Structural dynamics of Na+ and Ca2+ interactions with full-size mammalian NCX
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
1351/18
Israel Science Foundation (ISF)
1340/23
Israel Science Foundation (ISF)
19202
Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
PubMed
38627576
PubMed Central
PMC11021524
DOI
10.1038/s42003-024-06159-9
PII: 10.1038/s42003-024-06159-9
Knihovny.cz E-resources
- MeSH
- Sodium-Calcium Exchanger * chemistry MeSH
- Mammals * MeSH
- Protein Structure, Secondary MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sodium-Calcium Exchanger * MeSH
Cytosolic Ca2+ and Na+ allosterically regulate Na+/Ca2+ exchanger (NCX) proteins to vary the NCX-mediated Ca2+ entry/exit rates in diverse cell types. To resolve the structure-based dynamic mechanisms underlying the ion-dependent allosteric regulation in mammalian NCXs, we analyze the apo, Ca2+, and Na+-bound species of the brain NCX1.4 variant using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations. Ca2+ binding to the cytosolic regulatory domains (CBD1 and CBD2) rigidifies the intracellular regulatory loop (5L6) and promotes its interaction with the membrane domains. Either Na+ or Ca2+ stabilizes the intracellular portions of transmembrane helices TM3, TM4, TM9, TM10, and their connecting loops (3L4 and 9L10), thereby exposing previously unappreciated regulatory sites. Ca2+ or Na+ also rigidifies the palmitoylation domain (TMH2), and neighboring TM1/TM6 bundle, thereby uncovering a structural entity for modulating the ion transport rates. The present analysis provides new structure-dynamic clues underlying the regulatory diversity among tissue-specific NCX variants.
Blavatnik Center for Drug Discovery Tel Aviv University Tel Aviv 69978 Israel
Department of Biochemistry Faculty of Science Charles University 128 00 Prague Czech Republic
See more in PubMed
Philipson KD, Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 2000;62:111–133. doi: 10.1146/annurev.physiol.62.1.111. PubMed DOI
Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 1999;79:763–854. doi: 10.1152/physrev.1999.79.3.763. PubMed DOI
Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem. J. 2007;406:365–382. doi: 10.1042/BJ20070619. PubMed DOI
Khananshvili D. Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium. 2020;85:102131. doi: 10.1016/j.ceca.2019.102131. PubMed DOI
Hilgemann DW. Regulation of ion transport from within ion transit pathways. J. Gen. Physiol. 2020;152:e201912455. doi: 10.1085/jgp.201912455. PubMed DOI PMC
DiPolo R, Beaugé L. Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 2006;86:155–203. doi: 10.1152/physrev.00018.2005. PubMed DOI
Ottolia M, John S, Hazan A, Goldhaber JI. The cardiac Na+-Ca2+ exchanger: from structure to function. Compr. Physiol. 2021;12:2681–2717. doi: 10.1002/cphy.c200031. PubMed DOI PMC
Giladi M, Tal I, Khananshvili D. Structural features of ion transport and allosteric regulation in Sodium-Calcium Exchanger (NCX) proteins. Front. Physiol. 2016;7:30. doi: 10.3389/fphys.2016.00030. PubMed DOI PMC
Khananshvili D. Structure-based function and regulation of NCX variants: updates and challenges. Int. J. Mol. Sci. 2022;24:61. doi: 10.3390/ijms24010061. PubMed DOI PMC
Liao J, et al. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 2012;335:686–690. doi: 10.1126/science.1215759. PubMed DOI
Liao J, et al. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nat. Struct. Mol. Biol. 2016;23:590–599. doi: 10.1038/nsmb.3230. PubMed DOI PMC
Almagor L, et al. Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj) Cell Calcium. 2014;56:276–284. doi: 10.1016/j.ceca.2014.08.010. PubMed DOI
Marinelli F, et al. Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. Proc. Natl Acad. Sci. USA. 2014;111:E5354–E5362. doi: 10.1073/pnas.1415751111. PubMed DOI PMC
