Effects of mixture of pharmaceuticals on early life stages of tench (Tinca tinca)

. 2014 ; 2014 () : 253468. [epub] 20140320

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24772417

Ubiquitous occurrence of pharmaceuticals in aquatic environment results in concern about potential adverse the effects on nontarget organisms. In water, drugs are present in complex mixtures, in which complicated interactions affect toxicity of single components. The purpose of this study was to examine effect of 35-day-long exposure to mixture of ibuprofen, diclofenac, and carbamazepine on the mortality, growth, early ontogeny, and histopathological changes in tench (Tinca tinca). Early life stage toxicity test was carried out using a modified protocol according to OECD guideline 210. Exposure to mixture of pharmaceuticals at concentration of 60 μg · L(-1) for each substance was associated with significant increase in mortality, as well as significant increase in growth and elevated incidence of malformations. Any of the tested concentrations resulted in histopathological changes of liver, kidney, skin, or gill. After fourteen days of exposure there was short-term delay of development related to increased concentrations of pharmaceuticals in the mixture (2, 20, and 60 μg · L(-1)). Environmentally relevant concentrations (0.02; and 0.2 μg · L(-1)) used in this experiment did not result in toxic impairment of tench.

Zobrazit více v PubMed

Reinstorf F, Strauch G, Schirmer K, et al. Mass fluxes and spatial trends of xenobiotics in the waters of the city of Halle, Germany. Environmental Pollution. 2008;152(2):452–460. PubMed

Tixier C, Singer HP, Oellers S, Müller SR. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science and Technology. 2003;37(6):1061–1068. PubMed

Mompelat S, Thomas O, le Bot B. Contamination levels of human pharmaceutical compounds in French surface and drinking water. Journal of Environmental Monitoring. 2011;13(10):2929–2939. PubMed

Fent K, Weston AA, Caminada D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology. 2006;76(2):122–159. PubMed

Carballa M, Omil F, Lema JM, et al. Behaviour of pharmaceuticals and personal care products in a sewage treatment plant of northwest Spain. Water Science and Technology. 2005;52(8):29–35. PubMed

Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research. 2005;39(19):4797–4807. PubMed

Lishman L, Smyth SA, Sarafin K, et al. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment. 2006;367(2-3):544–558. PubMed

Nikolaou A, Meric S, Fatta D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry. 2007;387(4):1225–1234. PubMed

Santos JL, Aparicio I, Callejón M, Alonso E. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain) Journal of Hazardous Materials. 2009;164(2-3):1509–1516. PubMed

Onesios KM, Yu JT, Bouwer EJ. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation. 2009;20(4):441–466. PubMed

Gros M, Petrović M, Ginebreda A, Barceló D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International. 2010;36(1):15–26. PubMed

Clara M, Strenn B, Kreuzinger N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Research. 2004;38(4):947–954. PubMed

ter Laak T, van der Aa M, Houtman C, Stoks P, van Wezel A. Temporal and Spatial Trends of Pharmaceuticals in the Rhine. Nieuwegein, The Netherlands: RIWA-Rhine; 2010. (B111670 (BTO)).

Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G. EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution. 2009;157(2):561–568. PubMed

Ginebreda A, Muñoz I, de Alda ML, Brix R, López-Doval J, Barceló D. Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain) Environment International. 2010;36(2):153–162. PubMed

Valcárcel Y, González Alonso S, Rodríguez-Gil JL, et al. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere. 2011;84(10):1336–1348. PubMed

Andreozzi R, Raffaele M, Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere. 2003;50(10):1319–1330. PubMed

Schwarzenbach RP, Escher BI, Fenner K, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–1077. PubMed

Láng J, Köhidai L. Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. Chemosphere. 2012;89:592–601. PubMed

Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters. 2003;142(3):185–194. PubMed

Pal A, Gin KY, Lin AY, Reinhard M. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment. 2010;408(24):6062–6069. PubMed

Mompelat S, le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International. 2009;35(5):803–814. PubMed

OECD. Guideline for Testing of Chemicals 210. Fish, Early-Life Stage Toxicity Test, 18. 1992.

