Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000869
PROFISH
PubMed
37112561
PubMed Central
PMC10141211
DOI
10.3390/toxics11040333
PII: toxics11040333
Knihovny.cz E-zdroje
- Klíčová slova
- MCPA, butylparaben, metazachlor, methylparaben, prochloraz, propylparaben,
- Publikační typ
- časopisecké články MeSH
Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.
Zobrazit více v PubMed
Désert M., Ravier S., Gille G., Quinapallo A., Armengaud A., Pochet G., Jean-Luc Savelli Wortham H., Quivet E. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d’Azur Region and Corsica, France. Atmos. Environ. 2018;192:241–256. doi: 10.1016/j.atmosenv.2018.08.054. DOI
Rahman M., Hoque M.d.S., Bhowmik S., Ferdousi S., Kabiraz M.P., van Brakel M.L. Monitoring of pesticides residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon. 2021;7:e06390. doi: 10.1016/j.heliyon.2021.e06390. PubMed DOI PMC
Wang L., Zhang Z.F., Liu L.Y., Zhu F.J., Ma W.L. National-scale monitoring of historic used organochlorine pesticides (OCPs) and currently used pesticides (CUPs) in Chinese surface soil: Old topic and a new story. J. Hazard. Mater. 2022;443:130285. doi: 10.1016/j.jhazmat.2022.130285. PubMed DOI
Raby M., Lissemore L., Kaltenecker G., Beaton D., Prosser R.S. Characterizing the exposure of streams in southern Ontario to agricultural pesticides. Chemosphere. 2022;294:133769. doi: 10.1016/j.chemosphere.2022.133769. PubMed DOI
Dao D.Q., Taamalli S., Louis F., Kdouh D., Srour Z., Ngo T.C., Truong D.H., Fèvre-Nollet V., Ribaucour M., El Bakali A., et al. Hydroxyl radical-initiated decomposition of metazachlor herbicide in the gaseous and aqueous phases: Mechanism, kinetics, and toxicity evaluation. Chemosphere. 2023;312:137234. doi: 10.1016/j.chemosphere.2022.137234. PubMed DOI
European Commission. [(accessed on 10 March 2023)]. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en.
Mohr S., Feibicke M., Berghahn R., Schmiediche R., Schmidt R. Response of plankton communities in the freshwater pond and stream mesocosms to the herbicide metazachlor. Environ. Pollut. 2008;152:530–542. doi: 10.1016/j.envpol.2007.07.010. PubMed DOI
Slaby S., Le Cor F., Dufour V., Auger L., Pasquini L., Cardoso O., Curtet L., Baudoin J.M., Wiest L., Vulliet E., et al. Distribution of pesticides and some of their transformation products in a small lentic waterbody: Fish, water, and sediment contamination in an agricultural watershed. Environ. Pollut. 2022;292:118403. doi: 10.1016/j.envpol.2021.118403. PubMed DOI
Quintana J., de la Cal A., Boleda M.R. Monitoring the complex occurrence of pesticides in the Llobregat basin, natural and drinking waters in Barcelona metropolitan area (Catalonia, NE Spain) by a validated multi-residue online analytical method. Sci. Total Environ. 2019;692:952–965. doi: 10.1016/j.scitotenv.2019.07.317. PubMed DOI
Lazartigues A., Fratta C., Baudot R., Wiest L., Feidt C., Thomas M., Cren-Olivé C. Multiresidue method for the determination of 13 pesticides in three environmental matrices: Water, sediments, and fish muscle. Talanta. 2011;85:1500–1507. doi: 10.1016/j.talanta.2011.06.023. PubMed DOI
Velisek J.V., Stara A., Kubec J., Zuskova E., Buric M., Kouba A. Effects of metazachlor and its major metabolite metazachlor OA on early life stages of marbled crayfish. Sci. Rep. 2020;10:875. doi: 10.1038/s41598-020-57740-1. PubMed DOI PMC