Giladi M, et al. Asymmetric preorganization of inverted pair residues in the sodium-calcium exchanger. Sci. Rep. 2016;6:20753. doi: 10.1038/srep20753. PubMed DOI PMC
Giladi M, et al. Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states. J. Biol. Chem. 2017;292:12311–12323. doi: 10.1074/jbc.M117.787168. PubMed DOI PMC
van Dijk L, et al. Key residues controlling bidirectional ion movements in Na+/Ca2+ exchanger. Cell Calcium. 2018;76:10–22. doi: 10.1016/j.ceca.2018.09.004. PubMed DOI PMC
Khananshvili D. The Archaeal Na+/Ca2+ Exchanger (NCX_Mj) as a model of ion transport for the superfamily of Ca2+/CA antiporters. Front. Chem. 2021;9:722336. doi: 10.3389/fchem.2021.722336. PubMed DOI PMC
Li Z, et al. Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 1991;266:1014–1020. doi: 10.1016/S0021-9258(17)35276-6. PubMed DOI
Matsuoka S, Nicoll DA, He Z, Philipson KD. Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J. Gen. Physiol. 1997;109:273–286. doi: 10.1085/jgp.109.2.273. PubMed DOI PMC
Yuan, J., Yuan, C., Xie, M., Yu, L., Bruschweiler, L. & Brüschweiler, R. The intracellular loop of the Na+/Ca2+ exchanger contains an ‘awareness ribbon’-shaped two-helix bundle domain. Biochemistry. 57, 5096–5104, PubMed. https://pubmed.ncbi.nlm.nih.gov/29898361/ (2018). PubMed
Hilge M, Aelen J, Vuister GW. Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell. 2006;22:15–25. doi: 10.1016/j.molcel.2006.03.008. PubMed DOI
Hilge M, Aelen J, Foarce A, Perrakis A, Vuister GW. Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc. Natl Acad. Sci. USA. 2009;106:14333–14338. doi: 10.1073/pnas.0902171106. PubMed DOI PMC
Nicoll DA, et al. The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 2006;281:21577–21581. doi: 10.1074/jbc.C600117200. PubMed DOI
Besserer GM, et al. The second Ca2+-binding domain of the Na+-Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl Acad. Sci. USA. 2007;104:18467–18472. doi: 10.1073/pnas.0707417104. PubMed DOI PMC
Gök C, Fuller W. Regulation of NCX1 by palmitoylation. Cell Calcium. 2020;86:102158. doi: 10.1016/j.ceca.2019.102158. PubMed DOI
Gök C, et al. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium. 2021;97:102408. doi: 10.1016/j.ceca.2021.102408. PubMed DOI PMC
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J. 2022;289:861–882. doi: 10.1111/febs.15781. PubMed DOI
Hilgemann DW, Matsuoka S, Nagel GA, Collins A. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J. Gen. Physiol. 1992;100:905–932. doi: 10.1085/jgp.100.6.905. PubMed DOI PMC
Hilgemann DW. Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature. 1990;344:242–245. doi: 10.1038/344242a0. PubMed DOI
Hryshko L. What regulates Na+/Ca2+ exchange? Focus on ‘Sodium-dependent inactivation of sodium/calcium exchange in transfected Chinese hamster ovary cells’. Am. J. Physiol. Cell Physiol. 2008;295:C869–C871. doi: 10.1152/ajpcell.00420.2008. PubMed DOI
He Z, Feng S, Tong Q, Hilgemann DW, Philipson KD. Interaction of PIP2 with the XIP region of the cardiac Na/Ca exchanger. Am. J. Physiol. Cell Physiol. 2000;278:C661–C666. doi: 10.1152/ajpcell.2000.278.4.C661. PubMed DOI
Shen C, et al. Dual control of cardiac Na+-Ca2+ exchange by PIP2: analysis of the surface membrane fraction by extracellular cysteine PEGylation. J. Physiol. 2007;582:1011–1026. doi: 10.1113/jphysiol.2007.132720. PubMed DOI PMC
Boyman L, et al. Proton-sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 2011;286:28811–28820. doi: 10.1074/jbc.M110.214106. PubMed DOI PMC
Linck B, et al. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3) Am. J. Physiol. 1998;274:C415–C423. doi: 10.1152/ajpcell.1998.274.2.C415. PubMed DOI
Giladi M, et al. A common Ca2+-driven interdomain module governs eukaryotic NCX regulation. PLoS One. 2012;7:e39985. doi: 10.1371/journal.pone.0039985. PubMed DOI PMC
