Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37039988

Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein's functional domain.

Zobrazit více v PubMed

Shimizu T, Huang D, Yan F et al (2015) Gaseous O PubMed DOI

Martínková M, Kitanishi K, Shimizu T (2013) Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis. J Biol Chem 288:27702–27711. https://doi.org/10.1074/jbc.R113.473249 PubMed DOI PMC

Walker JA, Rivera S, Weinert EE (2017) Mechanism and role of globin-coupled sensor signalling. In: Advances in Microbial Physiology. Elsevier, pp 133–169

Igarashi J, Murase M, Iizuka A et al (2008) Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2α kinase and the role of the regulatory motif in Heme sensing by spectroscopic and catalytic studies of mutant proteins. J Biol Chem 283:18782–18791. https://doi.org/10.1074/jbc.M801400200 PubMed DOI

Zhang W, Phillips GN (2003) Structure of the oxygen sensor in Bacillus subtilis. Structure 11:1097–1110. https://doi.org/10.1016/S0969-2126(03)00169-2 PubMed DOI

Yamada S, Sugimoto H, Kobayashi M et al (2009) Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17:1333–1344. https://doi.org/10.1016/j.str.2009.07.016 PubMed DOI

Stranava M, Man P, Skálová T et al (2017) Coordination and redox state–dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction. J Biol Chem 292:20921–20935. https://doi.org/10.1074/jbc.M117.817023 PubMed DOI PMC

Skalova T, Lengalova A, Dohnalek J et al (2020) Disruption of the dimerization interface of the sensing domain in the dimeric heme-based oxygen sensor AfGcHK abolishes bacterial signal transduction. J Biol Chem 295:1587–1597. https://doi.org/10.1074/jbc.RA119.011574 PubMed DOI

Kang Y, Liu R, Wu J-X, Chen L (2019) Structural insights into the mechanism of human soluble guanylate cyclase. Nature 574:206–210. https://doi.org/10.1038/s41586-019-1584-6 PubMed DOI

Poulos TL, Lanzilotta WN, Schuller DJ et al (2000) Structure of the CO sensing transcription activator CooA. Nat Struct Biol 7:876–880. https://doi.org/10.1038/82820 PubMed DOI

Miksanova M, Igarashi J, Minami M et al (2006) Characterization of heme-regulated eIF2α kinase: roles of the N-terminal domain in the oligomeric state, heme binding, catalysis, and inhibition. Biochemistry 45:9894–9905. https://doi.org/10.1021/bi060556k PubMed DOI

Mukai K, Shimizu T, Igarashi J (2011) Phosphorylation of a heme-regulated eukaryotic initiation factor 2αkinase enhances the interaction with heat-shock protein 90 and substantially upregulates kinase activity. Protein Pept Lett 18:1251–1257. https://doi.org/10.2174/092986611797642733 PubMed DOI

Igarashi J, Sasaki T, Kobayashi N et al (2011) Autophosphorylation of heme-regulated eukaryotic initiation factor 2α kinase and the role of the modification in catalysis: autophosphorylation of an HRI. FEBS J 278:918–928. https://doi.org/10.1111/j.1742-4658.2011.08007.x PubMed DOI

Rout MP, Sali A (2019) Principles for integrative structural biology studies. Cell 177:1384–1403. https://doi.org/10.1016/j.cell.2019.05.016 PubMed DOI PMC

Kitanishi K, Kobayashi K, Uchida T et al (2011) Identification and functional and spectral characterization of a globin-coupled histidine kinase from Anaeromyxobacter sp. Fw109-5. J Biol Chem 286:35522–35534. https://doi.org/10.1074/jbc.M111.274811 PubMed DOI PMC

Fojtikova V, Stranava M, Vos MH et al (2015) Kinetic analysis of a globin-coupled histidine kinase, Af GcHK: effects of the Heme iron complex, response regulator, and metal cations on autophosphorylation activity. Biochemistry 54:5017–5029. https://doi.org/10.1021/acs.biochem.5b00517 PubMed DOI

