Chronic Toxicity of Primary Metabolites of Chloroacetamide and Glyphosate to Early Life Stages of Marbled Crayfish Procambarus virginalis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910282
Ministry of Agriculture
PubMed
35741448
PubMed Central
PMC9219952
DOI
10.3390/biology11060927
PII: biology11060927
Knihovny.cz E-zdroje
- Klíčová slova
- behaviour, crayfish, herbicide, metabolite, ontogeny, toxicity,
- Publikační typ
- časopisecké články MeSH
Degradation products of herbicides, alone and in combination, may affect non-target aquatic organisms via leaching or runoff from the soil. The effects of 50-day exposure of primary metabolites of chloroacetamide herbicide, acetochlor ESA (AE; 4 µg/L), and glyphosate, aminomethylphosphonic acid (AMPA; 4 µg/L), and their combination (AMPA + AE; 4 + 4 µg/L) on mortality, growth, oxidative stress, antioxidant response, behaviour, and gill histology of early life stages of marbled crayfish (Procambarus virginalis) were investigated. While no treatment effects were observed on cumulative mortality or early ontogeny, growth was significantly lower in all exposed groups compared with the control group. Significant superoxide dismutase activity was observed in exposure groups, and significantly higher glutathione S-transferase activity only in the AMPA + AE group. The gill epithelium in AMPA + AE-exposed crayfish showed swelling as well as numerous unidentified fragments in interlamellar space. Velocity and distance moved in crayfish exposed to metabolites did not differ from controls, but increased activity was observed in the AMPA and AE groups. The study reveals the potential risks of glyphosate and acetochlor herbicide usage through their primary metabolites in the early life stages of marbled crayfish.
Zobrazit více v PubMed
Koutnik D., Stara A., Velisek J. The effect of selected triazines on fish: A review. Slov. Vet. Res. 2015;52:107–131.
Sharma S., Dar O.I., Singh K., Kaur A., Faggio C. Triclosan elicited biochemical and transcriptomic alternations in Labeo rohita larvae. Environ. Toxicol. Pharmacol. 2021;88:103748. doi: 10.1016/j.etap.2021.103748. PubMed DOI
Yalsuyi A.M., Vajargah M.F., Hajimoradloo A., Galangash M.M., Prokić M.D., Faggio C. Evaluation of behavioral changes and tissue damages of common carp (Cyprinus carpio) after exposure to herbicide-glyphosate. Vet. Sci. 2021;8:218. doi: 10.3390/vetsci8100218. PubMed DOI PMC
Foley M.E., Sigler V., Gruden C.L. A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME J. 2008;2:56–66. doi: 10.1038/ismej.2007.99. PubMed DOI
Al-Mamun A. Pesticide Degradations Resides and Environmental Concerns. In: Khan M.S., Rahman M.S., editors. Pesticide Residue in Foods: Sources, Management, and Control. Springer International Publishing AG; Cham, Switzerland: 2017. pp. 87–102. DOI
Fenner K., Canonica S., Wackett L.P., Elsner M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science. 2013;341:752–758. doi: 10.1126/science.1236281. PubMed DOI
Vajargah M.F., Namin J.I., Mohsenpour R., Yalsuyi A.M., Prokić M.D., Faggio C. Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella) Vet. Res. Commun. 2021;45:373–380. doi: 10.1007/s11259-021-09818-y. PubMed DOI
Stara A., Pagano M., Albano M., Savoca S., Di Bella G., Albergamo A., Koutkova Z., Sandova M., Velisek J., Fabrello J., et al. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. Environ. Pollut. 2021;289:117892. doi: 10.1016/j.envpol.2021.117892. PubMed DOI
Riahi B., Rafatpanah H., Mahmoudi M., Memar B., Brook A., Tabasi N., Karimi G. Immunotoxicity of paraquat after subacute exposure to mice. Food Chem. Toxicol. 2010;48:1627–1631. doi: 10.1016/j.fct.2010.03.036. PubMed DOI
Ceyhun S.B., Senturk M., Ekinci D., Erdoğan O., Çiltas A., Kocaman E.M. Deltamethrin attenuates antioxidant defense system and induces the expression of heat shock protein 70 in rainbow trout. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010;152:215–223. doi: 10.1016/j.cbpc.2010.04.008. PubMed DOI
Velisek J., Stara A., Kubec J., Zuskova E., Buric M., Kouba A. Effects of metazachlor and its major metabolite metazachlor OA on early life stages of marbled crayfish. Sci. Rep. 2020;10:875–879. doi: 10.1038/s41598-020-57740-1. PubMed DOI PMC
Lewis K.A., Tzilivakis J., Warner D.J., Green A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016;22:1050–1064. doi: 10.1080/10807039.2015.1133242. DOI
Ministry of Agriculture of Czech Republic Register of Plant Protection Products. [(accessed on 12 April 2021)]. Available online: http://eagri.cz/public/app/eagriapp/POR/
Minnesota Department of Agriculture Acetochlor—General Information. [(accessed on 12 April 2021)]. Available online: https://www.mda.state.mn.us/acetochlor-general-information.
