Sweet taste of heavy water

. 2021 Apr 06 ; 4 (1) : 440. [epub] 20210406

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33824405
Odkazy

PubMed 33824405
PubMed Central PMC8024362
DOI 10.1038/s42003-021-01964-y
PII: 10.1038/s42003-021-01964-y
Knihovny.cz E-zdroje

Hydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish D2O from H2O by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners. In contrast, mice do not prefer D2O over H2O, indicating that they are not likely to perceive heavy water as sweet. HEK 293T cells transfected with the TAS1R2/TAS1R3 heterodimer and chimeric G-proteins are activated by D2O but not by H2O. Lactisole, which is a known sweetness inhibitor acting via the TAS1R3 monomer of the TAS1R2/TAS1R3, suppresses the sweetness of D2O in human sensory tests, as well as the calcium release elicited by D2O in sweet taste receptor-expressing cells. The present multifaceted experimental study, complemented by homology modelling and molecular dynamics simulations, resolves a long-standing controversy about the taste of heavy water, shows that its sweet taste is mediated by the human TAS1R2/TAS1R3 taste receptor, and opens way to future studies of the detailed mechanism of action.

Zobrazit více v PubMed

Urey HC, Brickwedde FG, Murphy GM. A hydrogen isotope of mass 2. Phys. Rev. 1932;39:164–165. doi: 10.1103/PhysRev.39.164. DOI

Francl M. The weight of water. Nat. Chem. 2019;11:284–285. doi: 10.1038/s41557-019-0242-9. PubMed DOI

Clark T, Heske J, Kühne TD. Opposing electronic and nuclear quantum effects on hydrogen bonds in H2O and D2O. ChemPhysChem. 2019;20:2461–2465. doi: 10.1002/cphc.201900839. PubMed DOI PMC

Paesani F, Voth GA. The properties of water: insights from quantum simulations. J. Phys. Chem. B. 2009;113:5702–5719. doi: 10.1021/jp810590c. PubMed DOI

Macdonald F, Lide DR. CRC handbook of chemistry and physics: from paper to web. Abstr. Pap. Am. Chem. Soc. 2003;225:U552–U552.

Bogan RAJ, Ohde S, Arakaki T, Mori I, McLeod CW. Changes in rainwater pH associated with increasing atmospheric carbon dioxide after the industrial revolution. Water, Air, Soil Pollut. 2009;196:263–271. doi: 10.1007/s11270-008-9774-0. DOI

Van Horn E, Ware GC. Growth of bacterium coli and staphylococcus albus in heavy water. Nature. 1959;184:833–833. doi: 10.1038/184833a0. PubMed DOI

Mosin, O., Ignatov, I., Skladnev, D. & Shvets, V. Studying of phenomenon of biological adaptation to heavy water. Eur. J. Mol. Biotechnol.6, 180–209 (2014).

Kampmeyer C, et al. Mutations in a single signaling pathway allow cell growth in heavy water. Acs Synth. Biol. 2020;9:733–748. doi: 10.1021/acssynbio.9b00376. PubMed DOI

Barbour HG. The basis of the pharmacological action of heavy water in mammals. Yale J. Biol. Med. 1937;9:551–565. PubMed PMC

Czajka DM, Finkel AJ, Fischer CS, Katz JJ. Physiological effects of deuterium on dogs. Am. J. Physiol.-Leg. Content. 1961;201:357–362. doi: 10.1152/ajplegacy.1961.201.2.357. PubMed DOI

Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16:436–468. doi: 10.3402/tellusa.v16i4.8993. DOI

Jones PJH, Leatherdale ST. Stable isotopes in clinical research: safety reaffirmed. Clin. Sci. 1991;80:277–280. doi: 10.1042/cs0800277. PubMed DOI

Speakman J, Speakman JR. The history and theory of the doubly labeled water technique. Am. J. Clin. Nutr. 1998;68:932S–938S. doi: 10.1093/ajcn/68.4.932S. PubMed DOI

Pittendrigh CS, Caldarola PC, Cosbey ES. A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of the circadian system of Drosophila pseudoobscura. Proc. Natl Acad. Sci. USA. 1973;70:2037. doi: 10.1073/pnas.70.7.2037. PubMed DOI PMC

Richter CP. Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster. Proc. Natl Acad. Sci. USA. 1977;74:1295–1299. doi: 10.1073/pnas.74.3.1295. PubMed DOI PMC