Polard T., Jean S., Gauthier L., Laplanche C., Merlina G., Sánchez-Pérez J.M., Pinelli E. Mutagenic impact on fish of runoff events in agricultural areas in south-west France. Aquat. Toxicol. 2011;101:126–134. doi: 10.1016/j.aquatox.2010.09.014. PubMed DOI
Haselman J.T., Kosian P.A., Korte J.J., Olmastead A.W., Degitz S.J. Effect of multiple life stage exposure to the fungicide prochloraz in Xenopus laevis: Manifestations of antiandrogenic and other modes of toxicity. Aquat. Toxicol. 2018;199:240–251. doi: 10.1016/j.aquatox.2018.03.013. PubMed DOI PMC
Yang G., Wang Y., Li J., Wang D., Bao Z., Wang Q., Jin Y. Health risks of chlorothalonil, carbendazim, prochloraz, their binary and ternary mixtures on embryonic and larval zebrafish based on metabolomics analysis. J. Hazard. Mater. 2021;404:124240. doi: 10.1016/j.jhazmat.2020.124240. PubMed DOI
Campos-Mañas M.C., Plaza-Bolaños P., Martínez-Piernas A.B., Sánchez-Pérez J.A., Agüera A. Determination of pesticide levels in wastewater from an agro-food industry: Target, suspect and transformation product analysis. Chemosphere. 2019;232:152–163. doi: 10.1016/j.chemosphere.2019.05.147. PubMed DOI
Campo J., Masiá A., Blasco C., Picó Y. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean river basins. J. Hazard. Mater. 2013;263:146–157. doi: 10.1016/j.jhazmat.2013.09.061. PubMed DOI
Belenguer V., Martinez-Capel F., Masiá A., Picó Y. Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain) J. Hazard. Mater. 2014;265:271–279. doi: 10.1016/j.jhazmat.2013.11.016. PubMed DOI
Petrarca M.H., Menezes-Sousa D., Ferreira R., Fernandes J.O., Vieira L.R., Guilhermino L., Cunha S.C. Occurrence and risk assessment of endocrine-disrupting compounds in fish muscle: The case study of the Douro River estuary (North East Atlantic Ocean) Environ. Res. 2022;215:114236. doi: 10.1016/j.envres.2022.114236. PubMed DOI
Dalhoff K., Gottardi M., Kretschmann A., Cedergreen N. What causes the difference in synergistic potentials of propiconazole and prochloraz toward pyrethroids in Daphnia magna? Aquat. Toxicol. 2016;172:95–102. doi: 10.1016/j.aquatox.2015.12.007. PubMed DOI
Spaltro A., Pila M., Simonetti S., Álvarez-Torrellas S., García Rodríguez J., Ruiz D., Díaz Compañy A., Juan A., Allegretti P. Adsorption and removal of phenoxy acetic herbicides from water by using commercial activated carbons: Experimental and computational studies. J. Contam. Hydrol. 2018;218:84–93. doi: 10.1016/j.jconhyd.2018.10.003. PubMed DOI
Gaillard J., Thomas M., Lazartigues A., Bonnefille B., Pallez C., Dauchy X., Feidt C., Banas D. Potential of barrage fish ponds for the mitigation of pesticide pollution in stream. Environ. Sci. Pollut. Res. 2016;23:23–35. doi: 10.1007/s11356-015-5378-6. PubMed DOI
Morton P.A., Cassidy R., Floyd S., Doody D.G., McRoberts W.C., Jordan P. Approaches to herbicide (MCPA) pollution mitigation in drinking water source catchments using enhanced space and time monitoring. Sci. Total Environ. 2021;755:142827. doi: 10.1016/j.scitotenv.2020.142827. PubMed DOI
Barbieri M.V., Peris A., Postigo C., Moya-Garcés A., Monllor-Alcaraz L.S., Rambla-Alegre M., Eljarrat E., López de Alda M. Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. Environ. Pollut. 2020;274:115813. doi: 10.1016/j.envpol.2020.115813. PubMed DOI
Tyohemba R.L., Pillay L., Humphries M.S. Bioaccumulation of current-use herbicides in fish from a global biodiversity hotspot: Lake St Lucia, South Africa. Chemosphere. 2021;284:131407. doi: 10.1016/j.chemosphere.2021.131407. PubMed DOI
Bermúdez-Saldaña J.M., Escuder-Gilabert L., Medina-Hernández M.J., Villanueva-Camañas R.M., Sagrado S. Modelling bioconcentration of pesticides in fish using biopartitioning micellar chromatography. J. Chromatogr. A. 2005;1063:153–160. doi: 10.1016/j.chroma.2004.11.074. PubMed DOI
Wu D., Yun Y., Jiang L., Wu C. Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol. Sci. Total Environ. 2018;616–617:1449–1456. doi: 10.1016/j.scitotenv.2017.10.169. PubMed DOI
Osaili T.M., Al Sallagi M.S., Dhanasekaran D.K., Odeh W.A.M.B., Al Ali H.J., Al Ali A.A.S.A., Ismail L.C., Al Mehri K.O., Pisharath V.A., Holley R., et al. Pesticide residues in fresh fruits imported into the United Arab Emirates. Heliyon. 2022;8:e11946. doi: 10.1016/j.heliyon.2022.e11946. PubMed DOI PMC
Silva D.C., Serrano L., Oliveira T.M.A., Mansano A.S., Almeida E.A., Vieira E.M. Effects of parabens on antioxidant system and oxidative damages in Nile tilapia (Oreochromis niloticus) Ecotoxicol. Environ. Saf. 2018;162:85–91. doi: 10.1016/j.ecoenv.2018.06.076. PubMed DOI
Wei F., Cheng H., Sang N. Comprehensive assessment of estrogenic activities of parabens by in silico approach and in vitro assays. Sci. Total Environ. 2022;845:157194. doi: 10.1016/j.scitotenv.2022.157194. PubMed DOI
Cetinić K.A., Grgić I., Previšić A., Rožman M. The curious case of methylparaben: Anthropogenic contaminant or natural origin? Chemosphere. 2022;294:133781. doi: 10.1016/j.chemosphere.2022.133781. PubMed DOI
Maia C., Sousa C.A., Sousa H., Vale F., Simões M. Parabens removal from wastewaters by microalgae—Ecotoxicity, metabolism and pathways. J. Chem. Eng. 2023;453:139631. doi: 10.1016/j.cej.2022.139631. DOI
Emmanouil C., Bekyrou M., Psomopoulos C., Kungolos A. An insight into ingredients of toxicological interest in personal care products and a small-scale sampling survey of the Greek market: Delineating a potential contamination source for water resources. Water. 2019;11:2501. doi: 10.3390/w11122501. DOI
Dambal V.Y., Selvan K.P., Lite C., Barathi S., Santosh W. Developmental toxicity and induction of vitellogenin in embryo-larval stages of zebrafish (Danio rerio) exposed to methylparaben. Ecotoxicol. Environ. Saf. 2017;141:113–118. doi: 10.1016/j.ecoenv.2017.02.048. PubMed DOI
Hu C., Bai Y., Sun B., Zhou X., Chen L. Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish. J. Environ. Sci. 2023;132:134–144. doi: 10.1016/j.jes.2022.07.012. PubMed DOI
Bolujoko N.B., Ogunlaja O.O., Alfred M.O., Okewole D.M., Ogunlaja A., Olukanni O.D., Msagati T.A.M., Unuabonah Emmanuel I. Occurrence and human exposure assessment of parabens in water sources in Osun State, Nigeria. Sci. Total Environ. 2022;814:152448. doi: 10.1016/j.scitotenv.2021.152448. PubMed DOI
Hu C., Sun B., Tang L., Liu M., Huang Z., Zhou X., Chen L. Hepatotoxicity caused by methylparaben in adult zebrafish. Aquat. Toxicol. 2022;250:106255. doi: 10.1016/j.aquatox.2022.106255. PubMed DOI
Serra-Compte A., Maulvault A.L., Camacho C., Álvarez-Muñoz D., Barceló D., Rodríguez-Mozaz S., Marques A. Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis) Environ. Pollut. 2018;236:824–834. doi: 10.1016/j.envpol.2018.02.018. PubMed DOI
Raja G.L., Subhashree D.K., Lite C., Santosh W., Barathi S. Transient exposure of methylparaben to zebrafish (Danio rerio) embryos altered cortisol level, acetylcholinesterase activity and induced anxiety-like behaviour. Gen. Comp. Endocrinol. 2019;279:53–59. doi: 10.1016/j.ygcen.2018.11.001. PubMed DOI
