Effects of Water Deuteration on Thermodynamic and Structural Properties of Proteins and Biomembranes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36722049
PubMed Central
PMC10017026
DOI
10.1021/acs.jpcb.2c08270
Knihovny.cz E-zdroje
- MeSH
- oxid deuteria chemie MeSH
- proteiny * MeSH
- rozpouštědla chemie MeSH
- termodynamika MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid deuteria MeSH
- proteiny * MeSH
- rozpouštědla MeSH
- voda * MeSH
Light and heavy water are often used interchangeably in spectroscopic experiments with the tacit assumption that the structure of the investigated biomolecule does not depend too much on employing one or the other solvent. While this may often be a good approximation, we demonstrate here using molecular dynamics simulations incorporating nuclear quantum effects via modification of the interaction potential that there are small but significant differences. Namely, as quantified and discussed in the present study, both proteins and biomembranes tend to be slightly more compact and rigid in D2O than in H2O, which reflects the stronger hydrogen bonding in the former solvent.
Zobrazit více v PubMed
Ceriotti M.; Fang W.; Kusalik P. G.; McKenzie R. H.; Michaelides A.; Morales M. A.; Markland T. E. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chem. Rev. 2016, 116, 7529–7550. 10.1021/acs.chemrev.5b00674. PubMed DOI
De Meutter J.; Goormaghtigh E. Evaluation of protein secondary structure from FTIR spectra improved after partial deuteration. Eur. Biophys. J. 2021, 50, 613–628. 10.1007/s00249-021-01502-y. PubMed DOI PMC
Hume S.; Hithell G.; Greetham G. M.; Donaldson P. M.; Towrie M.; Parker A. W.; Baker M. J.; Hunt N. T. Measuring proteins in H 2 O with 2D-IR spectroscopy. Chemical science 2019, 10, 6448–6456. 10.1039/C9SC01590F. PubMed DOI PMC
Cioni P.; Strambini G. B. Effect of heavy water on protein flexibility. Biophysical journal 2002, 82, 3246–3253. 10.1016/S0006-3495(02)75666-X. PubMed DOI PMC
Beranová L.; Humpolíčková J.; Sỳkora J.; Benda A.; Cwiklik L.; Jurkiewicz P.; Gröbner G.; Hof M. Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations. Phys. Chem. Chem. Phys. 2012, 14, 14516–14522. 10.1039/c2cp41275f. PubMed DOI
Ben Abu N.; Mason P. E.; Klein H.; Dubovski N.; Ben Shoshan-Galeczki Y.; Malach E.; Pražienková V.; Maletínská L.; Tempra C.; Chamorro V. C.; et al. Sweet taste of heavy water. Commun. Biol. 2021, 4, 440.10.1038/s42003-021-01964-y. PubMed DOI PMC
Ceriotti M.; Fang W.; Kusalik P. G.; McKenzie R. H.; Michaelides A.; Morales M. A.; Markland T. E. Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges. Chem. Rev. 2016, 116, 7529–7550. 10.1021/acs.chemrev.5b00674. PubMed DOI
Guillot B.; Guissani Y. Quantum effects in simulated water by the Feynman–Hibbs approach. J. Chem. Phys. 1998, 108, 10162–10174. 10.1063/1.476475. DOI
Sesé L. M. Feynman-Hibbs quantum effective potentials for Monte Carlo simulations of liquid neon. Mol. Phys. 1993, 78, 1167–1177. 10.1080/00268979300100761. DOI
Chamorro V. C.; Tempra C.; Jungwirth P. Heavy Water Models for Classical Molecular Dynamics: Effective Inclusion of Nuclear Quantum Effects. J. Phys. Chem. B 2021, 125, 4514–4519. 10.1021/acs.jpcb.1c02235. PubMed DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of computational chemistry 2008, 29, 1859–1865. 10.1002/jcc.20945. PubMed DOI
Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Swope W. C.; Andersen H. C.; Berens P. H.; Wilson K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637–649. 10.1063/1.442716. DOI
Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of computational chemistry 1992, 13, 1011–1021. 10.1002/jcc.540130812. DOI
Hub J. S.; De Groot B. L.; Van Der Spoel D. g_wham A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 2010, 6, 3713–3720. 10.1021/ct100494z. DOI
Nar H.; Messerschmidt A.; Huber R.; Van de Kamp M.; Canters G. W. Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 Å resolution. Febs Letters 1992, 306, 119–124. 10.1016/0014-5793(92)80981-L. PubMed DOI
Brownlow S.; Cabral J. H. M.; Cooper R.; Flower D. R.; Yewdall S. J.; Polikarpov I.; North A. C.; Sawyer L. Bovine β-lactoglobulin at 1.8 Å resolution—still an enigmatic lipocalin. Structure 1997, 5, 481–495. 10.1016/S0969-2126(97)00205-0. PubMed DOI
Kostrewa D.; Choe H. W.; Heinemann U.; Saenger W. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding. Biochemistry 1989, 28, 7592–7600. 10.1021/bi00445a014. PubMed DOI
Cioni P.; Strambini G. B. Effect of heavy water on protein flexibility. Biophysical journal 2002, 82, 3246–3253. 10.1016/S0006-3495(02)75666-X. PubMed DOI PMC
Joosten R. P.; Te Beek T. A.; Krieger E.; Hekkelman M. L.; Hooft R. W.; Schneider R.; Sander C.; Vriend G. A series of PDB related databases for everyday needs. Nucleic acids research 2011, 39, D411–D419. 10.1093/nar/gkq1105. PubMed DOI PMC
Kabsch W.; Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules 1983, 22, 2577–2637. 10.1002/bip.360221211. PubMed DOI
Pica A.; Graziano G. Effect of heavy water on the conformational stability of globular proteins. Biopolymers 2018, 109, e2307610.1002/bip.23076. PubMed DOI
Makhatadze G. I.; Clore G. M.; Gronenborn A. M. Solvent isotope effect and protein stability. Nature structural biology 1995, 2, 852–855. 10.1038/nsb1095-852. PubMed DOI
Rog T.; Murzyn K.; Milhaud J.; Karttunen M.; Pasenkiewicz-Gierula M. Water isotope effect on the phosphatidylcholine bilayer properties: a molecular dynamics simulation study. J. Phys. Chem. B 2009, 113, 2378–2387. 10.1021/jp8048235. PubMed DOI
Matsuki H.; Okuno H.; Sakano F.; Kusube M.; Kaneshina S. Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2005, 1712, 92–100. 10.1016/j.bbamem.2005.03.005. PubMed DOI
Matsuki H.; Okuno H.; Sakano F.; Kusube M.; Kaneshina S. Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2005, 1712, 92–100. 10.1016/j.bbamem.2005.03.005. PubMed DOI
Khakbaz P.; Klauda J. B. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes 2018, 1860, 1489–1501. 10.1016/j.bbamem.2018.04.014. PubMed DOI