Interpreting Cytokinin Action as Anterograde Signaling and Beyond
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33854521
PubMed Central
PMC8039514
DOI
10.3389/fpls.2021.641257
Knihovny.cz E-zdroje
- Klíčová slova
- WUSCHEL, anterograde signaling, chloroplast, cytokinin, organelle communication, retrograde signaling, shoot apical meristem, tissue culture,
- Publikační typ
- časopisecké články MeSH
Among the major phytohormones, the cytokinin exhibits unique features for its ability to positively affect the developmental status of plastids. Even early on in its research, cytokinins were known to promote plastid differentiation and to reduce the loss of chlorophyll in detached leaves. Since the discovery of the components of cytokinin perception and primary signaling, the genes involved in photosynthesis and plastid differentiation have been identified as those directly targeted by type-B response regulators. Furthermore, cytokinins are known to modulate versatile cellular processes such as promoting the division and differentiation of cells and, in concert with auxin, initiating the de novo formation of shoot apical meristem (SAM) in tissue cultures. Yet how cytokinins precisely participate in such diverse cellular phenomena, and how the associated cellular processes are coordinated as a whole, remains unclear. A plausible presumption that would account for the coordinated gene expression is the tight and reciprocal communication between the nucleus and plastid. The fact that cytokinins affect plastid developmental status via gene expression in both the nucleus and plastid is interpreted here to suggest that cytokinin functions as an initiator of anterograde (nucleus-to-plastid) signaling. Based on this viewpoint, we first summarize the physiological relevance of cytokinins to the coordination of plastid differentiation with de novo shoot organogenesis in tissue culture systems. Next, the role of endogenous cytokinins in influencing plastid differentiation within the SAM of intact plants is discussed. Finally, a presumed plastid-derived signal in response to cytokinins for coupled nuclear gene expression is proposed.
General and Applied Botany Institute of Biology Universität Leipzig Leipzig Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
Zobrazit více v PubMed
Andreeva A. A., Vankova R., Bychkov I. A., Kudryakova N. V., Danilova M. N., Lacek J., et al. (2020). Cytokinin-regulated expression of Arabidopsis thaliana pap genes and its implication for the expression of chloroplast-encoded genes. Biomolecules 10 1–18. 10.3390/biom10121658 PubMed DOI PMC
Berry J. O., Yerramsetty P., Zielinski A. M., Mure C. M. (2013). Photosynthetic gene expression in higher plants. Photosynth Res. 117 91–120. 10.1007/s11120-013-9880-8 PubMed DOI
Brenner W. G., Romanov G. A., Köllmer I., Bürkle L., Schmülling T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44 314–333. 10.1111/j.1365-313X.2005.02530.x PubMed DOI
Charuvi D., Kiss V., Nevo R., Shimoni E., Adam Z., Reich Z. (2012). Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell 24 1143–1157. 10.1105/tpc.111.094458 PubMed DOI PMC
Chatfield S. P., Capron R., Severino A., Penttila P. A., Alfred S., Nahal H., et al. (2013). Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J. 73 798–813. 10.1111/tpj.12085 PubMed DOI
Che P., Gingerich D. J., Lall S., Howell S. H. (2002). Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14 2771–2785. 10.1105/tpc.006668 PubMed DOI PMC
Chory J., Reinecke D., Sim S., Washburn T., Brenner M. (1994). A role for cytokinins in de-etiolation in Arabidopsis. det Mutants have an altered response to cytokinins. Plant Physiol. 104 339–347. 10.1104/pp.104.2.339 PubMed DOI PMC
Cortleven A., Marg I., Yamburenko M. V., Schlicke H., Hill K., Grimm B., et al. (2016). Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiol. 172 464–478. 10.1104/pp.16.00640 PubMed DOI PMC
Cortleven A., Schmülling T. (2015). Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 66 4999–5013. 10.1093/jxb/erv132 PubMed DOI
Dai X., Liu Z., Qiao M., Li J., Li S., Xiang F. (2017). ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression. J. Integr. Plant Biol. 59 747–758. 10.1111/jipb.12567 PubMed DOI
Danilova M. N., Doroshenko A. S., Zabrodin D. A., Kudryakova N. V., Oelmüller R., Kusnetsov V. V. (2017a). Cytokinin membrane receptors modulate transcript accumulation of plastid encoded genes. Russ. J. Plant Physiol. 64 301–309. 10.1134/S1021443717030062 DOI