Zhan H., Feng Y., Fan X., Chen S. Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol. 2018;102:5033–5043. doi: 10.1007/s00253-018-9035-0. PubMed DOI
United States Environmental Protection Agency . ARP GW Raw Data: Supporting and Related Materials. USEPA; Washington, DC, USA: 2007. Document ID: EPA-HQ-OPP-2007-0725-0018.
United States Environmental Protection Agency . Raw Data for Graphs of Detections of Acetochlor in Drinking Water Wells: USEPA Document Type: Supporting and Related Materials. USEPA; Washington, DC, USA: 2007. Document ID:EPA-HQ-OPP-2007-0725-0030.
Fu L., Lu X., Tan J., Wang L., Chen J. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC–MS/MS. J. Environ. Sci. (China) 2018;63:116–125. doi: 10.1016/j.jes.2017.09.010. PubMed DOI
Tang X.-Y., Yang Y., Tam N.F.-Y., Tao R., Dai Y.-N. Pesticides in three rural rivers in Guangzhou, China: Spatiotemporal distribution and ecological risk. Environ. Sci. Pollut. Res. Int. 2019;26:3569–3577. doi: 10.1007/s11356-018-3808-y. PubMed DOI
Battaglin W., Furlong E., Burkhardt M., Peter C. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci. Total Environ. 2000;248:123–133. doi: 10.1016/S0048-9697(99)00536-7. PubMed DOI
Boyd R.A. Herbicides and herbicide degradates in shallow groundwater and the Cedar River a municipal well field, Cedar Rapids, Iowa. Sci. Total Environ. 2000;248:241–253. doi: 10.1016/S0048-9697(99)00546-X. PubMed DOI
Dictor M.-C., Baran N., Gautier A., Mouvet C. Acetochlor mineralization and fate of its two major metabolites in two soils under laboratory conditions. Chemosphere. 2008;71:663–670. doi: 10.1016/j.chemosphere.2007.10.066. PubMed DOI
de Guzman N.P., Hendley P., Gustafson D.I., van Wesenbeeck I., Klein A.J., Fuhrman J.D., Travis K., Simmons N.D., Teskey W.E., Durham R.B. The Acetochlor Registration Partnership State Ground Water Monitoring Program. J. Environ. Qual. 2005;34:793–803. doi: 10.2134/jeq2003.0412. PubMed DOI
Janniche G.S., Mouvet C., Albrechtsen H.-J. Acetochlor sorption and degradation in limestone subsurface and aquifers. Pest. Manag. Sci. 2010;66:1287–1297. doi: 10.1002/ps.2011. PubMed DOI
Kalkhoff S.J., Kolpin D.W., Thurman E.M., Ferrer I., Barcelo D. Degradation of chloroacetanilide herbicides: The prevalance of sulfonic and oxanilic acid metabolites in lowa groundwaters and surface waters. Environ. Sci. Technol. 1998;32:1738–1740. doi: 10.1021/es971138t. DOI
Kolpin D.W., Thurman E.M., Linhart S.M. The environmental occurrence of herbicides: The importance of degradates in ground water. Arch. Environ. Contam. Toxicol. 1998;35:385–390. doi: 10.1007/s002449900392. PubMed DOI
Kolpin D., Thurman E.M., Linhart S. Finding minimal herbicide concentrations in ground water? Try looking for their degradates. Sci. Total Environ. 2000;248:115–122. doi: 10.1016/S0048-9697(99)00535-5. PubMed DOI
Liu J., Bao Y., Zhang X., Zhao S., Qiu J., Li N., He J. Anaerobic biodegradation and detoxification of chloroacetamide herbicides by a novel Proteiniclasticum sediminis BAD-10T. Environ. Res. 2022;209:112859. doi: 10.1016/j.envres.2022.112859. PubMed DOI
Mills P.C., Kolpin D.W., Scribner E.A., Thurman E.M. Herbicides and Degradates in Shallow Aquifers of Illinois: Spatial and Temporal Trends. J. Am. Water Resour. Assoc. 2005;41:537–547. doi: 10.1111/j.1752-1688.2005.tb03753.x. DOI
Postle J.K., Rheineck B.D., Allen P.E., Baldock J.O., Cook C.J., Zogbaum R., Vandenbrook J.P. Chloroacetanilide Herbicide Metabolites in Wisconsin Groundwater: 2001 Survey Results. Environ. Sci. Technol. 2004;38:5339–5343. doi: 10.1021/es040399h. PubMed DOI
Satin S. I V Roce 2016 Jsme Pili Vodu S Překročeným Limitem Pro Metabolit Pesticide Acetochlor ESA. [(accessed on 11 April 2021)]. Available online: https://zivotniprostrediotrokovic.webnode.cz/news/i-v-roce-2016-jsme-pili-vodu-s-prekrocenym-limitem-pro-metabolit-pesticitu-acetochlor-esa/
Moulisová A., Bendakovská L., Kožíšek F., Vavrouš A., Jeligová H., Kotal F. Pesticidy a jejich metabolity v pitné vodě. Jaký je současný stav v České Republice? Vodn. Hospodářství. 2017;68:4–10.
Kodeš V., Pesticidy v podzemních vodách ČR Czech Hydrometeorological Institute: Department of Water Quality. [(accessed on 12 April 2021)]. Available online: https://www.crystalwater.sk/wp-content/uploads/sites/12/2017/11/chmu-pesticidy-podzemne-vody-cr.pdf.
Crump D., Werry K., Veldhoen N., Van Aggelen G., Helbing C.C. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis. Environ. Health Perspect. 2002;110:1199–1205. doi: 10.1289/ehp.021101199. PubMed DOI PMC
Xu C., Sun X., Niu L., Yang W., Tu W., Lu L., Song S., Liu W. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor. Sci. Total Environ. 2019;653:1140–1148. doi: 10.1016/j.scitotenv.2018.11.037. PubMed DOI
Yang M., Hu J., Li S., Ma Y., Gui W., Zhu G. Thyroid endocrine disruption of acetochlor on zebrafish (Danio rerio) larvae. J. Appl. Toxicol. 2016;36:844–852. doi: 10.1002/jat.3230. PubMed DOI
Ma X., Zhang Y., Guan M., Zhang W., Tian H., Jiang C., Tan X., Kang W. Genotoxicity of chloroacetamide herbicides and their metabolites in vitro and In Vivo. Int. J. Mol. Med. 2021;47:103. doi: 10.3892/ijmm.2021.4936. PubMed DOI PMC
Wang H., Meng Z., Zhou L., Cao Z., Liao X., Ye R., Lu H. Effects of acetochlor on neurogenesis and behaviour in zebrafish at early developmental stages. Chemosphere. 2019;220:954–964. doi: 10.1016/j.chemosphere.2018.12.199. PubMed DOI
Saleh S.M., Mohamed I.A., Fathy M., Sayed A.E.-D.H. Neuro-hepatopathological changes in juvenile Oreochromis niloticus exposed to sublethal concentrations of commercial herbicides. Environ. Toxicol. Pharmacol. 2022;2022:103871. doi: 10.1016/j.etap.2022.103871. PubMed DOI
Xie J., Zhao L., Liu K., Liu W. Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor. Environ. Pollut. 2019;246:728–733. doi: 10.1016/j.envpol.2018.12.056. PubMed DOI
Yu J., Xu E.G., Ren Y., Jin S., Zhang T., Liu J., Li Z. Mixture Toxicity of Bensulfuron-Methyl and Acetochlor to Red Swamp Crayfish (Procambarus clarkii): Behavioral, Morphological and Histological Effects. Int. J. Environ. Res. Public Health. 2017;14:1466. doi: 10.3390/ijerph14121466. PubMed DOI PMC
Xu C., Tu W., Deng M., Jin Y., Lu B., Zhang C., Lin C., Wu Y., Liu W. Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. Chemosphere. 2016;164:618–626. doi: 10.1016/j.chemosphere.2016.09.004. PubMed DOI
Minnesota Department of Health Acetochlor ESA and Drinking Water. [(accessed on 12 April 2021)]. Available online: https://www.health.state.mn.us/communities/environment/risk/docs/guidance/gw/acetachloresainfo.pdf.
