Ammonia pulses and metabolic oscillations guide yeast colony development
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12429834
PubMed Central
PMC133602
DOI
10.1091/mbc.e01-12-0149
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny metabolismus MeSH
- amoniak metabolismus MeSH
- biologické modely MeSH
- energetický metabolismus * MeSH
- fylogeneze MeSH
- koncentrace vodíkových iontů MeSH
- mastné kyseliny metabolismus MeSH
- membránové transportní proteiny chemie klasifikace genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- oxidativní fosforylace MeSH
- peroxizomy metabolismus MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus fyziologie MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- sekvenční seřazení MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- amoniak MeSH
- mastné kyseliny MeSH
- membránové transportní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.
Zobrazit více v PubMed
Butterworth RF. Effects of hyperammonaemia on brain function. J Inherit Metab Dis. 1998;21:6–20. PubMed
Causton HC, et al. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–337. PubMed PMC
Cotter DA, Dunbar AJ, Buconjic SD, Wheldrake JF. Ammonium phosphate in sori of Dictyostelium discoideum promotes spore dormancy through stimulation of the osmosensor ACG. Microbiology. 1999;145:1891–1901. PubMed
Cozzone AJ. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol. 1998;52:127–164. PubMed
Dunny GM, Leonard BA. Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol. 1997;51:527–564. PubMed
Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17:369–370. PubMed
Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–14868. PubMed PMC
Epstein CB, Waddle JA, Hale W t, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell. 2001;12:297–308. PubMed PMC
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11:4241–4257. PubMed PMC
Gent DP, Slaughter JC. Intracellular distribution of amino acids in an slp1 vacuole-deficient mutant of the yeast Saccharomyces cerevisiae. J Appl Microbiol. 1998;84:752–758. PubMed
Ljungdahl PO, Gimeno CJ, Styles CA, Fink GR. SHR3: a novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell. 1992;71:463–478. PubMed
Marc P, Jacq C. Arrayplot for visualization and normalization of cDNA microarray data. Bioinformatics. 2002;18:888–889. PubMed
McNeil JB, Bognar AL, Pearlman RE. In vivo analysis of folate coenzymes and their compartmentation in Saccharomyces cerevisiae. Genetics. 1996;142:371–381. PubMed PMC
Meunier JR, Choder M. Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression. Yeast. 1999;15:1159–1169. PubMed
Mináriková L, Kuthan M, R̆ic̆icová M, Forstová J, Palková Z. Differentiated gene expression in cells within yeast colonies. Exp Cell Res. 2001;271:296–304. PubMed
Ohsumi Y, Kitamoto K, Anraku Y. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol. 1988;170:2676–2782. PubMed PMC
Palková Z, Forstová J. Yeast colonies synchronize their growth and development. J Cell Sci. 2000;113:1923–1928. PubMed
Palková Z, Janderová B, Gabriel J, Zikánová B, Pospíšek M, Forstová J. Ammonia mediates communication between yeast colonies. Nature. 1997;390:532–536. PubMed
Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F, Walker JE. Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem. 1999;274:22184–22190. PubMed
Pan X, Heitman J. Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol. 2000;20:8364–8372. PubMed PMC
Paulsen IT, Sliwinski MK, Nelissen B, Goffeau A, Saier MH., Jr Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 1998;430:116–125. PubMed
Persson BL, Berhe A, Fristedt U, Martinez P, Pattison J, Petersson J, Weinander R. Phosphate permeases of Saccharomyces cerevisiae. Biochim Biophys Acta. 1998;1365:23–30. PubMed
Reynolds TB, Fink GR. Bakers'yeast, a model for fungal biofilm formation. Science. 2001;291:878–881. PubMed
Rolfes RJ, Hinnebusch AG. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol. 1993;13:5099–5111. PubMed PMC
Shenhar G, Kassir Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21:1603–1612. PubMed PMC
van Helden J, Andre B, Collado-Vides J. A web site for the computational analysis of yeast regulatory sequences. Yeast. 2000;16:177–187. PubMed
van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ. Molecular characterization of carnitine-dependent transport of acetyl- CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 1999;18:5843–5852. PubMed PMC
Varon M, Choder M. Organization and cell-cell interaction in starved Saccharomyces cerevisiae colonies. J Bacteriol. 2000;182:3877–3880. PubMed PMC
Ward MP, Gimeno CJ, Fink GR, Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol. 1995;15:6854–6863. PubMed PMC
Zikánová B, Kuthan M, R̆ic̆icová M, Forstová J, Palková Z. Amino acids control ammonia pulses in yeast colonies. Biochem Biophys Res Commun. 2002;294:962–967. PubMed
Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies
Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies
Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies
Yeast colonies: a model for studies of aging, environmental adaptation, and longevity
Reactive oxygen species in the signaling and adaptation of multicellular microbial communities
Patterning of mutually interacting bacterial bodies: close contacts and airborne signals
Optical saturation as a versatile tool to enhance resolution in confocal microscopy
Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia
Multicellular microorganisms: laboratory versus nature