Fojtikova V, Bartosova M, Man P et al (2016) Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK. Biometals 29:715–729. https://doi.org/10.1007/s10534-016-9947-z PubMed DOI

Stranava M, Martínek V, Man P et al (2016) Structural characterization of the heme-based oxygen sensor, Af GcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system: hydrogen-deuterium exchange study on globin-coupled histidine kinase. Proteins Struct Funct Bioinforma 84:1375–1389. https://doi.org/10.1002/prot.25083 DOI

James EI, Murphree TA, Vorauer C et al (2021) Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem Rev 122:7562. https://doi.org/10.1021/acs.chemrev.1c00279 PubMed DOI PMC

Dülfer J, Kadek A, Kopicki J-D et al (2019) Structural mass spectrometry goes viral. In: Advances in Virus Research. Elsevier, pp 189–238

Snijder J, Burnley RJ, Wiegard A et al (2014) Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction. Proc Natl Acad Sci 111:1379–1384. https://doi.org/10.1073/pnas.1314326111 PubMed DOI PMC

Engen JR, Wales TE (2015) Analytical aspects of hydrogen exchange mass spectrometry. Annu Rev Anal Chem 8:127–148. https://doi.org/10.1146/annurev-anchem-062011-143113 DOI

Engen JR, Botzanowski T, Peterle D et al (2021) Developments in hydrogen/deuterium exchange mass spectrometry. Anal Chem 93:567–582. https://doi.org/10.1021/acs.analchem.0c04281 PubMed DOI

Narang D, Lento CJ, Wilson D (2020) HDX-MS: an analytical tool to capture protein motion in action. Biomedicine 8:224. https://doi.org/10.3390/biomedicines8070224 DOI

Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins Struct Funct Genet 17:75–86. https://doi.org/10.1002/prot.340170110 PubMed DOI

Wang L, Pan H, Smith DL (2002) Hydrogen exchange-mass spectrometry. Mol Cell Proteomics 1:132–138. https://doi.org/10.1074/mcp.M100009-MCP200 PubMed DOI

Kadek A, Mrazek H, Halada P et al (2014) Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal Chem 86:4287–4294. https://doi.org/10.1021/ac404076j PubMed DOI

Filandrova R, Kavan D, Kadek A et al (2021) Studying protein–DNA interactions by hydrogen/deuterium exchange mass spectrometry. In: Poterszman A (ed) Multiprotein complexes. Springer, New York, pp 193–219 DOI

Trcka F, Durech M, Man P et al (2014) The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem 289:9887–9901. https://doi.org/10.1074/jbc.M113.526046 PubMed DOI PMC

Kavan D, Man P (2011) MSTools—web based application for visualization and presentation of HXMS data. Int J Mass Spectrom 302:53–58. https://doi.org/10.1016/j.ijms.2010.07.030 DOI

Hamuro Y, Coales SJ (2018) Optimization of feasibility stage for hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 29:623–629. https://doi.org/10.1007/s13361-017-1860-3 PubMed DOI

Kan Z-Y, Walters BT, Mayne L, Englander SW (2013) Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci 110:16438–16443. https://doi.org/10.1073/pnas.1315532110 PubMed DOI PMC

Wales TE, Fadgen KE, Eggertson MJ, Engen JR (2017) Subzero Celsius separations in three-zone temperature controlled hydrogen deuterium exchange mass spectrometry. J Chromatogr A 1523:275–282. https://doi.org/10.1016/j.chroma.2017.05.067 PubMed DOI PMC

Rand KD, Pringle SD, Morris M, Brown JM (2012) Site-specific analysis of gas-phase hydrogen/deuterium exchange of peptides and proteins by electron transfer dissociation. Anal Chem 84:1931–1940. https://doi.org/10.1021/ac202918j PubMed DOI

Mistarz UH, Bellina B, Jensen PF et al (2018) UV photodissociation mass spectrometry accurately localize sites of backbone deuteration in peptides. Anal Chem 90:1077–1080. https://doi.org/10.1021/acs.analchem.7b04683 PubMed DOI