United States Environmental Protection Agency Report of the Food Quality Protection act (FQPA) Tolerance Reassessment Progress and Risk Management Decision (TRED) for Acetochlor. Prevention, Pesticides and Toxic Substances, EPA 738-R-00-009. [(accessed on 3 February 2021)]; Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/acetochlor_tred.pdf.
Bonansea R.I., Filippi I., Wunderlin D.A., Marino D.J.G., Amé M.V. The Fate of Glyphosate and AMPA in a Freshwater Endorheic Basin: An Ecotoxicological Risk Assessment. Toxics. 2018;6:3. doi: 10.3390/toxics6010003. PubMed DOI PMC
Levine S.L., von Mérey G., Minderhout T., Manson P., Sutton P. Aminomethylphosphonic acid has low chronic toxicity to Daphnia Magna Pimephales Promelas. Environ. Toxicol. Chem. 2015;34:1382–1389. doi: 10.1002/etc.2940. PubMed DOI
United States Environmental Protection Agency Preliminary Ecological Risk Assessment in Support of the Registration Review of Glyphosate and Its Salts (Washington, DC, USA. EPA 20460) [(accessed on 3 February 2021)]; Available online: https://www.epa.gov/sites/default/files/2019-04/documents/glyphosate-signed-efed-rtc.pdf#:~:text=The%20Environmental%20Fate%20and%20Effects%20Division%20%28EFED%29%20has,103613%2C%20103605%29%20developed%20in%20support%20of%20Registration%20Review.
Sun M., Li H., Jaisi D.P. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Res. 2019;163:114840. doi: 10.1016/j.watres.2019.07.007. PubMed DOI
Battaglin W.A., Kolpin D.W., Scribner E.A., Kuivila K.M., Sandstorm M.W. Glyphosate, other herbicides, and transformation products in midwestern streams. J. Am. Water Res. Assoc. 2005;41:323–332. doi: 10.1111/j.1752-1688.2005.tb03738.x. DOI
Battaglin W.A., Meyer M.T., Kuivila K.M., Dietze J.E. Glyphosate and its gedradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. J. Am. Water Res. Assoc. 2014;50:275–290. doi: 10.1111/jawr.12159. DOI
Coupe R.H., Kalkhoff S.J., Capel P.D., Gregoire C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest. Manag. Sci. 2012;68:16–30. doi: 10.1002/ps.2212. PubMed DOI
Kolpin D.W., Thurman E.M., Lee E.A., Meyer M., Furlong E., Glassmeyer S. Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Sci. Total Environ. 2005;354:191–197. doi: 10.1016/j.scitotenv.2005.01.028. PubMed DOI
Scribner E.A., Battaglin W.A., Dietze J.E., Thurman E.M. Reconnaissance Data for Glyphosate, Other Selected Herbicides, Their Degradation Products, and Antibiotics in 51 Streams in Nine Midwestern States, 2002. U.S. Geological Survey; Reston, VA, USA: 2003. p. 101. U.S. Geological Survey Open-File Report 03-217.
