In vivo determination of organellar pH using a universal wavelength-based confocal microscopy approach
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
55005623
Howard Hughes Medical Institute - United States
PubMed
22470445
PubMed Central
PMC3310042
DOI
10.1371/journal.pone.0033229
PII: PONE-D-11-16938
Knihovny.cz E-zdroje
- MeSH
- červený fluorescenční protein MeSH
- koncentrace vodíkových iontů MeSH
- konfokální mikroskopie MeSH
- luminescentní proteiny genetika metabolismus MeSH
- membránové transportní proteiny analýza genetika metabolismus MeSH
- organely chemie MeSH
- Saccharomyces cerevisiae - proteiny analýza genetika metabolismus MeSH
- Saccharomyces cerevisiae chemie růst a vývoj metabolismus MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATO1 protein, S cerevisiae MeSH Prohlížeč
- luminescentní proteiny MeSH
- membránové transportní proteiny MeSH
- PHluorin MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- zelené fluorescenční proteiny MeSH
Many essential cellular processes are affected by transmembrane H(+) gradients and intracellular pH (pHi). The research of such metabolic events calls for a non-invasive method to monitor pHi within individual subcellular compartments. We present a novel confocal microscopy approach for the determination of organellar pHi in living cells expressing pH-dependent ratiometric fluorescent proteins. Unlike conventional intensity-based fluorometry, our method relies on emission wavelength scans at single-organelle resolution to produce wavelength-based pH estimates both accurate and robust to low-signal artifacts. Analyses of Ato1p-pHluorin and Ato1p-mCherry yeast cells revealed previously unreported wavelength shifts in pHluorin emission which, together with ratiometric mCherry, allowed for high-precision quantification of actual physiological pH values and evidenced dynamic pHi changes throughout the different stages of yeast colony development. Additionally, comparative pH quantification of Ato1p-pHluorin and Met17p-pHluorin cells implied the existence of a significant pHi gradient between peripheral and internal cytoplasm of cells from colonies occurring in the ammonia-producing alkali developmental phase. Results represent a step forward in the study of pHi regulation and subcellular metabolic functions beyond the scope of this study.
Zobrazit více v PubMed
Tsien RY. The Green Fluorescent Protein. Annu Rev Biochem. 1998;67:509–544. PubMed
Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single lying cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998;95:6803–6808. PubMed PMC
Miesenböck G, De Angelis GDA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature (London, U K) 1998;6689:192–195. PubMed
Bizzarri R, Arcangeli C, Arosio D, Ricci F, Faraci P, et al. Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies. Biophys J. 2006;90:3300–3314. PubMed PMC
Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ. Novel chromophores and buried charges control color in mFruits. Biochemistry. 2006;45:9639–9647. PubMed
Palková Z, Forstová J. Yeast colonies synchronise their growth and development. J Cell Sci. 2000;113:1923–1928. PubMed
Váchová L, Kučerová H, Devaux F, Ulehlová M, Palková Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol. 2009;11:494–504. PubMed
Imai T, Ohno T. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol. 1995;38:165–172. PubMed
Palková Z, Janderová B, Gabriel J, Zikánová B, Pospíšek M, et al. Ammonia mediates communication between yeast colonies. Nature (London, U K) 1997;6659:532–535. PubMed
Sheff MA, Thorn KS. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 2004;21:661–702. PubMed
Cormack BP, Bertram G, Egerton M, Gow NAR, Falkow S, et al. Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology. 1997;143:303–311. PubMed
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22:1567–1572. PubMed
Paiva S, Kruckeberg AL, Casal M. Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem J. 2002;363:737–744. PubMed PMC
Karagiannis J, Young PG. Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe. J Cell Sci. 2001;114:2929–2941. PubMed
Roermund CWT, de Jong M, IJlst L, van Marle J, Dansen TB, et al. The peroxisomal lumen in Saccharomyces cerevisiae is alkaline. J Cell Sci. 2004;117:4231–4237. PubMed
Brett CL, Tukaye DN, Mukherjee S, Rao R. The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell. 2005;16:1396–1405. PubMed PMC
Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA. The use of pHluorins for optical measurements of presynaptic activity. Biophys J. 2000;79:2199–2208. PubMed PMC
Olsen KN, Budde BB, Siegumfeldt H, Rechinger KB, Jakobsen M, et al. Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy. Appl Environ Microbiol. 2002;68:4145–4147. PubMed PMC
