; 1996.
Harrison RM. Pollution: Causes, Effects and Control. Royal Society of Chemistry; 2001.
Agarwal SK. Water Pollution. APH Publishing Corporation; 2005.
EPA US. Environmental Protection Agency. R.E.D. Fact Prometryn; 1996.
Kamrin MA. Pesticide Profiles. Boca Raton, Fla, USA: Lewis Publishers; 1997.
Erickson W, Turner L. Prometryn Analysis of Risks to Endangered and Threatened Salmon and Steelhead. Environmental Field Branch, Office of Pesticide Programs; 2002.
Jiang L, Ma L, Sui Y, Han SQ, Yang H. Mobilization and plant accumulation of prometryne in soil by two different sources of organic matter. Journal of Environmental Monitoring. 2011;13(7):1935–1943. PubMed
Zhou J, Hu F, Jiao J, Liu M, Li H. Effects of bacterial-feeding nematodes and prometryne-degrading bacteria on the dissipation of prometryne in contaminated soil. Journal of Soils and Sediments. 2012;12(4):576–585.
Papadopoulou-Mourkidou E, Karpouzas DG, Patsias J, et al. The potential of pesticides to contaminate the groundwater resources of the Axios river basin in Macedonia, Northern Greece. Part I. Monitoring study in the north part of the basin. Science of the Total Environment. 2004;321(1–3):127–146. PubMed
Vryzas Z, Alexoudis C, Vassiliou G, Galanis K, Papadopoulou-Mourkidou E. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicology and Environmental Safety. 2011;74(2):174–181. PubMed
Caquet T, Roucaute M, Mazzella N, et al. Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France) Environmental Science and Pollution Research. 2013;20:651–666. PubMed
Czech Hydrometeorological Institute. On-line water duality database. 2011, http://hydro.chmi.cz/pasporty/pasport.php?seq=3287750.
Kegley SE, Hill BR, Orme S, Choi AH. PAN Pesticide Database, Pesticide Action Network, North America (San Francisco, CA, 2010) Oakland, Calif, USA: Pesticide Action Network; 2010.
Küster A, Altenburger R. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere. 2007;67(1):194–201. PubMed
U.S. EPA—Environmental protection agency. Reregistration Eligibility Decision (RED) Prometryn. 1996.
Popova GV. Characteristics of the effect of the herbicide prometryn on fish. Nauchnye Osnovy Okhrany Prirody. 1976;4:118–125.
Stara A, Machova J, Velisek J. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Neuro Endocrinology Letters. 2012;33(supplement 3):130–135. PubMed
Stara A, Kristan J, Zuskova E, Velisek J. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Pesticide Biochemistry and Physiology. 2013;105:18–23. PubMed
Velisek J, Stara A, Zuskova E, Svobodova Z. Use of biometric, hematologic, and plasma biochemical variables, and histopathology to assess the chronic effects of the herbicide prometryn on Common carp. Veterinary Clinical Pathology. 2013;42(4):508–515. PubMed
Momot WT. Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries Science. 1995;3(1):33–63.
Buric M, Kouba A, Machova J, Mahovska I, Kozak P. Toxicity of the organophosphate pesticide diazinon to crayfish of differing age. International Journal of Environmental Science and Technology. 2013;10:607–610.
Kouba A, Kuklina I, Niksirat H, Machova J, Kozak P. Tolerance of signal crayfish (Pacifastacus leniusculus) to Persteril 36 supports use of peracetic acid in astaciculture. Aquaculture. 2012;350–353:71–74.
Velisek J, Kouba A, Stara A. Acute toxicity of triazine pesticides to juvenile signal crayfish (Pacifastacus leniusculus) Neuroendocrinology Letters. 2013;34:31–36. PubMed
Barcelo D, Hennion MC. Trace Determination of Pesticides and their Degradation Products in Water, Mass Spectrometric Methods, LC-MS. Amsterdam, The Netherlands: Elsevier; 1997.
Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. International Journal of Biochemistry and Cell Biology. 2005;37(8):1670–1680. PubMed
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry. 1974;47(3):469–474. PubMed
Beers RF, Jr., Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry. 1952;195(1):133–140. PubMed
Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry. 1975;250(14):5475–5480. PubMed
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 1976;72(1-2):248–254. PubMed
Zar JH. Biostatistical Analysis. 3rd edition. New Jersey, NJ, USA: Prentice-Hall; 1996.
Velisek J, Svobodova Z, Piackova V, et al. Effects of metribuzin on rainbow trout (Oncorhynchus mykiss) Veterinarni Medicina. 2008;53(6):324–332.
Stara A, Machova J, Velisek J. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Environmental Toxicology and Pharmacology. 2012;33(2):334–343. PubMed
Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety. 2006;64(2):178–189. PubMed
Vlahogianni TH, Valavanidis A. Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis . Chemistry and Ecology. 2007;23(5):361–371.
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press; 2007.
Venancio LPR, Silva MIA, da Silva TL, et al. Pollution-induced metabolic responses in hypoxia-tolerant freshwater turtles. Ecotoxicology and Environmental Safety. 2013;97:1–9. PubMed
Martínez-Álvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries. 2005;15(1-2):75–88.
Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology. 2002;30(6):620–650. PubMed
Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Kumar S. Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa Punctatus (Bloch) International Journal of Environmental Research and Public Health. 2010;7(8):3298–3312. PubMed PMC
Van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology. 2003;13(2):57–149. PubMed
Djordjevic J, Djordjevic A, Adzic M, Niciforovic A, Radojcic MB. Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of wistar rats. Physiological Research. 2010;59(5):729–736. PubMed
Jin Y, Zhang X, Shu L, et al. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio) Chemosphere. 2010;78(7):846–852. PubMed
Velisek J, Stara A, Kolarova J, Svobodova Z. Biochemical, physiological and morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to terbutryn in real environmental concentration. Pesticide Biochemistry and Physiology. 2011;100(3):305–313.
Desouky MMA, Abdel-Gawad H, Hegazi B. Distribution, fate and histopathological effects of ethion insecticide on selected organs of the crayfish, Procambarus clarkii . Food and Chemical Toxicology. 2013;52:42–52. PubMed