Danilova M. N., Kudryakova N. V., Doroshenko A. S., Zabrodin D. A., Rakhmankulova Z. F., Oelmüller R., et al. (2017b). Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence. Plant Mol. Biol. 93 533–546. 10.1007/s11103-016-0580-6 PubMed DOI
Fleming A. (2006). Metabolic aspects of organogenesis in the shoot apical meristem. J. Exp. Bot. 57 1863–1870. 10.1093/jxb/erj178 PubMed DOI
Furuta K., Kubo M., Sano K., Demura T., Fukuda H., Liu Y. G., et al. (2011). The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol. 52 618–628. 10.1093/pcp/pcr022 PubMed DOI
Gordon S. P., Chickarmane V. S., Ohno C., Meyerowitz E. M. (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl. Acad. Sci. U.S.A. 106 16529–16534. 10.1073/pnas.0908122106 PubMed DOI PMC
Gordon S. P., Heisler M. G., Reddy G. V., Ohno C., Das P., Meyerowitz E. M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134 3539–3548. 10.1242/dev.010298 PubMed DOI
Goslings D., Meskauskiene R., Kim C., Lee K. P., Nater M., Apel K. (2004). Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- And light-grown Arabidopsis plants. Plant J. 40 957–967. 10.1111/j.1365-313X.2004.02262.x PubMed DOI
Gruel J., Landrein B., Tarr P., Schuster C., Refahi Y., Sampathkumar A., et al. (2016). An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci. Adv. 2:e1500989. 10.1126/sciadv.1500989 PubMed DOI PMC
Jung H. S., Chory J. (2010). Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol. 152 453–459. 10.1104/pp.109.149070 PubMed DOI PMC
Kleine T., Maier U. G., Leister D. (2009). DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu. Rev. Plant Biol. 60 115–138. 10.1146/annurev.arplant.043008.092119 PubMed DOI
Kubalová I., Ikeda Y. (2017). Chlorophyll measurement as a quantitative method for the assessment of cytokinin-induced green foci formation in tissue culture. J. Plant Growth Regul. 36 516–521. 10.1007/s00344-016-9637-7 DOI
Kubalová I., Zalabák D., Mičúchová A., Ikeda Y. (2019). Mutations in tetrapyrrole biosynthesis pathway uncouple nuclear WUSCHEL expression from de novo shoot development in Arabidopsis. Plant Cell. Tissue Organ Cult. 139 395–401. 10.1007/s11240-019-01680-w DOI
Kumar A. M., Söll D. (2000). Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol. 122 49–56. 10.1104/pp.122.1.49 PubMed DOI PMC
Layer G., Reichelt J., Jahn D., Heinz D. W. (2010). Structure and function of enzymes in heme biosynthesis. Protein Sci. 19 1137–1161. 10.1002/pro.405 PubMed DOI PMC
Lopez-Juez E., Pyke K. A. (2005). Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 49 557–577. 10.1387/ijdb.051997el PubMed DOI
Ma F., Wang L., Li J., Samma M. K., Xie Y., Wang R., et al. (2014). Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Mol. Biol. 85 49–61. 10.1007/s11103-013-0168-3 PubMed DOI
Matsumoto F., Obayashi T., Sasaki-Sekimoto Y., Ohta H., Takamiya K., Masuda T. (2004). Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol. 135 2379–2391. 10.1104/pp.104.042408 PubMed DOI PMC
McCormac A. C., Fischer A., Kumar A. M., Söll D., Terry M. J. (2001). Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J. 25 549–561. 10.1046/j.1365-313x.2001.00986.x PubMed DOI
Meng W. J., Cheng Z. J., Sang Y. L., Zhang M. M., Rong X. F., Wang Z. W., et al. (2017). Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29 1357–1372. 10.1105/tpc.16.00640 PubMed DOI PMC
Mense S. M., Zhang L. (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16 681–692. 10.1038/sj.cr.7310086 PubMed DOI
Miller C. O., Skoog F., Von Saltza M. H., Strong F. M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 77:1392. 10.1021/ja01610a105 DOI
Nishimura C., Ohashi Y., Sato S., Kato T., Tabata S., Ueguchi C. (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16 1365–1377. 10.1105/tpc.021477 PubMed DOI PMC
Papenbrock J., Mock H. P., Kruse E., Grimm B. (1999). Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208 264–273. 10.1007/s004250050558 DOI
Pernisova M., Grochova M., Konecny T., Plackova L., Harustiakova D., Kakimoto T., et al. (2018). Cytokinin signalling regulates organ identity via the AHK4 receptor in Arabidopsis. Development 145:dev163907. 10.1242/dev.163907 PubMed DOI
Pesaresi P., Schneider A., Kleine T., Leister D. (2007). Interorganellar communication. Curr. Opin. Plant Biol. 10 600–606. 10.1016/j.pbi.2007.07.007 PubMed DOI
Pontoppidan B., Kannangara C. G. (1994). Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur. J. Biochem. 225 529–537. 10.1111/j.1432-1033.1994.00529.x PubMed DOI
