Effects of metazachlor and its major metabolite metazachlor OA on early life stages of marbled crayfish
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31964976
PubMed Central
PMC6972915
DOI
10.1038/s41598-020-57740-1
PII: 10.1038/s41598-020-57740-1
Knihovny.cz E-zdroje
- MeSH
- acetamidy metabolismus toxicita MeSH
- antioxidancia metabolismus MeSH
- chemické látky znečišťující vodu toxicita MeSH
- ekotoxikologie MeSH
- embryo nesavčí účinky léků MeSH
- glutathion metabolismus MeSH
- glutathionreduktasa metabolismus MeSH
- hepatopankreas účinky léků patologie MeSH
- herbicidy metabolismus toxicita MeSH
- lokomoce účinky léků MeSH
- oxidační stres účinky léků MeSH
- severní raci účinky léků embryologie růst a vývoj metabolismus MeSH
- superoxiddismutasa metabolismus MeSH
- žábry účinky léků patologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetamidy MeSH
- antioxidancia MeSH
- chemické látky znečišťující vodu MeSH
- glutathion MeSH
- glutathionreduktasa MeSH
- herbicidy MeSH
- metazachlor MeSH Prohlížeč
- superoxiddismutasa MeSH
The effects of the herbicide metazachlor and its major metabolite metazachlor OA at two concentrations, including environmentally relevant concentrations of metazachlor (0.0115 µmol/l and 0.0790 µmol/l) and metazachlor OA (0.0117 µmol/l and 0.0805 µmol/l), respectively, were evaluated on early ontogeny, growth, behaviour, oxidative stress, antioxidant enzyme levels, histology, and mortality of marbled crayfish Procambarus virginalis. Both tested concentrations of metazachlor and metazachlor OA were associated with significantly lower growth and delayed ontogenetic development compared to controls. Exposure of metazachlor at 0.0115 µmol/l and metazachlor OA at 0.0117 µmol/l and 0.0805 µmol/l resulted in significantly lower activity of total superoxide dismutase (SOD), catalase (CAT), glutathione s-transferase (GST), glutathione reductase (GR), and reduced glutathione (GSH) compared with control and resulted in gill anomalies ranging from wall thinning to focal disintegration of branchial structure. Metazachlor at the environmentally relevant concentration of 0.0790 µmol/l was associated with significant alterations of crayfish distance moved and walking speed. The potential risk associated with metazachlor use in agriculture related to effects on non-target aquatic organisms.
Zobrazit více v PubMed
Wlodarczyk M. Kinetics of releasing herbicide metazachlor from hydrogel microcapsules to aquatic environments. Ecol. Chem. Engin. A. 2011;18:1147–1156.
Le TDH, et al. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotox. Environ. Safe. 2017;145:135–141. doi: 10.1016/j.ecoenv.2017.07.027. PubMed DOI
Weber G, et al. Pesticides in agricultural headwater streams in southwestern Germany and effects on macroinvertebrate populations. Sci. Total Environ. 2018;619/620:638–648. doi: 10.1016/j.scitotenv.2017.11.155. PubMed DOI
Boger P. Mode of action for chloroacetamides and functionally related compounds. J. Pestic. Sci. 2003;24:324–329. doi: 10.1584/jpestics.28.324. DOI
Roberts, T. Metabolic Pathways of Chemicals. Part 1: Herbicides and Plant Growth Regulators (1998).
FAO, (Food and Agriculture Organization), FAO Specifications and Evaluations for Plant Protection Products: Metazachlor. (1999).
Gangolli, S. The Dictionary of Substances and their Effects (1999).
Isik O, et al. Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minutum and Chlorella vulgaris in the algae rotifer fish larvae food chains. Aquaculture. 1999;174:299–311. doi: 10.1016/S0044-8486(99)00013-7. DOI
Jurcikova J, et al. Effects of metazachlor on vitellogenin induction in zebrafish (Danio rerio) Acta Vet. Brno. 2007;76:S61–S66. doi: 10.2754/avb200776S8S061. DOI
Mohr S, et al. Response of plankton communities in freshwater pond and stream mesocosms to the herbicide metazachlor. Environ. Pollut. 2008;152:530–542. doi: 10.1016/j.envpol.2007.07.010. PubMed DOI
Mohr S, et al. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms. Aquat. Toxicol. 2007;82:73–84. doi: 10.1016/j.aquatox.2007.02.001. PubMed DOI
Brancato A, et al. Peer review of the pesticide risk assessment for the active substance metazachlor in light of confirmatory data submitted. EFSA J. 2017;15:4833. PubMed PMC
Lewis KA, et al. An international database for pesticide risk assessments and management. Human Ecol. Risk Assess Int. J. 2016;22:1050–1064. doi: 10.1080/10807039.2015.1133242. DOI
Hvezdova M, et al. Currently and recently used pesticides in Central European arable soils. Sci. Total Environ. 2018;613:361–370. doi: 10.1016/j.scitotenv.2017.09.049. PubMed DOI
Baran N, Gourcy L. Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: consequences on groundwater quality in an alluvial aquifer (Ain Plain, France) J. Contam. Hydrol. 2013;154:20–28. doi: 10.1016/j.jconhyd.2013.07.009. PubMed DOI
Chen Z, et al. Dynamics of chloroacetanilide herbicides in various types of mesocosm wetlands. Sci. Total. Environ. 2017;577:386–394. doi: 10.1016/j.scitotenv.2016.10.216. PubMed DOI
Samara C, et al. Liquid chromatographic determination of N-herbicides in surface-waters by using diode-array detection and multicomponent analysis. Fress. Environ. Bull. 1994;3:534–539.
Kreuger J, et al. Agricultural inputs of pesticide residues to streamand pond sediments in a small catchment in southern Sweden. Bull. Environ. Contam. Toxicol. 1999;62:55–62. doi: 10.1007/s001289900841. PubMed DOI
Ulrich U, et al. Lentic small water bodies: Variability of pesticide transport and transformation patterns. Sci. Total Environ. 2018;618:26–38. doi: 10.1016/j.scitotenv.2017.11.032. PubMed DOI
CHMI (Czech Hydrometeorological Institute), On-Line Water Quality Database. (2018).
Lazartigues A, et al. Pesticide pressure and fish farming in barrage pond in northeastern France. Part III: how management can affect pesticide profiles in edible fish? Environ. Sci. Poll. Res. 2013;20:126–135. doi: 10.1007/s11356-012-0824-1. PubMed DOI
Ramos AM, et al. A multi‐component method to determine pesticides in surface water by liquid‐chromatography tandem quadrupole mass spectrometry. Water Environ. J. 2017;31:380–387. doi: 10.1111/wej.12254. DOI
Vogt G, et al. Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 2004;261:286–311. doi: 10.1002/jmor.10250. PubMed DOI
OECD, (Organization for Economic Cooperation and Development) Guideline for Testing of Chemicals 215. Fish Juvenile Growth Test. (2000).
Stara A, et al. Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii) Sci. Total Environ. 2016;566/567:733–740. doi: 10.1016/j.scitotenv.2016.05.113. PubMed DOI
Lushchak VI, et al. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. Biochem. Cell Biol. 2005;37:1670–1680. doi: 10.1016/j.biocel.2005.02.024. PubMed DOI
Marklund S, Marklund G. Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. PubMed DOI
Carlberg I, Mannervik B. Purification and characterization of flavo enzyme glutathione reductase from rat liver. J. Biol. Chem. 1975;250:5475–5480. PubMed
Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195:133–140. PubMed
Habig WH, et al. Glutathione S-transferases. First enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. PubMed
Tipple TE, Rogers LK. Methods for the determination of plasma or tissue glutathione levels. Methods Mol. Biol. 2012;889:315–324. doi: 10.1007/978-1-61779-867-2_20. PubMed DOI PMC
Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Velisek J, et al. Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis) Chemosphere. 2017;175:440–445. doi: 10.1016/j.chemosphere.2017.02.080. PubMed DOI
Ceccaldi H. Anatomy and physiology of digestive tract of Crustaceans Decapods reared in aquaculture. Adv. Trop. Aquacult. 1989;9:243–259.
Vogt G. The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J. Zool. 2008;276:1–13. doi: 10.1111/j.1469-7998.2008.00473.x. DOI
Velisek J, et al. Effects of s-metolachlor on early life stages of marbled crayfish. Pest. Biochem. Physiol. 2019;153:87–94. doi: 10.1016/j.pestbp.2018.11.007. PubMed DOI
Velisek J, et al. Chronic toxicity of metolachlor OA on growth, ontogenetic development, antioxidant biomarkers and histopathology of early life stages of marbled crayfish. Sci. Total Environ. 2018;643:1456–1463. doi: 10.1016/j.scitotenv.2018.06.309. PubMed DOI
Jackson, C.J. Characterization of locomotor response to psychostimulants in the parthenogenetic marbled crayfish (Procambarus fallax forma virginalis): a promising model for studying the epigenetics of addiction. Bowling Green State University, Dissertation (2016). PubMed
Císař P, et al. Fully contactless system for crayfish heartbeat monitoring: undisturbed crayfish as bio-indicator. Sensors Actuator B Chem. 2018;255:29–34. doi: 10.1016/j.snb.2017.07.160. DOI
Woodworth J, Pascoe D. Cadmium toxicity to rainbow trout, Salmo gairdneri Richardson: a study of eggs and alevins. J. Fish. Biol. 1982;21:47–57. doi: 10.1111/j.1095-8649.1982.tb02822.x. DOI
PED, (Pesticide Ecotoxicity Database), Office of Pesticide Programs, Environmental Fate and Effects Division (2000).