Tresnakova N., Stara A., Velisek J. Effects of Glyphosate and Its Major Metabolite AMPA on Aquatic Organisms. Appl. Sci. 2021;11:9004. doi: 10.3390/app11199004. DOI
Antunes A.M., Rocha T.L., Pires F.S., de Freitas M.A., Leite V.R.M.C., Arana S., Moreira P.C., Sabóia-Morais S.M.T. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid. J. Appl. Toxicol. 2017;37:1098–1107. doi: 10.1002/jat.3461. PubMed DOI
Bernasconi C., Demetrio P.M., Alonso L.L., Mac Loughlin T.M., Cerdá E., Sarandón S.J., Marino D.J. Evidence for soil pesticide contamination of an agroecological farm from a neighboring chemical-based production system. Agric. Ecosyst. Environ. 2021;313:107341. doi: 10.1016/j.agee.2021.107341. DOI
Pérez D.J., Okada E., De Gerónimo E., Menone M., Aparicio V.C., Costa J.L. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environ. Toxicol. Chem. 2017;36:3206–3216. doi: 10.1002/etc.3897. PubMed DOI
Pérez D.J., Iturburu F.G., Calderon G., Oyesqui L.A., De Gerónimo E., Aparicio V.C. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere. 2021;263:128061. doi: 10.1016/j.chemosphere.2020.128061. PubMed DOI
Székács A., Mörtl M., Darvas B. Monitoring Pesticide Residues in Surface and Ground Water in Hungary: Surveys in 1990–2015. J. Chem. 2015;2015:717948. doi: 10.1155/2015/717948. DOI
Heras R.D.L., Rodríguez-Gil J.L., Sauto J.S.S., Sánchez P.S., Catalá M. Analysis of lipid peroxidation in animal and plant tissues as field-based biomarker in Mediterranean irrigated agroecosystems (Extremadura, Spain) J. Environ. Sci. Health. 2018;9:567–579. doi: 10.1080/03601234.2018.1473962. PubMed DOI
Esser H.O. A review of the correlation between physicochemical properties and bioaccumulation. Pestic. Sci. 1986;17:265–276. doi: 10.1002/ps.2780170310. DOI
Rhodes L.D., Gardner G.R., Van Beneden R.J. Short-term tissue distribution, depuration and possible gene expression effects of [3H] TCDD exposure in soft-shell clams (Mya arenaria) Environ. Toxicol. Chem. 1997;16:1888–1894. doi: 10.1002/etc.5620160918. DOI
Uno H.S.S., Shiraishi H., Hatakeyama S., Otsuki A., Koyama J., Uno S. Accumulative Characteristics of Pesticide Residues in Organs of Bivalves (Anodonta woodiana and Corbicula leana) Under Natural Conditions. Arch. Environ. Contam. Toxicol. 2001;40:35–47. doi: 10.1007/s002440010146. PubMed DOI
Aparicio V.C., De Gerónimo E., Marino D., Primost J., Carriquiriborde P., Costa J.L. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere. 2013;93:1866–1873. doi: 10.1016/j.chemosphere.2013.06.041. PubMed DOI
Yokley R.A., Mayer L.C., Huang S.-B., Vargo J.D. Analytical Method for the Determination of Metolachlor, Acetochlor, Alachlor, Dimethenamid, and Their Corresponding Ethanesulfonic and Oxanillic Acid Degradates in Water Using SPE and LC/ESI-MS/MS. Anal. Chem. 2020;74:3754–3759. doi: 10.1021/ac020134q. PubMed DOI
Longshaw M., Bateman K.S., Stebbing P., Stentiford G.D., Hockley F.A. Disease risks associated with the importation and release of non-native crayfish species into mainland Britain. Aquat. Biol. 2012;16:1–15. doi: 10.3354/ab00417. DOI
Silveyra G.R., Silveyra P., Vatnick I., Medesani D.A., Rodríguez E.M. Effects of atrazine on vitellogenesis, steroid levels and lipid peroxidation, in female red swamp crayfish Procambarus clarkii. Aquat. Toxicol. 2018;197:136–142. doi: 10.1016/j.aquatox.2018.02.017. PubMed DOI
OECD (Organization for Economic Cooperation and Development) Guideline for Testing of Chemicals 215. Fish Juvenile Growth Test; Paris, France: 2000.
Vogt G. The marbled crayfish: A new model organism for research on development, epigenetics and evolutionary biology. J. Zool. 2008;276:1–13. doi: 10.1111/j.1469-7998.2008.00473.x. DOI
Stara A., Zuskova E., Kouba A., Velisek J. Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii) Sci. Total Environ. 2016;566:733–740. doi: 10.1016/j.scitotenv.2016.05.113. PubMed DOI
Lushchak V.I., Bagnyukova T.V., Husak V., Luzhna L.I., Lushchak O.V., Storey K. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int. J. Biochem. Cell Biol. 2005;37:1670–1680. doi: 10.1016/j.biocel.2005.02.024. PubMed DOI
Marklund S., Marklund G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. PubMed DOI
Beers R.F., Sizer I.W. A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1952;195:133–140. doi: 10.1016/S0021-9258(19)50881-X. PubMed DOI
Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. doi: 10.1016/S0021-9258(19)42083-8. PubMed DOI
Ellman G.L., Courtney K.D., Andres V.J., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Bradford M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Ceccaldi H. Anatomy and physiology of digestive tract of Crustaceans Decapods reared in aquaculture. Adv. Trop. Aqua. 1989;9:243–259.