Richmond A. E., Lang A. (1957). Effect of kinetin on protein content and survival of detached xanthium leaves. Science 125 650–651. 10.1126/science.125.3249.650-a PubMed DOI
Richter A. S., Banse C., Grimm B. (2019). The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife 8 1–18. 10.7554/elife.46300 PubMed DOI PMC
Riefler M., Novak O., Strnad M., Schmülling T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18 40–54. 10.1105/tpc.105.037796 PubMed DOI PMC
Saeed A. I., Sharov V., White J., Li J., Liang W., Bhagabati N., et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34 374–378. 10.2144/03342mt01 PubMed DOI
Sakamoto W., Miyagishima S., Jarvis P. (2008). Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arab. B. 6:e0110. 10.1199/tab.0110 PubMed DOI PMC
Shi B., Guo X., Wang Y., Xiong Y., Wang J., Hayashi K. I., et al. (2018). Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev. Cell 44 204.e6–216.e6. 10.1016/j.devcel.2017.12.021 PubMed DOI
Shimizu T., Yasuda R., Mukai Y., Tanoue R., Shimada T., Imamura S., et al. (2020). Proteomic analysis of haem-binding protein from Arabidopsis thaliana and Cyanidioschyzon merolae. Philos. Trans. R. Soc. B Biol. Sci. 375:488. 10.1098/rstb.2019.0488 PubMed DOI PMC
Shin J., Bae S., Seo P. J. (2020). De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 71 63–72. 10.1093/jxb/erz395 PubMed DOI
Skoog F., Miller C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11 118–130. PubMed
Snipes S. A., Rodriguez K., DeVries A. E., Miyawaki K. N., Perales M., Xie M., et al. (2018). Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet. 14:e1007351. 10.1371/journal.pgen.1007351 PubMed DOI PMC
Tanaka R., Kobayashi K., Masuda T. (2011). Tetrapyrrole metabolism in Arabidopsis thaliana. Arab. B. 9:e0145. 10.1199/tab.0145 PubMed DOI PMC
Tian C., Wang Y., Yu H., He J., Wang J., Shi B., et al. (2019). A gene expression map of shoot domains reveals regulatory mechanisms. Nat. Commun. 10 1–12. 10.1038/s41467-018-08083-z PubMed DOI PMC
Ueguchi C., Sato S., Kato T., Tabata S. (2001). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol. 42 751–755. 10.1093/pcp/pce094 PubMed DOI
Valvekens D., Van Montagu M., Van Lijsebettens M. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. U.S.A. 85 5536–5540. 10.1073/pnas.85.15.5536 PubMed DOI PMC
Von Gromoff E. D., Alawady A., Meinecke L., Grimm B., Beck C. F. (2008). Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20 552–567. 10.1105/tpc.107.054650 PubMed DOI PMC
Xie M., Chen H., Huang L., O’Neil R. C., Shokhirev M. N., Ecker J. R. (2018). A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat. Commun. 9:1604. 10.1038/s41467-018-03921-6 PubMed DOI PMC
Xu C., Hu Y. (2020). The molecular regulation of cell pluripotency in plants. aBIOTECH 1 169–177. 10.1007/s42994-020-00028-9 PubMed DOI PMC
Xuan W., Zhu F. Y., Xu S., Huang B. K., Ling T. F., Qi J. Y., et al. (2008). The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol. 148 881–893. 10.1104/pp.108.125567 PubMed DOI PMC
Yadav D., Zemach H., Belausov E., Charuvi D. (2019). Initial proplastid-to-chloroplast differentiation in the developing vegetative shoot apical meristem of Arabidopsis. Biochem. Biophys. Res. Commun. 519 391–395. 10.1016/j.bbrc.2019.09.019 PubMed DOI
Yadav R. K., Tavakkoli M., Xie M., Girke T., Venugopala R. G. (2014). A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141 2735–2744. 10.1242/dev.106104 PubMed DOI
Zhai Q., Li C. B., Zheng W., Wu X., Zhao J., Zhou G., et al. (2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol. 48 1061–1071. 10.1093/pcp/pcm076 PubMed DOI
Zhang T.-Q., Lian H., Zhou C.-M., Xu L., Jiao Y., Wang J.-W. (2017). A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration. Plant Cell 29 1073–1087. 10.1105/tpc.16.00863 PubMed DOI PMC
Zubo Y. O., Blakley I. C., Yamburenko M. V., Worthen J. M., Street I. H., Franco-Zorrilla J. M., et al. (2017). Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 114 E5995–E6004. 10.1073/pnas.1620749114 PubMed DOI PMC
Zubo Y. O., Yamburenko M. V., Selivankina S. Y., Shakirova F. M., Avalbaev A. M., Kudryakova N. V., et al. (2008). Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol. 148 1082–1093. 10.1104/pp.108.122275 PubMed DOI PMC
Zürcher E., Tavor-Deslex D., Lituiev D., Enkerli K., Tarr P. T., Müller B. (2013). A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161 1066–1075. 10.1104/pp.112.211763 PubMed DOI PMC