Paul JS, Small BC. Exposure to environmentally relevant cadmium concentrations negatively impacts early life stages of channel catfish (Ictalurus punctatus) Comp. Biochem. Physiol. 2019;216:43–51. PubMed
Velisek J, et al. Effect of prometryne on early life stages of marbled crayfish (Procambarus fallax f. virginalis) Neuroendocrinol. Lett. 2014;35((Supll 2)):93–98. PubMed
Koutnik D, et al. The chronic effects of terbuthylazine-2-hydroxy on early life stages of marbled crayfish (Procambarus fallax f. virginalis) Pest. Biochem. Physiol. 2017;136:29–33. doi: 10.1016/j.pestbp.2016.08.008. PubMed DOI
Woltering D. The growth response in fish chronic and early life stage toxicity tests: a critical review. Aquat. Toxicol. 1984;5:1–21. doi: 10.1016/0166-445X(84)90028-6. DOI
Velisek J, et al. Simazin toxicity in environmental concentration on early life stages of common carp (Cyprinus carpio L.) Neuroendocrinol. Lett. 2012;33:90–95. PubMed
Velisek J, et al. Effect of terbutryn at environmental concentrations on early life stages of common carp (Cyprinus carpio L.) Pestic. Biochem. Physiol. 2012;102:102–108. doi: 10.1016/j.pestbp.2011.11.005. DOI
Velisek J, et al. Effects of the terbuthylazine metabolite terbuthylazine-desethyl on common carp embryos and larvae. Sci. Total Environ. 2016;539:214–220. doi: 10.1016/j.scitotenv.2015.08.152. PubMed DOI
Wolf MC, Moore PA. The effects of the herbicide metolachlor on the perception of chemical stimuli by Orconectes rusticus. J. North Am. Benthol. Soc. 2002;21:457–467. doi: 10.2307/1468482. DOI
Moore PA, et al. Chemical orientation of lobsters, Homarus americanus, in turbulent odor plumes. J. Chem. Ecol. 1991;17:1293–1307. doi: 10.1007/BF00983763. PubMed DOI
Kubec J, et al. Oxazepam alters the behavior of crayfish at diluted concentrations, Venlafaxine does not. Water. 2019;11:196. doi: 10.3390/w11020196. DOI
D’Souza UJA. Pesticide toxicity and oxidative stress: A review. Borneo J. Med. Sci. 2017;11:9–19.
Tkachenko H, et al. Oxidative stress biomarkers in different tissues of rainbow trout (Oncorhynchus mykiss) exposed to disinfectant-CIP formulated with peracetic acid and hydrogen peroxide. Arch. Pol. Fish. 2014;22:207–219. doi: 10.2478/aopf-2014-0021. DOI
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI
Slaninova A, et al. A review: oxidative stress in fish induced by pesticides. Neuroendocrinol. Lett. 2009;30:2–12. PubMed
Hostovsky M, et al. Effects of the exposure of fish to triazine herbicides. Neuroendocrinol. Lett. 2014;35(Suppl 2):3–25. PubMed
Griboff J, et al. Oxidative stress response induced by atrazine in Palaemonetes argentinus: the protective effect of vitamin E. Ecotoxicol. Environ. Safe. 2014;108:1–8. doi: 10.1016/j.ecoenv.2014.06.025. PubMed DOI
Stara A. Biochemical and histological effects of sub-chronic exposure to atrazine in crayfish Cherax destructor. Chem. Biol. Inter. 2018;291:95–102. doi: 10.1016/j.cbi.2018.06.012. PubMed DOI
Lavarias S, Garcia CF. Acute toxicity of organophosphate fenitrothion on biomarkers in prawn Palaemonetes argentinus (Crustacea: Palaemonidae) Environ. Monit. Assess. 2015;187:65. doi: 10.1007/s10661-014-4224-5. PubMed DOI
Stara A, et al. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in red swamp crayfish (Procambarus clarkii) BioMed Res. Int. 2014;2014:Article ID 680131. doi: 10.1155/2014/680131. PubMed DOI PMC
Mallatt J. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can. J. Fisher. Aquat. Sci. 1985;42:630–648. doi: 10.1139/f85-083. DOI
Wood, C. M. Toxic Responses of the Gill. In: Schlenck, D., Benson, W.H., (Eds.). Target Organ Toxicity in Marine and Freshwater Teleosts. (2001).
Al-Mohanna SY, Nott JA. R cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda) Mar. Biol. 1987;95:129–137. doi: 10.1007/BF00447494. DOI
Vogt G. Differentiation of B-cells in the hepatopancreas of the prawn Penaeus monodon. Acta Zool. 1993;74:51–60. doi: 10.1111/j.1463-6395.1993.tb01220.x. DOI
Franceschini-Vicentini IB, et al. Histoarchitectural features of the hepatopancreas of the Amazon River prawn Macrobrachium amazonicum. Int. J. Morphol. 2009;27:121–128. doi: 10.4067/S0717-95022009000100022. DOI