Ammonia pulses and metabolic oscillations guide yeast colony development

. 2002 Nov ; 13 (11) : 3901-14.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid12429834

On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.

Zobrazit více v PubMed

Butterworth RF. Effects of hyperammonaemia on brain function. J Inherit Metab Dis. 1998;21:6–20. PubMed

Causton HC, et al. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–337. PubMed PMC

Cotter DA, Dunbar AJ, Buconjic SD, Wheldrake JF. Ammonium phosphate in sori of Dictyostelium discoideum promotes spore dormancy through stimulation of the osmosensor ACG. Microbiology. 1999;145:1891–1901. PubMed

Cozzone AJ. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol. 1998;52:127–164. PubMed

Dunny GM, Leonard BA. Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol. 1997;51:527–564. PubMed

Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17:369–370. PubMed

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–14868. PubMed PMC

Epstein CB, Waddle JA, Hale W t, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell. 2001;12:297–308. PubMed PMC

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11:4241–4257. PubMed PMC

Gent DP, Slaughter JC. Intracellular distribution of amino acids in an slp1 vacuole-deficient mutant of the yeast Saccharomyces cerevisiae. J Appl Microbiol. 1998;84:752–758. PubMed

Ljungdahl PO, Gimeno CJ, Styles CA, Fink GR. SHR3: a novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell. 1992;71:463–478. PubMed

Marc P, Jacq C. Arrayplot for visualization and normalization of cDNA microarray data. Bioinformatics. 2002;18:888–889. PubMed

McNeil JB, Bognar AL, Pearlman RE. In vivo analysis of folate coenzymes and their compartmentation in Saccharomyces cerevisiae. Genetics. 1996;142:371–381. PubMed PMC

Meunier JR, Choder M. Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression. Yeast. 1999;15:1159–1169. PubMed

Mináriková L, Kuthan M, R̆ic̆icová M, Forstová J, Palková Z. Differentiated gene expression in cells within yeast colonies. Exp Cell Res. 2001;271:296–304. PubMed

Ohsumi Y, Kitamoto K, Anraku Y. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol. 1988;170:2676–2782. PubMed PMC

Palková Z, Forstová J. Yeast colonies synchronize their growth and development. J Cell Sci. 2000;113:1923–1928. PubMed

Palková Z, Janderová B, Gabriel J, Zikánová B, Pospíšek M, Forstová J. Ammonia mediates communication between yeast colonies. Nature. 1997;390:532–536. PubMed

Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F, Walker JE. Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem. 1999;274:22184–22190. PubMed

Pan X, Heitman J. Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol. 2000;20:8364–8372. PubMed PMC

Paulsen IT, Sliwinski MK, Nelissen B, Goffeau A, Saier MH., Jr Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 1998;430:116–125. PubMed

Persson BL, Berhe A, Fristedt U, Martinez P, Pattison J, Petersson J, Weinander R. Phosphate permeases of Saccharomyces cerevisiae. Biochim Biophys Acta. 1998;1365:23–30. PubMed

Reynolds TB, Fink GR. Bakers'yeast, a model for fungal biofilm formation. Science. 2001;291:878–881. PubMed

Rolfes RJ, Hinnebusch AG. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol. 1993;13:5099–5111. PubMed PMC

Shenhar G, Kassir Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21:1603–1612. PubMed PMC

van Helden J, Andre B, Collado-Vides J. A web site for the computational analysis of yeast regulatory sequences. Yeast. 2000;16:177–187. PubMed

van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ. Molecular characterization of carnitine-dependent transport of acetyl- CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 1999;18:5843–5852. PubMed PMC

Varon M, Choder M. Organization and cell-cell interaction in starved Saccharomyces cerevisiae colonies. J Bacteriol. 2000;182:3877–3880. PubMed PMC

Ward MP, Gimeno CJ, Fink GR, Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol. 1995;15:6854–6863. PubMed PMC

Zikánová B, Kuthan M, R̆ic̆icová M, Forstová J, Palková Z. Amino acids control ammonia pulses in yeast colonies. Biochem Biophys Res Commun. 2002;294:962–967. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies

. 2024 May 08 ; 15 (5) : e0068924. [epub] 20240416

Spatially structured yeast communities: Understanding structure formation and regulation with omics tools

. 2021 ; 19 () : 5613-5621. [epub] 20211009

Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies

. 2021 May 25 ; 22 (11) : . [epub] 20210525

Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms

. 2018 Jul ; 14 (7) : e1007495. [epub] 20180702

Transcriptome Remodeling of Differentiated Cells during Chronological Ageing of Yeast Colonies: New Insights into Metabolic Differentiation

. 2018 ; 2018 () : 4932905. [epub] 20180111

Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies

. 2016 Mar 29 ; 7 (13) : 15299-314.

Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis

. 2015 ; 14 (21) : 3488-97.

SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level

. 2013 ; 8 (9) : e73882. [epub] 20130911

Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies

. 2013 ; 2013 () : 102485. [epub] 20130721

Yeast colonies: a model for studies of aging, environmental adaptation, and longevity

. 2012 ; 2012 () : 601836. [epub] 20120813

Reactive oxygen species in the signaling and adaptation of multicellular microbial communities

. 2012 ; 2012 () : 976753. [epub] 20120701

In vivo determination of organellar pH using a universal wavelength-based confocal microscopy approach

. 2012 ; 7 (3) : e33229. [epub] 20120321

Patterning of mutually interacting bacterial bodies: close contacts and airborne signals

. 2010 May 12 ; 10 () : 139. [epub] 20100512

Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense

. 2009 Nov 20 ; 284 (47) : 32572-81. [epub] 20090928

Optical saturation as a versatile tool to enhance resolution in confocal microscopy

. 2009 Nov 04 ; 97 (9) : 2623-9.

Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia

. 2005 Jun 06 ; 169 (5) : 711-7.

Multicellular microorganisms: laboratory versus nature

. 2004 May ; 5 (5) : 470-6.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...