Stancova V., Plhalova L., Bartoskova M., Zivna D., Prokes M., Marsalek P., Blahova J., Skoric M., Svobodova Z. Effects of Mixture of Pharmaceuticals on Early Life Stages of Tench (Tinca tinca) BioMed Res. Int. 2014;2014:253468. doi: 10.1155/2014/253468. PubMed DOI PMC
Stara A., Pagano M., Capillo G., Fabrello J., Sandova M., Albano M., Zuskova E., Velisek J., Matozzo V., Faggio C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. Ecotoxicol. Environ. Saf. 2020;203:110980. doi: 10.1016/j.ecoenv.2020.110980. PubMed DOI
West M.E.J., Moore P.A. Bt Proteins Exacerbate Negative Growth Effects in Juvenile Rusty (F. rusticus) Crayfish Fed Corn Diet. Arch. Environ. Contam. Toxicol. 2009;77:452–460. doi: 10.1007/s00244-019-00664-3. PubMed DOI
Rodrigues L.D.B., Costa G.G., Thá E.L., da Silva L.R., de Oliveira R., Leme D.M., Cestari M.M., Grisolia C.K., Valadares M.C., de Oliveira G.A.R. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat. Res. Gen. Toxicol. Environ. Mutagen. 2019;842:94–101. doi: 10.1016/j.mrgentox.2019.05.002. PubMed DOI
Fiorino E., Sehonova P., Plhalova L., Blahova J., Svobodova Z., Faggio C. Effects of glyphosate on early life stages: Comparison between Cyprinus carpio and Danio rerio. Environ. Sci. Pollut. Res. 2018;25:8542–8549. doi: 10.1007/s11356-017-1141-5. PubMed DOI
Velisek J., Stara A., Koutnik D., Zuskova E., Kouba A. Effect of prometryne on early life stages of marbled crayfish (Procambarus falllax f. virginalis) Neuroendocrinol. Lett. 2014;35:93–98. PubMed
Velisek J., Stara A., Machova J., Dvorak P., Zuskova E., Prokes M., Svobodova Z. Effect of terbutryn at environmental concentrations on early life stages of common carp (Cyprinus carpio L.) Pestic. Biochem. Physiol. 2012;102:102–108. doi: 10.1016/j.pestbp.2011.11.005. DOI
Bengtsson B.-E. Effect of Zinc on Growth of the Minnow Phoxinus phoxinus. Oikos. 1974;25:370–373. doi: 10.2307/3543958. DOI
Durmaz H., Sevgiler Y., Üner N. Tissue-specific antioxidative and neurotoxic responses to diazinon in Oreochromis niloticus. Pestic. Biochem. Physiol. 2006;84:215–226. doi: 10.1016/j.pestbp.2005.07.004. DOI
Woltering D.M. The growth response in fish chronic and early life stage toxicity tests: A critical review. Aquat. Toxicol. 1984;5:1–21. doi: 10.1016/0166-445X(84)90028-6. DOI
Wang S., Seiwert B., Kästner M., Miltner A., Schäffer A., Reemtsma T., Yang Q., Nowak K.M. (Bio)degradation of glyphosate in water-sediment microcosms—A stable isotope co-labeling approach. Water Res. 2016;99:91–100. doi: 10.1016/j.watres.2016.04.041. PubMed DOI
Velisek J., Stara A., Zuskova E., Kubec J., Buric M., Kouba A. Chronic toxicity of metolachlor OA on growth, ontogenetic development, antioxidant biomarkers and histopathology of early life stages of marbled crayfish. Sci. Total Environ. 2018;643:1456–1463. doi: 10.1016/j.scitotenv.2018.06.309. PubMed DOI
Velisek J., Stara A., Zuskova E., Kubec J., Buric M., Kouba A. Effects of s-metolachlor on early life stages of marbled crayfish. Pestic. Biochem. Physiol. 2019;153:87–94. doi: 10.1016/j.pestbp.2018.11.007. PubMed DOI
Velisek J., Stara A., Zuskova E., Kouba A. Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis) Chemosphere. 2017;175:440–445. doi: 10.1016/j.chemosphere.2017.02.080. PubMed DOI
Gherardi F. Biology of Freshwater Crayfish. Blackwell Science; Oxford, UK: 2002. Behaviour; pp. 258–290.
Kubec J., Kouba A., Buřič M. Communication, behaviour, and decision making in crayfish: A review. Zool. Anz. 2019;278:28–37. doi: 10.1016/j.jcz.2018.10.009. DOI
Manning A., Dawkins M.S. An Introduction to Animal Behavior. 6th ed. Cambridge University Press; Cambridge, MA, USA: 2012. p. 458.