Hansen K, Rustung E. Untersuchen uber die Biologische Wirkungen von “Schwerem Wasser” bei Warmblutigen Tieren. Klinische Wochenschr. 1935;14:104–108. doi: 10.1007/BF01780466. DOI

Urey HC, Failla G. Concerning the taste of heavy water. Science. 1935;81:273. doi: 10.1126/science.81.2098.273-a. PubMed DOI

Kirby RH, Pick DF, Riddick MS. Discrimination between heavy water and deionized water using gustation vs. olfaction in humans. Physiological Psychol. 1976;4:102–104. doi: 10.3758/BF03326557. DOI

Richter CP. Study of taste and smell of heavy-water (99.8percent) in rats. Proc. Soc. Exp. Biol. Med. 1976;152:677–684. doi: 10.3181/00379727-152-39466. PubMed DOI

Miller IJ, Mooser G. Taste responses to deuterium-oxide. Physiol. Behav. 1979;23:69–74. doi: 10.1016/0031-9384(79)90124-0. PubMed DOI

Nelson G, et al. Mammalian sweet taste receptors. Cell. 2001;106:381–390. doi: 10.1016/S0092-8674(01)00451-2. PubMed DOI

Li X, et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA. 2002;99:4692. doi: 10.1073/pnas.072090199. PubMed DOI PMC

Di Pizio A, Niv MY. Computational studies of smell and taste receptors. Isr. J. Chem. 2014;54:1205–1218. doi: 10.1002/ijch.201400027. DOI

Gutierrez, R., Fonseca, E. & Simon, S. A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell. Mol. Life Sci.77, 3469-3502 (2020). PubMed PMC

Damak S, et al. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science. 2003;301:850–853. doi: 10.1126/science.1087155. PubMed DOI

Yee KK, Sukumaran SK, Kotha R, Gilbertson TA, Margolskee RF. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc. Natl Acad. Sci. USA. 2011;108:5431–5436. doi: 10.1073/pnas.1100495108. PubMed DOI PMC

Bachmanov AA, Tordoff MG, Beauchamp GK. Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem. Senses. 2001;26:905–913. doi: 10.1093/chemse/26.7.905. PubMed DOI PMC

Jiang P, et al. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J. Biol. Chem. 2005;280:34296–34305. doi: 10.1074/jbc.M505255200. PubMed DOI

Jiang P, et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J. Biol. Chem. 2005;280:15238–15246. doi: 10.1074/jbc.M414287200. PubMed DOI

Zhao GQ, et al. The receptors for mammalian sweet and umami taste. Cell. 2003;115:255–266. doi: 10.1016/S0092-8674(03)00844-4. PubMed DOI

Chaudhari N, Roper SD. The cell biology of taste. J. cell Biol. 2010;190:285–296. doi: 10.1083/jcb.201003144. PubMed DOI PMC

Dagan-Wiener A, et al. BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res. 2019;47:D1179–D1185. doi: 10.1093/nar/gky974. PubMed DOI PMC

Dagan-Wiener A, et al. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci. Rep. 2017;7:12074. doi: 10.1038/s41598-017-12359-7. PubMed DOI PMC

Cioni P, Strambini GB. Effect of heavy water on protein flexibility. Biophysical J. 2002;82:3246–3253. doi: 10.1016/S0006-3495(02)75666-X. PubMed DOI PMC

Gane S, et al. Molecular vibration-sensing component in human olfaction. PLoS ONE. 2013;8:e55780. doi: 10.1371/journal.pone.0055780. PubMed DOI PMC

Block E, Jang S, Matsunami H, Batista VS, Zhuang H. Reply to Turin et al.: Vibrational theory of olfaction is implausible. Proc. Natl Acad. Sci. 2015;112:E3155. doi: 10.1073/pnas.1508443112. PubMed DOI PMC

Vosshall LB. Laying a controversial smell theory to rest. Proc. Natl Acad. Sci. USA. 2015;112:6525. doi: 10.1073/pnas.1507103112. PubMed DOI PMC

Low JYQ, McBride RL, Lacy KE, Keast RSJ. Psychophysical evaluation of sweetness functions across multiple sweeteners. Chem. Senses. 2017;42:111–120. doi: 10.1093/chemse/bjw109. PubMed DOI PMC

Mennella JA, Reed DR, Mathew PS, Roberts KM, Mansfield CJ. “A spoonful of sugar helps the medicine go down”: bitter masking by sucrose among children and adults. Chem. Senses. 2014;40:17–25. doi: 10.1093/chemse/bju053. PubMed DOI PMC

Ben Abu N, Harries D, Voet H, Niv MY. The taste of KCl—What a difference a sugar makes. Food Chem. 2018;255:165–173. doi: 10.1016/j.foodchem.2018.01.175. PubMed DOI

Dubovski, N., Ert, E. & Niv, M. Bitter mouth-rinse affects emotions. Food Quality. Prefer. 60, 154–164 (2017).