Sivaraman L., Pouliot L., Wang B., Brodie T., Graziano M., McNerney M.E. Safety assessment of propylparaben in juvenile rats. Regul. Toxicol. Pharmacol. 2018;92:370–381. doi: 10.1016/j.yrtph.2017.12.009. PubMed DOI
Atli E. The effects of ethylparaben and propylparaben on the development and fecundity of Drosophila melanogaster. Environ. Toxicol. Pharmacol. 2022;92:103856. doi: 10.1016/j.etap.2022.103856. PubMed DOI
Calma M.L., Medina P.M.B. Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben. Environ. Pollut. 2020;266:115275. doi: 10.1016/j.envpol.2020.115275. PubMed DOI
Wang N., Hu X., Lu S., Ma S., Kang L., Liao S., Yu Y. Interrelationship of anthropogenic activity and parabens in fish from Taihu Lake during 2009–2017. Environ. Pollut. 2019;252:1002–1009. doi: 10.1016/j.envpol.2019.06.041. PubMed DOI
Yao L., Lv Y.-Z., Zhang L.-J., Liu W.-R., Zhao J.-L., Yang Y.-Y., Jia Y.-W., Liu Y.-S., He L.-Y., Ying G.-G. Bioaccumulation and risks of 24 personal care products in plasma of wild fish from the Yangtze River, China. Sci. Total Environ. 2019;665:810–819. doi: 10.1016/j.scitotenv.2019.02.176. PubMed DOI
Moreno-Marenco A.R., Giraldo L., Moreno-Piraján J.C. Adsorption of n-butylparaben from aqueous solution on surface of modified granular activated carbons prepared from African palm shell. Thermodynamic study of interactions. J. Environ. Chem. Eng. 2020;8:103969. doi: 10.1016/j.jece.2020.103969. DOI
Okoye C.O., Okeke E.S., Okoye K.C., Echude D., Andong F.A., Chukwudozie K.I., Okoye H.U., Ezeonyejiaku C.D. Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention. Heliyon. 2022;8:9143. doi: 10.1016/j.heliyon.2022.e09143. PubMed DOI PMC
Bolujoko N.B., Unuabonah E.I., Alfred M.O., Ogunlaja A., Ogunlaja O.O., Omorogie M.O., Olukanni O.D. Toxicity and removal of parabens from water: A critical review. Sci. Total Environ. 2021;792:148092. doi: 10.1016/j.scitotenv.2021.148092. PubMed DOI
Becerra-Herrera M., Miranda V., Richter P. Rapid determination of parabens in water samples by ultra-high performance liquid chromatography coupled to time of flight mass spektrometry. Anal. Sci. 2019;36:675–679. doi: 10.2116/analsci.19P409. PubMed DOI
OECD . Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing; Paris, French: 2013.
Waterquality—Determination of the Acutelethal Toxicity of Substances to a Freshwaterfish [Brachydanio Rerio Hamilton-Buchanan (Teleostei, Cyprinidae)]—Part 1: Static Metod. European Committee for Standardization (CEN); Brussels, Belgium: 1996.
Ubbels G.A., Hara K., Koster C.H., Kirschner M.W. Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs. J. Embryol. Exp. Morphol. 1983;77:15–37. doi: 10.1242/dev.77.1.15. PubMed DOI
Máchová J., Prokeš M., Kroupová H., Svobodová Z., Mácová S., Doleželová P., Velíšek J. Early Ontogeny, Growth and Mortality of Common Carp (Cyprinus carpio) at Low Concentrations of Dimethyl Sulfoxide. Acta Vet. Brno. 2009;78:505–512. doi: 10.2754/avb200978030505. DOI
Sehonova P., Plhalova L., Blahova J., Berankova P., Doubkova V., Prokes M., Tichy F., Vecerek V., Svobodova Z. The effect of tramadol hydrochloride on early life stages of fish. Environ. Toxicol. Pharmacol. 2016;44:151–157. doi: 10.1016/j.etap.2016.05.006. PubMed DOI
OECD . Test No. 210: Fish, Early-Life Stage Toxicity Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing; Paris, French: 2013.