Duffy J.E., Cardinale B.J., France K.E., McIntyre P.B., Thébault E., Loreau M. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 2007;10:522–538. doi: 10.1111/j.1461-0248.2007.01037.x. PubMed DOI
Schmitz O.J. Predator Diversity and Trophic Interactions. Ecology. 2007;88:2415–2426. doi: 10.1890/06-0937.1. PubMed DOI
El Hajam M., Plavan G.-I., Kandri N.I., Dumitru G., Nicoara M.N., Zerouale A., Faggio C. Evaluation of softwood and hardwood sawmill wastes impact on the common carp “Cyprinus carpio” and its aquatic environment: An oxidative stress study. Environ. Toxicol. Pharmacol. 2020;75:103327. doi: 10.1016/j.etap.2020.103327. PubMed DOI
Sehonova P., Tokanova N., Hodkovicova N., Kroupova H.K., Tumova J., Blahova J., Marsalek P., Plhalova L., Doubkova V., Dobsikova R., et al. Oxidative stress induced by fluoroquinolone enrofloxacin in zebrafish (Danio rerio) can be ameliorated after a prolonged exposure. Environ. Toxicol. Pharmacol. 2019;67:87–93. doi: 10.1016/j.etap.2019.02.002. PubMed DOI
Mensah P.K., Palmer C.G., Muller W.J.M. Lethal and Sublethal effects of pesticides on aquatic organisms: The cas of a freshwater shrimp exposure to Roundup®. In: Larramendy M.L., Soloneski S., editors. Pesticides Toxic Aspects. In Tech; Rijeka, Croatia: 2014. pp. 163–185.
Geret F., Serafim A., Bebianno M.J. Antioxidant enzyme activities, metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus? Ecotoxicology. 2003;12:417–426. doi: 10.1023/A:1026108306755. PubMed DOI
Modesto K.A., Martinez C.B. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere. 2010;78:294–299. doi: 10.1016/j.chemosphere.2009.10.047. PubMed DOI
Velisek J., Stara A., Zuskova E., Chabera J., Kubec J., Buric M., Kouba A. Effects of chloridazon on early life stages of marbled crayfish. Chemosphere. 2020;257:127189. doi: 10.1016/j.chemosphere.2020.127189. PubMed DOI
Crestani M., Menezes C., Glusczak L., Miron D.D.S., Spanevello R., Silveira A., Gonçalves F.F., Zanella R., Loro V. Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern. Chemosphere. 2007;67:2305–2311. doi: 10.1016/j.chemosphere.2006.09.070. PubMed DOI
Glusczak L., Miron D.D.S., Moraes B.S., Simões R.R., Schetinger M.R.C., Morsch V.M., Loro V. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen) Comp. Biochem. Physiol. 2007;146:519–524. doi: 10.1016/j.cbpc.2007.06.004. PubMed DOI
Glusczak L., Loro V.L., Pretto A., Moraes B.S., Raabe A., Duarte M.F., da Fonseca M.B., de Menezes C.C., Valladão D.M.D.S. Acute Exposure to Glyphosate Herbicide Affects Oxidative Parameters in Piava (Leporinus obtusidens) Arch. Environ. Contam. Toxicol. 2011;61:624–630. doi: 10.1007/s00244-011-9652-4. PubMed DOI
Miron D.D.S., Pretto A., Crestani M., Glusczak L., Schetinger M.R., Loro V.L., Morsch V.M. Biochemical effects of clomazone herbicide on piava (Leporinus obtusidens) Chemosphere. 2008;74:1–5. doi: 10.1016/j.chemosphere.2008.09.070. PubMed DOI
Negro L., Senkman L., Montagna M., Collins P. Freshwater decapods and pesticides: An unavoidable relation in the modern world. In: Stoytcheva M., editor. Pesticides in the Modern World—Risks and Benefits. In Tech; Rijeka, Croatia: 2011. pp. 198–199.
Zou E., Stueben B. Acute exposure to naphthalene reduces oxyregulating capacity of the brown shrimp, Penaeus aztecus, subjected to progressive hypoxia. Mar. Biol. 2006;149:1411–1415. doi: 10.1007/s00227-006-0294-4. DOI
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta. 2013;1830:3217–3266. doi: 10.1016/j.bbagen.2012.09.018. PubMed DOI