Galindo-Cuspinera V, Winnig M, Bufe B, Meyerhof W, Breslin PAS. A TAS1R receptor-based explanation of sweet ‘water-taste’. Nature. 2006;441:354–357. doi: 10.1038/nature04765. PubMed DOI

Behrens M, Blank K, Meyerhof W. Blends of non-caloric sweeteners saccharin and cyclamate show reduced off-taste due to TAS2R bitter receptor inhibition. Cell Chem. Biol. 2017;24:1199–119. doi: 10.1016/j.chembiol.2017.08.004. PubMed DOI

Trinquet E, et al. d-myo-Inositol 1-phosphate as a surrogate of d-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Anal. Biochem. 2006;358:126–135. doi: 10.1016/j.ab.2006.08.002. PubMed DOI

Zhang R, Xie X. Tools for GPCR drug discovery. Acta Pharmacol. Sin. 2012;33:372–384. doi: 10.1038/aps.2011.173. PubMed DOI PMC

Hussmann GP, Yasuda RP, Xiao Y, Wolfe BB, Kellar KJ. Endogenously expressed muscarinic receptors in HEK293 cells augment up-regulation of stably expressed α4β2 nicotinic receptors. J. Biol. Chem. 2011;286:39726–39737. doi: 10.1074/jbc.M111.289546. PubMed DOI PMC

Ueda T, Ugawa S, Yamamura H, Imaizumi Y, Shimada S. Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. J. Neurosci. 2003;23:7376–7380. doi: 10.1523/JNEUROSCI.23-19-07376.2003. PubMed DOI PMC

Mason JS, Bortolato A, Congreve M, Marshall FH. New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol. Sci. 2012;33:249–260. doi: 10.1016/j.tips.2012.02.005. PubMed DOI

Venkatakrishnan AJ, et al. Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proc. Natl Acad. Sci. USA. 2019;116:3288–3293. doi: 10.1073/pnas.1809251116. PubMed DOI PMC

Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–W181. doi: 10.1093/nar/gkv342. PubMed DOI PMC

Bayden AS, Moustakas DT, Joseph-McCarthy D, Lamb ML. Evaluating free energies of binding and conservation of crystallographic waters using SZMAP. J. Chem. Inf. Modeling. 2015;55:1552–1565. doi: 10.1021/ci500746d. PubMed DOI

Galindo-Cuspinera V, Breslin PAS. The liaison of sweet and savory. Chem. Senses. 2005;31:221–225. doi: 10.1093/chemse/bjj022. PubMed DOI

Sutton S. Encyclopedia of research design. Libr. J. 2010;135:105–106.

Kemp, S. E., Hollowood, T. & Hort, J. Sensory Evaluation: A Practical Handbook xi, 196p (Ames Wiley-Blackwell, 2009).

McLaughlin SK, McKinnon PJ, Spickofsky N, Danho W, Margolskee RF. Molecular-cloning of G-proteins and phosphodiesterases from rat taste cells. Physiol. Behav. 1994;56:1157–1164. doi: 10.1016/0031-9384(94)90360-3. PubMed DOI

Kusakabe Y, et al. Comprehensive study on G protein alpha-subunits in taste bud cells, with special reference to the occurrence of G alpha i2 as a major G alpha species. Chem. Senses. 2000;25:525–531. doi: 10.1093/chemse/25.5.525. PubMed DOI

Sclafani A, Perez C. Cypha(TM) propionic acid, 2-(4-methoxyphenol) salt inhibits sweet taste in humans, but not in rats. Physiol. Behav. 1997;61:25–29. doi: 10.1016/S0031-9384(96)00316-2. PubMed DOI

Ben Shoshan-Galeczki Y, Niv MY. Structure-based screening for discovery of sweet compounds. Food Chem. 2020;315:126286. doi: 10.1016/j.foodchem.2020.126286. PubMed DOI

Goddard TD, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...