Disbrow GL, Hanover JA, Schlegel R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol. 2005;79:5839–5846. PubMed PMC
Mahon MJ. pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv Biosci Biotechnol. 2011;2:2156–8456. PubMed PMC
Ashby MC, Ibaraki K, Henley JM. It's green outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci. 2004;27:257–261. PubMed
Granseth B, Odermatt B, Royle SJ, Lagnado L. Clathrin-mediated endocytosis: the physiological mechanism of vesicle retrieval at hippocampal synapses. J Physiol. 2007;585:681–686. PubMed PMC
McDonald NA, Henstridge CM, Connolly CN, Irving AJ. Generation and functional characterization of fluorescent, N-terminally tagged CB1 receptor chimeras for live-cell imaging. Mol Cell Neurosci. 2007;35:237–248. PubMed
Nehrke K. Intracellular pH measurements in vivo using green fluorescent protein variants. Methods Mol Biol (Totowa, NJ, U S) 2006;351:223–240. PubMed
Bagar T, Altenbach K, Read ND, Benčina M. Live-cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot Cell. 2009;8:703–712. PubMed PMC
Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, et al. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J. 2010;29:2515–2526. PubMed PMC
Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. 2009;155:268–278. PubMed
Braun NA, Morgan B, Dick TP, Schwappach B. The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci. 2010;123:2342–2350. PubMed PMC
Marešová L, Hošková B, Urbánková E, Chaloupka R, Sychrová H. New applications of pHluorin - measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast. 2010;6:317–325. PubMed
Plant PJ, Manolson MF, Grinstein S, Demaurex N. Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem. 1999;274:37270–37279. PubMed
Bour-Dill C, Marie-Pierre G, Jean-Louis M, Marchal S, Guillemin F. Determination of intracellular organelles implicated in daunorubicin cytoplasmic sequestration in multidrug-resistant MCF-7 cells using fluorescence microscopy image analysis. Cytometry. 2000;39:16–25. PubMed
Varlamov O, Somwar R, Cornea A, Kievit P, Grove KL, et al. Single-cell analysis of insulin-regulated fatty acid uptake in adipocytes. Am J Physiol Endocrinol Metab. 2010;62:E486–E496. PubMed PMC
Davies L, Satre M, Martin JB, Gross JD. The target of ammonia action in dictyostelium. Cell. 1993;75:321–327. PubMed
Moseyko N, Feldman LJ. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ. 2001;24:557–563. PubMed
Lasorsa FM, Scarcia P, Erdmann R, Palmieri F, Rottensteiner H, et al. The yeast peroxisomal adenine nucleotide transporter: characterization of two transport modes and involvement in ΔpH formation across peroxisomal membranes. Biochem J. 2004;381:581–585. PubMed PMC
Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000;2:318–325. PubMed
Mukherjee S, Kallay L, Brett CL, Rao R. Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking. Biochem J. 2006;398:97–105. PubMed PMC
Jankowski A, Kim JH, Collins RF, Daneman R, Walton P, et al. In situ measurements of the pH of mammalian peroxisomes using the fluorescent protein pHIuorin. J Biol Chem. 2001;276:48748–48763. PubMed
Palková Z, Devaux F, Řičicová M, Mináriková L, Le Crom S, et al. Ammonia Pulses and Metabolic Oscillations Guide Yeast Colony Development. Mol Biol Cell. 2002;13:3901–3914. PubMed PMC
Gori K, Mortensen HD, Arneborg N, Jespersen L. Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species. J Dairy Sci. 2007;90:5032–5041. PubMed
Bogonez E, Machado A Satrustegui J. Ammonia accumulation in acetate-growing yeast. Biochim Biophys Acta. 1983;733:234–241. PubMed
Palková Z, Váchová L, Gásková D, Kucerová H. Synchronous plasma membrane electrochemical potential oscillations during yeast colony development and aging. Mol Membr Biol. 2009;26:228–35. PubMed
Desai MJ, Armstrong DW. Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol Mol Biol Rev. 2003;67:38–51. PubMed PMC
Xiong G, Aras O, Shet A, Key NS, Arriaga EA. Analysis of individual platelet-derived microparticles, comparing flow cytometry and capillary electrophoresis with laser-induced fluorescence detection. Analyst. 2007;128:581–588. PubMed
Řičicová M, Kučerová H, Váchová L, Palková Z. Association of putative ammonium exporters Ato with detergent-resistant compartments of plasma membrane during yeast colony development: pH affects Ato1p localisation in patches. Biochim Biophys Acta, Biomembr. 2007;1768:1170–1178. PubMed
Gietz RD, Schiesti RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355–360. PubMed
Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12:259–265. PubMed
Preston RA, Murphy RF, Jones EW. Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A. 1989;86:7027–7031. PubMed PMC
Ali R, Brett CL, Mukherjee S, Rao R. Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem. 2004;279:4498–4506. PubMed
Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Crystallogr. 2010;43:1126–1128.