Penaz M., Prokes M., Kouril J., Hamackova J. Early development of the carp, Cyprinus carpio. Acta Sci. Nat. Brno. 1983;17:1–39.
Vaclavik J., Sehonova P., Blahova J., Medkova D., Postulkova E., Maly O., Charvatova M., Stastny K., Lenz J., Mares J., et al. Foodborne fluoxetine impacts the immune response in rainbow trout (Oncorhynchus mykkis) Environ. Toxicol. Pharmacol. 2022;90:103818. doi: 10.1016/j.etap.2022.103818. PubMed DOI
Zivna D., Sehonova P., Plhalova L., Marsalek P., Blahova J., Prokes M., Divisova L., Stancova V., Dobsikova R., Tichy F., et al. Effect of salicylic acid on early life stages of common carp (Cyprinus carpio) Environ. Toxicol. Pharmacol. 2015;40:319–325. doi: 10.1016/j.etap.2015.06.018. PubMed DOI
Hodkovicova N., Hollerova A., Caloudova H., Blahova J., Franc A., Garajova M., Lenz J., Tichy F., Faldyna M., Kulich P., et al. Do foodborne polyethylene microparticles affect the health of rainbow trout (Oncorhynchus mykiss)? Sci. Total Environ. 2021;793:148490. doi: 10.1016/j.scitotenv.2021.148490. PubMed DOI
FAO (Food and Agriculture Organization) FAO Specifications and Evaluations for Plant Protection Products: Metazachlor. FAO; Rome, Italy: 1999.
Mohr S., Berghahn R., Feibicke M., Meinecke S., Ottenströer T., Schmiedling I., Schmiediche R., Schmidt R. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms. Aquat. Toxicol. 2007;82:73–84. doi: 10.1016/j.aquatox.2007.02.001. PubMed DOI
Guo D., Wang Y., Qian Y., Chen C., Jiao B., Cai L., Wang Q. Joint acute and endocrine disruptive toxicities of malathion, cypermethrin and prochloraz to embryo-larval zebrafish, Danio rerio. Chemosphere. 2017;166:63–71. doi: 10.1016/j.chemosphere.2016.09.075. PubMed DOI
Domingues I., Oliveira R., Musso C., Cardoso M., Soares A.M., Loureiro S. Prochloraz effects on biomarkers activity in zebrafish early life stages and adults. Environ. Toxicol. 2011;28:155–163. doi: 10.1002/tox.20710. PubMed DOI
Johansson M., Paha H., Kylin H., Merila J. Toxicity of six pesticides to common frog (Rana temporaria) tadpoles. Environ. Toxicol. Chem. 2006;25:3164–3170. doi: 10.1897/05-685R1.1. PubMed DOI
Morton P.A., Fennell C., Cassidy R., Doody D., Fenton O., Mellander P.-E., Jordan P. A review of the pesticide MCPA in the land-water environment and emerging research needs. Wiley Interdiscip. Rev. Water. 2019;7:1–16. doi: 10.1002/wat2.1402. DOI
Sun Q., Guo W., Wang P., Chang Z., Xia X., Du Q. Toxicity of 2-methyl-4-chlorophenoxy acetic acid alone and in combination with cyhalofop-butyl to Cyprinus carpio embryos. Environ. Toxicol. Pharmacol. 2021;87:103697. doi: 10.1016/j.etap.2021.103697. PubMed DOI
Merola C., Perugini M., Conte A., Angelozzi G., Bozzeli M., Amorena M. Embryotocicity of methylparaben to zebrafish (Danio rerio) early-life stages. Comp. Biochem. Physiol. Part C Toxicol. Appl. Pharmacol. 2020;236:108792. doi: 10.1016/j.cbpc.2020.108792. PubMed DOI
Bereketoglu C., Pradhan A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish. Sci. Total Environ. 2019;671:129–139. doi: 10.1016/j.scitotenv.2019.03.358. PubMed DOI
Merola C., Lai O., Conte A., Crescenzo G., Torelli T., Alloro M., Perugini M. Toxicological assessment and developmental abnormalities induced by butylparaben and ethylparaben exposure in zebrafish early-life stages. Environ. Toxicol. Pharmacol. 2020;80:103504. doi: 10.1016/j.etap.2020.103504. PubMed DOI
González-Doncel M., García-Mauriño J.E., San Segundo L., Beltrán E.M., Sastre S., Torija C.F. Embryonic exposure of medaka (Oryzias latipes) to propylparaben: Effects on early development and post-hatching growth. Environ. Pollut. 2014;184:360–369. doi: 10.1016/j.envpol.2013.09.022. PubMed DOI