Giladi M, Boyman L, Mikhasenko H, Hiller R, Khananshvili D. Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J. Biol. Chem. 2010;285:28117–28125. doi: 10.1074/jbc.M110.127001. PubMed DOI PMC
Giladi M, et al. Dynamic features of allosteric Ca2+ sensor in tissue-specific NCX variants. Cell Calcium. 2012;51:478–485. doi: 10.1016/j.ceca.2012.04.007. PubMed DOI
Boyman L, Mikhasenko H, Hiller R, Khananshvili D. Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. J. Biol. Chem. 2009;284:6185–6193. doi: 10.1074/jbc.M809012200. PubMed DOI
Giladi M, et al. Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms. Sci. Rep. 2017;7:993. doi: 10.1038/s41598-017-01102-x. PubMed DOI PMC
Tal I, Kozlovsky T, Brisker D, Giladi M, Khananshvili D. Kinetic and equilibrium properties of regulatory Ca2+-binding domains in sodium-calcium exchangers 2 and 3. Cell Calcium. 2016;59:181–188. doi: 10.1016/j.ceca.2016.01.008. PubMed DOI
Abiko LA, et al. Model for the allosteric regulation of the Na+/Ca2+ exchanger NCX. Proteins. 2016;84:580–590. doi: 10.1002/prot.25003. PubMed DOI
Salinas RK, Bruschweiler-Li L, Johnson E, Brüschweiler R. Ca2+ binding alters the interdomain flexibility between the two cytoplasmic calcium-binding domains in the Na+/Ca2+ exchanger. J. Biol. Chem. 2011;286:32123–32131. doi: 10.1074/jbc.M111.249268. PubMed DOI PMC
Giladi M, Lee SY, Hiller R, Chung KY, Khananshvili D. Structure-dynamic determinants governing a mode of regulatory response and propagation of allosteric signal in splice variants of Na+/Ca2+ exchange (NCX) proteins. Biochem. J. 2015;465:489–501. doi: 10.1042/BJ20141036. PubMed DOI
Lee SY, et al. Structure-dynamic basis of splicing-dependent regulation in tissue-specific variants of the sodium-calcium exchanger. FASEB J. 2016;30:1356–1366. doi: 10.1096/fj.15-282251. PubMed DOI
Giladi M, Hiller R, Hirsch JA, Khananshvili D. Population shift underlies Ca2+-induced regulatory transitions in the sodium-calcium exchanger (NCX) J. Biol. Chem. 2013;288:23141–23149. doi: 10.1074/jbc.M113.471698. PubMed DOI PMC
Dunn J, et al. The molecular determinants of ionic regulatory differences between brain and kidney Na+/Ca2+ exchanger (NCX1) isoforms. J. Biol. Chem. 2002;277:33957–33962. doi: 10.1074/jbc.M206677200. PubMed DOI
Dyck C, et al. Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na+-Ca2+ exchanger. J. Gen. Physiol. 1999;114:701–711. doi: 10.1085/jgp.114.5.701. PubMed DOI PMC
Michel LYM, et al. Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J. Biol. Chem. 2014;289:11293–11303. doi: 10.1074/jbc.M113.529388. PubMed DOI PMC
Xue J, et al. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1. Nat. Commun. 2023;14:6181. doi: 10.1038/s41467-023-41885-4. PubMed DOI PMC
Dong Y, et al. Structural insight into the allosteric inhibition of human sodium-calcium exchanger NCX1 by XIP and SEA0400. EMBO J. 2024;43:14–31. doi: 10.1038/s44318-023-00013-0. PubMed DOI PMC
Giladi M, Khananshvili D. Hydrogen-Deuterium exchange mass-spectrometry of secondary active transporters: from structural dynamics to molecular mechanisms. Front. Pharm. 2020;11:70. doi: 10.3389/fphar.2020.00070. PubMed DOI PMC
Coppieters ’t Wallant K, Martens C. Hydrogen-deuterium exchange coupled to mass spectrometry: a multifaceted tool to decipher the molecular mechanism of transporters. Biochimie. 2023;205:95–101. doi: 10.1016/j.biochi.2022.08.014. PubMed DOI
Glasgow A, et al. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat. Commun. 2023;14:1179. doi: 10.1038/s41467-023-36798-1. PubMed DOI PMC
Gourinchas G, et al. Long-range allosteric signaling in red light-regulated diguanylyl cyclases. Sci. Adv. 2017;3:e1602498. doi: 10.1126/sciadv.1602498. PubMed DOI PMC
Jia R, Bradshaw RT, Calvaresi V, Politis A. Integrating Hydrogen Deuterium exchange-mass spectrometry with molecular simulations enables quantification of the conformational populations of the sugar transporter XylE. J. Am. Chem. Soc. 2023;145:7768–7779. doi: 10.1021/jacs.2c06148. PubMed DOI PMC