Máchová J, Prokeš M, Kroupová H, et al. Early ontogeny, growth and mortality of common carp (Cyprinus carpio) at low concentrations of dimethyl sulfoxide. Acta Veterinaria Brno. 2009;78(3):505–512.

Peňáz M, Wohlgemuth E, Hamáčková J, Kouřil J. Early ontogeny of the tench, Tinca tinca (Linnaeus, 1758). I. Embryonic period. Folia Zool. 1981;30(2):165–176.

Peňáz M, Wohlgemuth E, Hamáčková J, Kouřil J. Early ontogeny of the tench, Tinca tinca. II. Larval period. Folia Zool. 1982;31(2):175–180.

Peňáz M, Prokeš M, Kouřil J, Hamáčková J. Early development of the carp, Cyprinus carpio . Acta Scientiarum Naturalium Academiae Scientiarum Bohemicae. 1983;17(2):1–39.

Nash RDM, Valencia AH, Geffen AJ. The origin of Fulton’s condition factor—setting the record straight. Fisheries. 2006;31(5):236–238.

Celander MC. Cocktail effects on biomarker responses in fish. Aquatic Toxicology. 2011;105(3-4):72–77. PubMed

Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety. 2004;59(3):309–315. PubMed

Galus M, Jeyaranjaan J, Smith E, Li H, Metcalfe C, Wilson JY. Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquatic Toxicology. 2013;132-133:212–222. PubMed

Hallare AV, Köhler H-R, Triebskorn R. Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere. 2004;56(7):659–666. PubMed

van den Brandhof E, Montforts M. Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicology and Environmental Safety. 2010;73(8):1862–1866. PubMed

Stepanova S, Praskova E, Chromcova L, et al. The effects of diclofenac on early life stages of common carp (Cyprinus carpio) Environmental Toxicology and Pharmacology. 2013;35:454–460. PubMed

Lee J, Ji K, Lim Kho Y, Kim P, Choi K. Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicology and Environmental Safety. 2011;74(5):1216–1225. PubMed

Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa . Aquatic Toxicology. 2010;98(3):256–264. PubMed

Nassef M, Kim SG, Seki M, et al. In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes) Chemosphere. 2010;79(9):966–973. PubMed

Memmert U, Peither A, Burri R, et al. Diclofenac: new data on chronic toxicity and bioconcentration in fish. Environmental Toxicology and Chemistry. 2013;32(2):442–452. PubMed PMC

Overturf MD, Overturf CL, Baxter D, et al. Early life-stage toxicity of eight pharmaceuticals to fathead minnow, Pimephales promelas . Archives of Environmental Contamination and Toxicology. 2012;62:455–464. PubMed

Li Z, Zlabek V, Velisek J, Grabic R, Machovaa J, Randaka T. Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. Journal of Applied Toxicology. 2010;30(3):197–203. PubMed

Klumpp DW, von Westernhagen H. Biological effects of pollutants in Australian tropical coastal waters: embryonic malformations and chromosomal aberrations in developing fish eggs. Marine Pollution Bulletin. 1995;30(2):158–165.

Parrott JL, Bennie DT. Life-cycle exposure of fathead minnows to a mixture of six common pharmaceuticals and triclosan. Journal of Toxicology and Environmental Health A. 2009;72(10):633–641. PubMed

Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac, part I: histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology. 2004;68(2):141–150. PubMed

Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler H-R, Schwaiger J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac, part II: cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss) Aquatic Toxicology. 2004;68(2):151–166. PubMed

Hoeger B, Köllner B, Dietrich DR, Hitzfeld B. Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario) Aquatic Toxicology. 2005;75(1):53–64. PubMed

Mehinto AC, Hill EM, Tyler CR. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss) Environmental Science and Technology. 2010;44(6):2176–2182. PubMed

Galus M, Kirischian N, Higgins S, et al. Chronic, low dose exposure to pharmaceuticals impacts multiple organ systems in zebrafish. Aquatic Toxicology. 2013;132-133:200–211. PubMed

Nassef M, Matsumoto S, Seki M, et al. Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes) Chemosphere. 2010;80(9):1095–1100. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...