Kang H.M., Kim M.S., Hwang U.K., Jeong C.B., Lee J.S. Effects of methylparaben, ethylparaben, and propylparaben on life parameters and sex ratio in the marine copepod Tigriopus japonicus. Chemosphere. 2019;226:388–394. doi: 10.1016/j.chemosphere.2019.03.151. PubMed DOI
Yang G., Weng Y., Zhao Y., Wang D., Luo T., Jin Y. Transcriptomic and targeted metabolomic analysis revealed the toxic effects of prochloraz on larval zebrafish. Sci. Total Environ. 2022;822:153625. doi: 10.1016/j.scitotenv.2022.153625. PubMed DOI
Guengerich F.P. Cytochrome P450 and chemical toxikology. Chem. Res.Toxicol. 2008;21:70–83. doi: 10.1021/tx700079z. PubMed DOI
Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Garner L.V., Di Giulio R.T. Glutathione transferase pi class 2 (GSTp2) protects against the cardiac deformities caused by exposure to PAHs but not PCB-126 in zebrafish embryos. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2012;155:573–579. doi: 10.1016/j.cbpc.2012.01.007. PubMed DOI PMC
Sanchez W., Piccini B., Porcher J.M. Effect of prochloraz fungicide on biotransformation enzymes and oxidative stress parameters in three-spined stickleback (Gasterosteus aculeatus L.) J. Environ. Sci. Health B. 2008;43:65–70. doi: 10.1080/03601230701735151. PubMed DOI
Vinggaard A.M., Hass U., Dalgaard M., Andersen H.R., Bonefeld-Jørgensen E., Christiansen S., Laier P., Poulsen M.E. Prochloraz: An imidazole fungicide with multiple mechanisms of action. Int. J. Androl. 2006;29:186–192. doi: 10.1111/j.1365-2605.2005.00604.x. PubMed DOI
Orton F., Lutz I., Kloas W., Routledge E.J. Endocrine Disrupting Effects of Herbicides and Pentachlorophenol: In Vitro and in Vivo Evidence. Environ. Sci. Technol. 2009;43:2144–2150. doi: 10.1021/es8028928. PubMed DOI
Hinfray N., Nóbrega R.H., Caulier M., Baudiffier D., Maillot-Maréchal E., Chadili E., Palluel O., Porcher J.M., Schulz R., Brion F. Cyp17a1 and Cyp19a1 in the zebrafish testis are differentially affected by oestradiol. J. Endocrinol. 2013;216:375–388. doi: 10.1530/JOE-12-0509. PubMed DOI
Glanemann C., Loos A., Gorret N., Willis L.B., O’Brien X.M., Lessard P.A., Sinskey A.J. Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutaminicum: Implications for DNA microarray analysis. Appl. Microbiol. Biotechnol. 2003;61:61–68. doi: 10.1007/s00253-002-1191-5. PubMed DOI
Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999;61:243–282. doi: 10.1146/annurev.physiol.61.1.243. PubMed DOI
Evans T.G., Yamamoto Y., Jeffery W.R., Krone P.H. Zebrafish Hsp70 is required for embryonic lens formation. Cell Stress Chaperones. 2005;10:66–78. doi: 10.1379/CSC-79R.1. PubMed DOI PMC
Lele Z., Hartson S.D., Martin C.C., Whiteshell L., Matts R.L., Krone P.H. Disruption of zebrafish somite development by pharmacologic inhibition of Hsp90. Dev. Biol. 1999;210:56–70. doi: 10.1006/dbio.1999.9262. PubMed DOI
Yang C., Lim W., Song G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2020;234:108758. doi: 10.1016/j.cbpc.2020.108758. PubMed DOI
Sepici-Diçel A., Benli A.C.K., Selvi M., Sarikaya R., Şahin D., Özkul I.A., Erkoç F. Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: Biochemical, hematological, histopathological alterations. Ecotoxicol. Environ. Saf. 2009;72:1433–1439. doi: 10.1016/j.ecoenv.2009.01.008. PubMed DOI
Ullah S., Li Z., Arifeen M.Z.U., Khan S.U., Fahad S. Multiple biomarkers based appraisal of deltamethrin induced toxicity in silver carp (Hypophthalmichthys molitrix) Chemosphere. 2019;214:519–533. doi: 10.1016/j.chemosphere.2018.09.145. PubMed DOI
D’Souza U.J.A. Pesticide toxicity and oxidative stress: A review. Borneo Rev. Med. Sci. 2017;11:9–19.
Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI
Modrá H., Haluzová I., Blahová J., Maršálek P., Svobodová Z. Effects of subchronic exposure to Spartakus (prochloraz 450gl−1) on haematological, biochemical and biometric indices of common carp Cyprinus carpio. Toxicol. Lett. 2010;196:S319. doi: 10.1016/j.toxlet.2010.03.1008. PubMed DOI
Lundqvist J., Hellman B., Oskarsson A. Fungicide prochloraz induces oxidative stress and DNA damage in vitro. Food Chem. Toxicol. 2016;91:36–41. doi: 10.1016/j.fct.2016.03.002. PubMed DOI
Lidova J., Stara A., Kouba A., Velisek J. The effects of cypermethrin on oxidative stress and antioxidant biomarkers in marbled crayfish (Procambarus fallax f. virginalis) Neuroendocrinol. Lett. 2016;37:53–59. PubMed
Stara A., Zuskova E., Velisek J. Acute toxicity effect of cypermethrin on common carp (Cyprinus carpio) Neuroendocrinol. Lett. 2016;37:60–66. PubMed
Toni C., Loro V.L., Santi A., de Menezes C.C., Cattaneo R., Clasen B.E., Zanella R. Exposure to tebuconazol in rice field and laboratory conditions induces oxidative stress in carp (Cyprinus carpio) Comp. Biochem. Physiol. 2011;153:128–132. doi: 10.1016/j.cbpc.2010.09.008. PubMed DOI
Sehonova P., Hodkovicova N., Urbanova M., Orn S., Blahova J., Svobodova Z., Faldyna M., Chloupek P., Briedikova K., Carlsson G. Effects of antidepressants with different modes of action on early life stages of fish and amphibians. Environ. Pollut. 2019;254:112999. doi: 10.1016/j.envpol.2019.112999. PubMed DOI
Hodkovicova N., Sehonova P., Blahova J., Faldyna M., Marsalek P., Mikula P., Chloupek P., Dobsikova R., Vecerek V., Vicenova M., et al. The effect of the antidepressant venlafaxine on gene expression of biotransformation enzymes in zebrafish (Danio rerio) embryos. Environ. Sci. Pollut. Res. 2020;27:1686–1696. doi: 10.1007/s11356-019-06726-2. PubMed DOI
Karaca M., Varisli L., Korkmaz K., Ozaydin O., Parcin F., Orhan H. Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio. Toxicol. Lett. 2014;230:198–207. doi: 10.1016/j.toxlet.2014.02.013. PubMed DOI
Liu T., Zhang Z., Chen D., Wang L., Yao H., Zhao F., Xing H., Xu S. Effect of atrazine and chlorpyrifos exposure on heat shock protein response in the brain of common carp (Cyprinus carpio L.) Pestic. Biochem. Physiol. 2013;107:277–283. doi: 10.1016/j.pestbp.2013.09.002. DOI