Khananshvili D, Weil-Maslansky E, Baazov D. Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent, ions, and temperature. Ann. N. Y Acad. Sci. 1996;779:217–235. doi: 10.1111/j.1749-6632.1996.tb44789.x. PubMed DOI
Hilgemann DW. Unitary cardiac Na+, Ca2+ exchange current magnitudes determined from channel-like noise and charge movements of ion transport. Biophys. J. 1996;71:759–768. doi: 10.1016/S0006-3495(96)79275-5. PubMed DOI PMC
Niggli E, Lederer WJ. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991;349:621–624. doi: 10.1038/349621a0. PubMed DOI
Baazov D, Wang X, Khananshvili D. Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe. Biochemistry. 1999;38:1435–1445. doi: 10.1021/bi981429u. PubMed DOI
Smith LJ, Daura X, van Gunsteren WF. Assessing equilibration and convergence in biomolecular simulations. Proteins: Struct. Funct. Bioinforma. 2002;48:487–496. doi: 10.1002/prot.10144. PubMed DOI
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, allosteric, and orthosteric drug discovery: ways forward. Drug Discov. Today. 2023;28:103551. doi: 10.1016/j.drudis.2023.103551. PubMed DOI PMC
Nussinov R, Tsai C-J, Jang H. Allostery, and how to define and measure signal transduction. Biophys. Chem. 2022;283:106766. doi: 10.1016/j.bpc.2022.106766. PubMed DOI PMC
Wodak SJ, et al. Allostery in its many disguises: from theory to applications. Structure. 2019;27:566–578. doi: 10.1016/j.str.2019.01.003. PubMed DOI PMC
Giladi M, et al. G503 is obligatory for coupling of regulatory domains in NCX proteins. Biochemistry. 2012;51:7313–7320. doi: 10.1021/bi300739z. PubMed DOI
Ottolia M, Nicoll DA, Philipson KD. Mutational analysis of the alpha-1 repeat of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 2005;280:1061–1069. doi: 10.1074/jbc.M411899200. PubMed DOI
Scranton K, John S, Escobar A, Goldhaber JI, Ottolia M. Modulation of the cardiac Na+-Ca2+ exchanger by cytoplasmic protons: molecular mechanisms and physiological implications. Cell Calcium. 2020;87:102140. doi: 10.1016/j.ceca.2019.102140. PubMed DOI PMC
John S, Kim B, Olcese R, Goldhaber JI, Ottolia M. Molecular determinants of pH regulation in the cardiac Na+-Ca2+ exchanger. J. Gen. Physiol. 2018;150:245–257. doi: 10.1085/jgp.201611693. PubMed DOI PMC
Doering AE, et al. Topology of a functionally important region of the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 1998;273:778–783. doi: 10.1074/jbc.273.2.778. PubMed DOI
Reilly L, et al. Palmitoylation of the Na/Ca exchanger cytoplasmic loop controls its inactivation and internalization during stress signaling. FASEB J. 2015;29:4532–4543. doi: 10.1096/fj.15-276493. PubMed DOI PMC
Covington, A. K., Paabo, M., Robinson, R. A. & Bates, R. G. Use of the glass electrode in Deuterium Oxide and the relation between the standardized Pd (Pa/Sub D/) scale and the operational ph in heavy water. Anal. Chem. 40: 700–706. 10.1021/ac60260a013 (1968).
Yang M, et al. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2015;87:6681–6687. doi: 10.1021/acs.analchem.5b00831. PubMed DOI
Trcka F, et al. Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell Proteom. 2019;18:320–337. doi: 10.1074/mcp.RA118.001044. PubMed DOI PMC
Kavan D, Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI
Perez-Riverol Y, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Lomize AL, Todd SC, Pogozheva ID. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci. 2022;31:209–220. doi: 10.1002/pro.4219. PubMed DOI PMC
Harrach MF, Drossel B. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J. Chem. Phys. 2014;140:174501. doi: 10.1063/1.4872239. PubMed DOI
Roos K, et al. OPLS3e: extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019;15:1863–1874. doi: 10.1021/acs.jctc.8b01026. PubMed DOI