Effects of Water Deuteration on Thermodynamic and Structural Properties of Proteins and Biomembranes

. 2023 Feb 09 ; 127 (5) : 1138-1143. [epub] 20230201

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36722049

Light and heavy water are often used interchangeably in spectroscopic experiments with the tacit assumption that the structure of the investigated biomolecule does not depend too much on employing one or the other solvent. While this may often be a good approximation, we demonstrate here using molecular dynamics simulations incorporating nuclear quantum effects via modification of the interaction potential that there are small but significant differences. Namely, as quantified and discussed in the present study, both proteins and biomembranes tend to be slightly more compact and rigid in D2O than in H2O, which reflects the stronger hydrogen bonding in the former solvent.

Zobrazit více v PubMed

Ceriotti M.; Fang W.; Kusalik P. G.; McKenzie R. H.; Michaelides A.; Morales M. A.; Markland T. E. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chem. Rev. 2016, 116, 7529–7550. 10.1021/acs.chemrev.5b00674. PubMed DOI

De Meutter J.; Goormaghtigh E. Evaluation of protein secondary structure from FTIR spectra improved after partial deuteration. Eur. Biophys. J. 2021, 50, 613–628. 10.1007/s00249-021-01502-y. PubMed DOI PMC

Hume S.; Hithell G.; Greetham G. M.; Donaldson P. M.; Towrie M.; Parker A. W.; Baker M. J.; Hunt N. T. Measuring proteins in H 2 O with 2D-IR spectroscopy. Chemical science 2019, 10, 6448–6456. 10.1039/C9SC01590F. PubMed DOI PMC

Cioni P.; Strambini G. B. Effect of heavy water on protein flexibility. Biophysical journal 2002, 82, 3246–3253. 10.1016/S0006-3495(02)75666-X. PubMed DOI PMC

Beranová L.; Humpolíčková J.; Sỳkora J.; Benda A.; Cwiklik L.; Jurkiewicz P.; Gröbner G.; Hof M. Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations. Phys. Chem. Chem. Phys. 2012, 14, 14516–14522. 10.1039/c2cp41275f. PubMed DOI

Ben Abu N.; Mason P. E.; Klein H.; Dubovski N.; Ben Shoshan-Galeczki Y.; Malach E.; Pražienková V.; Maletínská L.; Tempra C.; Chamorro V. C.; et al. Sweet taste of heavy water. Commun. Biol. 2021, 4, 440.10.1038/s42003-021-01964-y. PubMed DOI PMC

Ceriotti M.; Fang W.; Kusalik P. G.; McKenzie R. H.; Michaelides A.; Morales M. A.; Markland T. E. Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges. Chem. Rev. 2016, 116, 7529–7550. 10.1021/acs.chemrev.5b00674. PubMed DOI

Guillot B.; Guissani Y. Quantum effects in simulated water by the Feynman–Hibbs approach. J. Chem. Phys. 1998, 108, 10162–10174. 10.1063/1.476475. DOI

Sesé L. M. Feynman-Hibbs quantum effective potentials for Monte Carlo simulations of liquid neon. Mol. Phys. 1993, 78, 1167–1177. 10.1080/00268979300100761. DOI

Chamorro V. C.; Tempra C.; Jungwirth P. Heavy Water Models for Classical Molecular Dynamics: Effective Inclusion of Nuclear Quantum Effects. J. Phys. Chem. B 2021, 125, 4514–4519. 10.1021/acs.jpcb.1c02235. PubMed DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of computational chemistry 2008, 29, 1859–1865. 10.1002/jcc.20945. PubMed DOI

Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Swope W. C.; Andersen H. C.; Berens P. H.; Wilson K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637–649. 10.1063/1.442716. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI

Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI

Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of computational chemistry 1992, 13, 1011–1021. 10.1002/jcc.540130812. DOI

Hub J. S.; De Groot B. L.; Van Der Spoel D. g_wham A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 2010, 6, 3713–3720. 10.1021/ct100494z. DOI

Nar H.; Messerschmidt A.; Huber R.; Van de Kamp M.; Canters G. W. Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 Å resolution. Febs Letters 1992, 306, 119–124. 10.1016/0014-5793(92)80981-L. PubMed DOI

Brownlow S.; Cabral J. H. M.; Cooper R.; Flower D. R.; Yewdall S. J.; Polikarpov I.; North A. C.; Sawyer L. Bovine β-lactoglobulin at 1.8 Å resolution—still an enigmatic lipocalin. Structure 1997, 5, 481–495. 10.1016/S0969-2126(97)00205-0. PubMed DOI

Kostrewa D.; Choe H. W.; Heinemann U.; Saenger W. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding. Biochemistry 1989, 28, 7592–7600. 10.1021/bi00445a014. PubMed DOI

Cioni P.; Strambini G. B. Effect of heavy water on protein flexibility. Biophysical journal 2002, 82, 3246–3253. 10.1016/S0006-3495(02)75666-X. PubMed DOI PMC

Joosten R. P.; Te Beek T. A.; Krieger E.; Hekkelman M. L.; Hooft R. W.; Schneider R.; Sander C.; Vriend G. A series of PDB related databases for everyday needs. Nucleic acids research 2011, 39, D411–D419. 10.1093/nar/gkq1105. PubMed DOI PMC

Kabsch W.; Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules 1983, 22, 2577–2637. 10.1002/bip.360221211. PubMed DOI

Pica A.; Graziano G. Effect of heavy water on the conformational stability of globular proteins. Biopolymers 2018, 109, e2307610.1002/bip.23076. PubMed DOI

Makhatadze G. I.; Clore G. M.; Gronenborn A. M. Solvent isotope effect and protein stability. Nature structural biology 1995, 2, 852–855. 10.1038/nsb1095-852. PubMed DOI

Rog T.; Murzyn K.; Milhaud J.; Karttunen M.; Pasenkiewicz-Gierula M. Water isotope effect on the phosphatidylcholine bilayer properties: a molecular dynamics simulation study. J. Phys. Chem. B 2009, 113, 2378–2387. 10.1021/jp8048235. PubMed DOI

Matsuki H.; Okuno H.; Sakano F.; Kusube M.; Kaneshina S. Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2005, 1712, 92–100. 10.1016/j.bbamem.2005.03.005. PubMed DOI

Matsuki H.; Okuno H.; Sakano F.; Kusube M.; Kaneshina S. Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2005, 1712, 92–100. 10.1016/j.bbamem.2005.03.005. PubMed DOI

Khakbaz P.; Klauda J. B. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes 2018, 1860, 1489–1501. 10.1016/j.bbamem.2018.04.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace