Structural dynamics of Na+ and Ca2+ interactions with full-size mammalian NCX
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
1351/18
Israel Science Foundation (ISF)
1340/23
Israel Science Foundation (ISF)
19202
Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
PubMed
38627576
PubMed Central
PMC11021524
DOI
10.1038/s42003-024-06159-9
PII: 10.1038/s42003-024-06159-9
Knihovny.cz E-zdroje
- MeSH
- pumpa pro výměnu sodíku a vápníku * chemie MeSH
- savci * MeSH
- sekundární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pumpa pro výměnu sodíku a vápníku * MeSH
Cytosolic Ca2+ and Na+ allosterically regulate Na+/Ca2+ exchanger (NCX) proteins to vary the NCX-mediated Ca2+ entry/exit rates in diverse cell types. To resolve the structure-based dynamic mechanisms underlying the ion-dependent allosteric regulation in mammalian NCXs, we analyze the apo, Ca2+, and Na+-bound species of the brain NCX1.4 variant using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations. Ca2+ binding to the cytosolic regulatory domains (CBD1 and CBD2) rigidifies the intracellular regulatory loop (5L6) and promotes its interaction with the membrane domains. Either Na+ or Ca2+ stabilizes the intracellular portions of transmembrane helices TM3, TM4, TM9, TM10, and their connecting loops (3L4 and 9L10), thereby exposing previously unappreciated regulatory sites. Ca2+ or Na+ also rigidifies the palmitoylation domain (TMH2), and neighboring TM1/TM6 bundle, thereby uncovering a structural entity for modulating the ion transport rates. The present analysis provides new structure-dynamic clues underlying the regulatory diversity among tissue-specific NCX variants.
Blavatnik Center for Drug Discovery Tel Aviv University Tel Aviv 69978 Israel
Department of Biochemistry Faculty of Science Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Philipson KD, Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 2000;62:111–133. doi: 10.1146/annurev.physiol.62.1.111. PubMed DOI
Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 1999;79:763–854. doi: 10.1152/physrev.1999.79.3.763. PubMed DOI
Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem. J. 2007;406:365–382. doi: 10.1042/BJ20070619. PubMed DOI
Khananshvili D. Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium. 2020;85:102131. doi: 10.1016/j.ceca.2019.102131. PubMed DOI
Hilgemann DW. Regulation of ion transport from within ion transit pathways. J. Gen. Physiol. 2020;152:e201912455. doi: 10.1085/jgp.201912455. PubMed DOI PMC
DiPolo R, Beaugé L. Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 2006;86:155–203. doi: 10.1152/physrev.00018.2005. PubMed DOI
Ottolia M, John S, Hazan A, Goldhaber JI. The cardiac Na+-Ca2+ exchanger: from structure to function. Compr. Physiol. 2021;12:2681–2717. doi: 10.1002/cphy.c200031. PubMed DOI PMC
Giladi M, Tal I, Khananshvili D. Structural features of ion transport and allosteric regulation in Sodium-Calcium Exchanger (NCX) proteins. Front. Physiol. 2016;7:30. doi: 10.3389/fphys.2016.00030. PubMed DOI PMC
Khananshvili D. Structure-based function and regulation of NCX variants: updates and challenges. Int. J. Mol. Sci. 2022;24:61. doi: 10.3390/ijms24010061. PubMed DOI PMC
Liao J, et al. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 2012;335:686–690. doi: 10.1126/science.1215759. PubMed DOI
Liao J, et al. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nat. Struct. Mol. Biol. 2016;23:590–599. doi: 10.1038/nsmb.3230. PubMed DOI PMC
Almagor L, et al. Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj) Cell Calcium. 2014;56:276–284. doi: 10.1016/j.ceca.2014.08.010. PubMed DOI
Marinelli F, et al. Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. Proc. Natl Acad. Sci. USA. 2014;111:E5354–E5362. doi: 10.1073/pnas.1415751111. PubMed DOI PMC
Giladi M, et al. Asymmetric preorganization of inverted pair residues in the sodium-calcium exchanger. Sci. Rep. 2016;6:20753. doi: 10.1038/srep20753. PubMed DOI PMC
Giladi M, et al. Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states. J. Biol. Chem. 2017;292:12311–12323. doi: 10.1074/jbc.M117.787168. PubMed DOI PMC
van Dijk L, et al. Key residues controlling bidirectional ion movements in Na+/Ca2+ exchanger. Cell Calcium. 2018;76:10–22. doi: 10.1016/j.ceca.2018.09.004. PubMed DOI PMC
Khananshvili D. The Archaeal Na+/Ca2+ Exchanger (NCX_Mj) as a model of ion transport for the superfamily of Ca2+/CA antiporters. Front. Chem. 2021;9:722336. doi: 10.3389/fchem.2021.722336. PubMed DOI PMC
Li Z, et al. Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 1991;266:1014–1020. doi: 10.1016/S0021-9258(17)35276-6. PubMed DOI
Matsuoka S, Nicoll DA, He Z, Philipson KD. Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J. Gen. Physiol. 1997;109:273–286. doi: 10.1085/jgp.109.2.273. PubMed DOI PMC
Yuan, J., Yuan, C., Xie, M., Yu, L., Bruschweiler, L. & Brüschweiler, R. The intracellular loop of the Na+/Ca2+ exchanger contains an ‘awareness ribbon’-shaped two-helix bundle domain. Biochemistry. 57, 5096–5104, PubMed. https://pubmed.ncbi.nlm.nih.gov/29898361/ (2018). PubMed
Hilge M, Aelen J, Vuister GW. Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell. 2006;22:15–25. doi: 10.1016/j.molcel.2006.03.008. PubMed DOI
Hilge M, Aelen J, Foarce A, Perrakis A, Vuister GW. Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc. Natl Acad. Sci. USA. 2009;106:14333–14338. doi: 10.1073/pnas.0902171106. PubMed DOI PMC
Nicoll DA, et al. The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 2006;281:21577–21581. doi: 10.1074/jbc.C600117200. PubMed DOI
Besserer GM, et al. The second Ca2+-binding domain of the Na+-Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl Acad. Sci. USA. 2007;104:18467–18472. doi: 10.1073/pnas.0707417104. PubMed DOI PMC
Gök C, Fuller W. Regulation of NCX1 by palmitoylation. Cell Calcium. 2020;86:102158. doi: 10.1016/j.ceca.2019.102158. PubMed DOI
Gök C, et al. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium. 2021;97:102408. doi: 10.1016/j.ceca.2021.102408. PubMed DOI PMC
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J. 2022;289:861–882. doi: 10.1111/febs.15781. PubMed DOI
Hilgemann DW, Matsuoka S, Nagel GA, Collins A. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J. Gen. Physiol. 1992;100:905–932. doi: 10.1085/jgp.100.6.905. PubMed DOI PMC
Hilgemann DW. Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature. 1990;344:242–245. doi: 10.1038/344242a0. PubMed DOI
Hryshko L. What regulates Na+/Ca2+ exchange? Focus on ‘Sodium-dependent inactivation of sodium/calcium exchange in transfected Chinese hamster ovary cells’. Am. J. Physiol. Cell Physiol. 2008;295:C869–C871. doi: 10.1152/ajpcell.00420.2008. PubMed DOI
He Z, Feng S, Tong Q, Hilgemann DW, Philipson KD. Interaction of PIP2 with the XIP region of the cardiac Na/Ca exchanger. Am. J. Physiol. Cell Physiol. 2000;278:C661–C666. doi: 10.1152/ajpcell.2000.278.4.C661. PubMed DOI
Shen C, et al. Dual control of cardiac Na+-Ca2+ exchange by PIP2: analysis of the surface membrane fraction by extracellular cysteine PEGylation. J. Physiol. 2007;582:1011–1026. doi: 10.1113/jphysiol.2007.132720. PubMed DOI PMC
Boyman L, et al. Proton-sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 2011;286:28811–28820. doi: 10.1074/jbc.M110.214106. PubMed DOI PMC
Linck B, et al. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3) Am. J. Physiol. 1998;274:C415–C423. doi: 10.1152/ajpcell.1998.274.2.C415. PubMed DOI
Giladi M, et al. A common Ca2+-driven interdomain module governs eukaryotic NCX regulation. PLoS One. 2012;7:e39985. doi: 10.1371/journal.pone.0039985. PubMed DOI PMC
Giladi M, Boyman L, Mikhasenko H, Hiller R, Khananshvili D. Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J. Biol. Chem. 2010;285:28117–28125. doi: 10.1074/jbc.M110.127001. PubMed DOI PMC
Giladi M, et al. Dynamic features of allosteric Ca2+ sensor in tissue-specific NCX variants. Cell Calcium. 2012;51:478–485. doi: 10.1016/j.ceca.2012.04.007. PubMed DOI
Boyman L, Mikhasenko H, Hiller R, Khananshvili D. Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. J. Biol. Chem. 2009;284:6185–6193. doi: 10.1074/jbc.M809012200. PubMed DOI
Giladi M, et al. Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms. Sci. Rep. 2017;7:993. doi: 10.1038/s41598-017-01102-x. PubMed DOI PMC
Tal I, Kozlovsky T, Brisker D, Giladi M, Khananshvili D. Kinetic and equilibrium properties of regulatory Ca2+-binding domains in sodium-calcium exchangers 2 and 3. Cell Calcium. 2016;59:181–188. doi: 10.1016/j.ceca.2016.01.008. PubMed DOI
Abiko LA, et al. Model for the allosteric regulation of the Na+/Ca2+ exchanger NCX. Proteins. 2016;84:580–590. doi: 10.1002/prot.25003. PubMed DOI
Salinas RK, Bruschweiler-Li L, Johnson E, Brüschweiler R. Ca2+ binding alters the interdomain flexibility between the two cytoplasmic calcium-binding domains in the Na+/Ca2+ exchanger. J. Biol. Chem. 2011;286:32123–32131. doi: 10.1074/jbc.M111.249268. PubMed DOI PMC
Giladi M, Lee SY, Hiller R, Chung KY, Khananshvili D. Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem. J. 2015;465:489–501. doi: 10.1042/BJ20141036. PubMed DOI
Lee SY, et al. Structure-dynamic basis of splicing-dependent regulation in tissue-specific variants of the sodium-calcium exchanger. FASEB J. 2016;30:1356–1366. doi: 10.1096/fj.15-282251. PubMed DOI
Giladi M, Hiller R, Hirsch JA, Khananshvili D. Population shift underlies Ca2+-induced regulatory transitions in the sodium-calcium exchanger (NCX) J. Biol. Chem. 2013;288:23141–23149. doi: 10.1074/jbc.M113.471698. PubMed DOI PMC
Dunn J, et al. The molecular determinants of ionic regulatory differences between brain and kidney Na+/Ca2+ exchanger (NCX1) isoforms. J. Biol. Chem. 2002;277:33957–33962. doi: 10.1074/jbc.M206677200. PubMed DOI
Dyck C, et al. Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na+-Ca2+ exchanger. J. Gen. Physiol. 1999;114:701–711. doi: 10.1085/jgp.114.5.701. PubMed DOI PMC
Michel LYM, et al. Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J. Biol. Chem. 2014;289:11293–11303. doi: 10.1074/jbc.M113.529388. PubMed DOI PMC
Xue J, et al. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1. Nat. Commun. 2023;14:6181. doi: 10.1038/s41467-023-41885-4. PubMed DOI PMC
Dong Y, et al. Structural insight into the allosteric inhibition of human sodium-calcium exchanger NCX1 by XIP and SEA0400. EMBO J. 2024;43:14–31. doi: 10.1038/s44318-023-00013-0. PubMed DOI PMC
Giladi M, Khananshvili D. Hydrogen-Deuterium exchange mass-spectrometry of secondary active transporters: from structural dynamics to molecular mechanisms. Front. Pharm. 2020;11:70. doi: 10.3389/fphar.2020.00070. PubMed DOI PMC
Coppieters ’t Wallant K, Martens C. Hydrogen-deuterium exchange coupled to mass spectrometry: a multifaceted tool to decipher the molecular mechanism of transporters. Biochimie. 2023;205:95–101. doi: 10.1016/j.biochi.2022.08.014. PubMed DOI
Glasgow A, et al. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat. Commun. 2023;14:1179. doi: 10.1038/s41467-023-36798-1. PubMed DOI PMC
Gourinchas G, et al. Long-range allosteric signaling in red light-regulated diguanylyl cyclases. Sci. Adv. 2017;3:e1602498. doi: 10.1126/sciadv.1602498. PubMed DOI PMC
Jia R, Bradshaw RT, Calvaresi V, Politis A. Integrating Hydrogen Deuterium exchange-mass spectrometry with molecular simulations enables quantification of the conformational populations of the sugar transporter XylE. J. Am. Chem. Soc. 2023;145:7768–7779. doi: 10.1021/jacs.2c06148. PubMed DOI PMC
Khananshvili D, Weil-Maslansky E, Baazov D. Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent, ions, and temperature. Ann. N. Y Acad. Sci. 1996;779:217–235. doi: 10.1111/j.1749-6632.1996.tb44789.x. PubMed DOI
Hilgemann DW. Unitary cardiac Na+, Ca2+ exchange current magnitudes determined from channel-like noise and charge movements of ion transport. Biophys. J. 1996;71:759–768. doi: 10.1016/S0006-3495(96)79275-5. PubMed DOI PMC
Niggli E, Lederer WJ. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991;349:621–624. doi: 10.1038/349621a0. PubMed DOI
Baazov D, Wang X, Khananshvili D. Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe. Biochemistry. 1999;38:1435–1445. doi: 10.1021/bi981429u. PubMed DOI
Smith LJ, Daura X, van Gunsteren WF. Assessing equilibration and convergence in biomolecular simulations. Proteins: Struct. Funct. Bioinforma. 2002;48:487–496. doi: 10.1002/prot.10144. PubMed DOI
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, allosteric, and orthosteric drug discovery: ways forward. Drug Discov. Today. 2023;28:103551. doi: 10.1016/j.drudis.2023.103551. PubMed DOI PMC
Nussinov R, Tsai C-J, Jang H. Allostery, and how to define and measure signal transduction. Biophys. Chem. 2022;283:106766. doi: 10.1016/j.bpc.2022.106766. PubMed DOI PMC
Wodak SJ, et al. Allostery in its many disguises: from theory to applications. Structure. 2019;27:566–578. doi: 10.1016/j.str.2019.01.003. PubMed DOI PMC
Giladi M, et al. G503 is obligatory for coupling of regulatory domains in NCX proteins. Biochemistry. 2012;51:7313–7320. doi: 10.1021/bi300739z. PubMed DOI
Ottolia M, Nicoll DA, Philipson KD. Mutational analysis of the alpha-1 repeat of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 2005;280:1061–1069. doi: 10.1074/jbc.M411899200. PubMed DOI
Scranton K, John S, Escobar A, Goldhaber JI, Ottolia M. Modulation of the cardiac Na+-Ca2+ exchanger by cytoplasmic protons: molecular mechanisms and physiological implications. Cell Calcium. 2020;87:102140. doi: 10.1016/j.ceca.2019.102140. PubMed DOI PMC
John S, Kim B, Olcese R, Goldhaber JI, Ottolia M. Molecular determinants of pH regulation in the cardiac Na+-Ca2+ exchanger. J. Gen. Physiol. 2018;150:245–257. doi: 10.1085/jgp.201611693. PubMed DOI PMC
Doering AE, et al. Topology of a functionally important region of the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 1998;273:778–783. doi: 10.1074/jbc.273.2.778. PubMed DOI
Reilly L, et al. Palmitoylation of the Na/Ca exchanger cytoplasmic loop controls its inactivation and internalization during stress signaling. FASEB J. 2015;29:4532–4543. doi: 10.1096/fj.15-276493. PubMed DOI PMC
Covington, A. K., Paabo, M., Robinson, R. A. & Bates, R. G. Use of the glass electrode in Deuterium Oxide and the relation between the standardized Pd (Pa/Sub D/) scale and the operational ph in heavy water. Anal. Chem. 40: 700–706. 10.1021/ac60260a013 (1968).
Yang M, et al. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2015;87:6681–6687. doi: 10.1021/acs.analchem.5b00831. PubMed DOI
Trcka F, et al. Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell Proteom. 2019;18:320–337. doi: 10.1074/mcp.RA118.001044. PubMed DOI PMC
Kavan D, Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI
Perez-Riverol Y, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Lomize AL, Todd SC, Pogozheva ID. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci. 2022;31:209–220. doi: 10.1002/pro.4219. PubMed DOI PMC
Harrach MF, Drossel B. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J. Chem. Phys. 2014;140:174501. doi: 10.1063/1.4872239. PubMed DOI
Roos K, et al. OPLS3e: extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019;15:1863–1874. doi: 10.1021/acs.jctc.8b01026. PubMed DOI