Kadek A, Kavan D, Marcoux J et al (2017) Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim Biophys Acta BBA – Gen Subj 1861:157–167. https://doi.org/10.1016/j.bbagen.2016.11.016 DOI

Filandrová R, Vališ K, Černý J et al (2021) Motif orientation matters: structural characterization of TEAD1 recognition of genomic DNA. Structure 29:345–356.e8. https://doi.org/10.1016/j.str.2020.11.018 PubMed DOI

Filandr F, Kavan D, Kracher D et al (2020) Structural dynamics of lytic polysaccharide monooxygenase during catalysis. Biomol Ther 10:242. https://doi.org/10.3390/biom10020242 DOI

Guo C, Steinberg LK, Henderson JP, Gross ML (2020) Organic solvents for enhanced proteolysis of stable proteins for hydrogen–deuterium exchange mass spectrometry. Anal Chem 92:11553–11557. https://doi.org/10.1021/acs.analchem.0c02194 PubMed DOI PMC

Cline DJ, Redding SE, Brohawn SG et al (2004) New water-soluble phosphines as reductants of peptide and protein disulfide bonds: reactivity and membrane permeability. Biochemistry 43:15195–15203. https://doi.org/10.1021/bi048329a PubMed DOI

Kadek A, Tretyachenko V, Mrazek H et al (2014) Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr Purif 95:121–128. https://doi.org/10.1016/j.pep.2013.12.005 PubMed DOI

Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation: amide hydrogen exchange by mass spectrometry. Protein Sci 2:522–531. https://doi.org/10.1002/pro.5560020404 PubMed DOI PMC

Cravello L, Lascoux D, Forest E (2003) Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom 17:2387–2393. https://doi.org/10.1002/rcm.1207 PubMed DOI

Rosa JJ, Richards FM (1979) An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol 133:399–416. https://doi.org/10.1016/0022-2836(79)90400-5 PubMed DOI

Ahn J, Jung MC, Wyndham K et al (2012) Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10 000 psi. Anal Chem 84:7256–7262. https://doi.org/10.1021/ac301749h PubMed DOI PMC

Vankova P, Salido E, Timson DJ et al (2019) A dynamic core in human NQO1 controls the functional and stability effects of ligand binding and their communication across the enzyme dimer. Biomol Ther 9:728. https://doi.org/10.3390/biom9110728 DOI

Man P, Montagner C, Vitrac H et al (2011) Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. J Mol Biol 414:123–134. https://doi.org/10.1016/j.jmb.2011.09.042 PubMed DOI

Man P, Montagner C, Vernier G et al (2007) Defining the interacting regions between apomyoglobin and lipid membrane by hydrogen/deuterium exchange coupled to mass spectrometry. J Mol Biol 368:464–472. https://doi.org/10.1016/j.jmb.2007.02.014 PubMed DOI

Tsiatsiani L, Akeroyd M, Olsthoorn M, Heck AJR (2017) Aspergillus niger prolyl endoprotease for hydrogen–deuterium exchange mass spectrometry and protein structural studies. Anal Chem 89:7966–7973. https://doi.org/10.1021/acs.analchem.7b01161 PubMed DOI PMC

Ahn J, Cao M-J, Yu YQ, Engen JR (2013) Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta BBA – Proteins Proteomics 1834:1222–1229. https://doi.org/10.1016/j.bbapap.2012.10.003 PubMed DOI

Marcoux J, Thierry E, Vivès C et al (2010) Investigating alternative acidic proteases for H/D exchange coupled to mass spectrometry: Plasmepsin 2 but not plasmepsin 4 is active under quenching conditions. J Am Soc Mass Spectrom 21:76–79. https://doi.org/10.1016/j.jasms.2009.09.005 PubMed DOI

Marcoux J, Man P, Petit-Haertlein I et al (2010) p47 molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem 285:28980–28990. https://doi.org/10.1074/jbc.M110.139824 PubMed DOI PMC

Macakova E, Kopecka M, Kukacka Z et al (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim Biophys Acta BBA – Gen Subj 1830:4491–4499. https://doi.org/10.1016/j.bbagen.2013.05.025 DOI

Nirudodhi SN, Sperry JB, Rouse JC, Carroll JA (2017) Application of dual protease column for HDX-MS analysis of monoclonal antibodies. J Pharm Sci 106:530–536. https://doi.org/10.1016/j.xphs.2016.10.023 PubMed DOI

Hamuro Y, Zhang T (2019) High-resolution HDX-MS of cytochrome c using pepsin/fungal protease type XIII mixed bed column. J Am Soc Mass Spectrom 30:227–234. https://doi.org/10.1007/s13361-018-2087-7 PubMed DOI

Rey M, Man P, Clémençon B et al (2010) Conformational dynamics of the bovine mitochondrial ADP/ATP carrier isoform 1 revealed by hydrogen/deuterium exchange coupled to mass spectrometry. J Biol Chem 285:34981–34990. https://doi.org/10.1074/jbc.M110.146209 PubMed DOI PMC

Masson GR, Burke JE, Ahn NG et al (2019) Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 16:595–602. https://doi.org/10.1038/s41592-019-0459-y PubMed DOI PMC

Hamuro Y (2021) Tutorial: chemistry of hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 32:133–151. https://doi.org/10.1021/jasms.0c00260 PubMed DOI

Hoofnagle AN, Resing KA, Ahn NG (2004) Practical methods for deuterium exchange/mass spectrometry. In: MAP kinase signaling protocols. Humana Press, New Jersey, pp 283–298 DOI

Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100:2071–2086. https://doi.org/10.1002/jps.22432 PubMed DOI

Lau AMC, Ahdash Z, Martens C, Politis A (2019) Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics 35:3171–3173. https://doi.org/10.1093/bioinformatics/btz022 PubMed DOI PMC

Perez-Riverol Y, Csordas A, Bai J et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450. https://doi.org/10.1093/nar/gky1106 PubMed DOI

Deutsch EW, Csordas A, Sun Z et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100–D1106. https://doi.org/10.1093/nar/gkw936 PubMed DOI

Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190. https://doi.org/10.1021/j100830a521 DOI

Rey M, Man P, Brandolin G et al (2009) Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry: immobilized rhizopuspepsin for protein digestion. Rapid Commun Mass Spectrom 23:3431–3438. https://doi.org/10.1002/rcm.4260 PubMed DOI

Yang M, Hoeppner M, Rey M et al (2015) Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem 87:6681–6687. https://doi.org/10.1021/acs.analchem.5b00831 PubMed DOI

Wales TE, Fadgen KE, Gerhardt GC, Engen JR (2008) High-speed and high-resolution UPLC separation at zero degrees celsius. Anal Chem 80:6815–6820. https://doi.org/10.1021/ac8008862 PubMed DOI PMC

Giladi M, van Dijk L, Refaeli B et al (2017) Dynamic distinctions in the Na+/Ca2+ exchanger adopting the inward- and outward-facing conformational states. J Biol Chem 292:12311–12323. https://doi.org/10.1074/jbc.M117.787168 PubMed DOI PMC

Trcka F, Durech M, Vankova P et al (2020) The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors. J Biol Chem 295:8928–8944. https://doi.org/10.1074/jbc.RA120.012624 PubMed DOI PMC

Kochert BA, Iacob RE, Wales TE et al (2018) Hydrogen-deuterium exchange mass spectrometry to study protein complexes. In: Marsh JA (ed) Protein complex assembly. Springer, New York, pp 153–171 DOI

Moroco JA, Engen JR (2015) Replication in bioanalytical studies with HDX MS: aim as high as possible. Bioanalysis 7:1065–1067. https://doi.org/10.4155/bio.15.46 PubMed DOI PMC

Majumdar R, Manikwar P, Hickey JM et al (2012) Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23:2140–2148. https://doi.org/10.1007/s13361-012-0485-9 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...