Patterning of mutually interacting bacterial bodies: close contacts and airborne signals
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20462411
PubMed Central
PMC2882925
DOI
10.1186/1471-2180-10-139
PII: 1471-2180-10-139
Knihovny.cz E-zdroje
- MeSH
- barva MeSH
- biologické pigmenty biosyntéza MeSH
- fyziologický stres * MeSH
- regulace genové exprese u bakterií * MeSH
- Serratia růst a vývoj metabolismus fyziologie MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické pigmenty MeSH
BACKGROUND: Bacterial bodies (colonies) can develop complex patterns of color and structure. These patterns may arise as a result of both colony-autonomous developmental and regulatory processes (self-patterning) and environmental influences, including those generated by neighbor bodies. We have studied the interplay of intra-colony signaling (self-patterning) and inter-colony influences in related clones of Serratia rubidaea grown on rich media. RESULTS: Colonies are shaped by both autonomous patterning and by signals generated by co-habitants of the morphogenetic space, mediating both internal shaping of the body, and communication between bodies sharing the same living space. The result of development is affected by the overall distribution of neighbors in the dish. The neighbors' presence is communicated via at least two putative signals, while additional signals may be involved in generating some unusual patterns observed upon encounters of different clones. A formal model accounting for some aspects of colony morphogenesis and inter-colony interactions is proposed. CONCLUSIONS: The complex patterns of color and texture observed in Serratia rubidaea colonies may be based on at least two signals produced by cells, one of them diffusing through the substrate (agar) and the other carried by a volatile compound and absorbed into the substrate. Differences between clones with regard to the interpretation of signals may result from different sensitivity to signal threshold(s).
Zobrazit více v PubMed
West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol. 2006;4:597–607. doi: 10.1038/nrmicro1461. PubMed DOI
West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The social lives of microbes. Annu Rev Ecol Evol Syst. 2007;38:53–77. doi: 10.1146/annurev.ecolsys.38.091206.095740. DOI
Brockhurst MA, Buckling A, Racey D, Gardner A. Resource supply and the evolution of public-goods cooperation in bacteria. BMC Biology. 2008;6:20. doi: 10.1186/1741-7007-6-20. PubMed DOI PMC
Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature. 2007;450:411–414. doi: 10.1038/nature06279. PubMed DOI
Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol. 2009;19:341–345. doi: 10.1016/j.cub.2009.01.050. PubMed DOI
Be'er A, Zhang HP, Florin EL, Payne SM, Ben-Jacob E, Swinney HL. Deadly competition between sibling bacterial colonies. Proc Natl Acad Sci USA. 2009;106:428–433. doi: 10.1073/pnas.0811816106. PubMed DOI PMC
Rosenzweig RF, Adams J. Microbial adaptation to a changeable environment: cell-cell interactions mediate physiological and genetic differentiation. Bioessays. 1994;16:715–717. doi: 10.1002/bies.950161005. PubMed DOI
Koh KS, Lam KW, Alhede M, Queck SY, Labbate M, Kjelleberg S, Rice SA. Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J Bacteriol. 2007;189:119–130. doi: 10.1128/JB.00930-06. PubMed DOI PMC
Boles BR, Thoendel M, Singh PK. Self-generated diversity produces ''insurance effects'' in biofilm communities. Proc Natl Acad Sci USA. 2004;101:16630–16635. doi: 10.1073/pnas.0407460101. PubMed DOI PMC
Vos M, Velicer GJ. Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl Environ Microbiol. 2006;72:3615–3625. doi: 10.1128/AEM.72.5.3615-3625.2006. PubMed DOI PMC
Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43:197–222. doi: 10.1146/annurev-genet-102108-134304. PubMed DOI PMC
Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nature Revs Microbiol. 2006;4:249–258. doi: 10.1038/nrmicro1383. PubMed DOI
Van Houdt R, Givskov M, Michiels CW. Quorum sensing in Serratia. FEMS Microbiol Rev. 2007;31:407–424. doi: 10.1111/j.1574-6976.2007.00071.x. PubMed DOI
Jamieson WD, Pehl M, Gregory GA, Orwin PM. Coordinated surface activities in Variovorax paradoxus EPS. BMC Microbiol. 2009;9:124. doi: 10.1186/1471-2180-9-124. PubMed DOI PMC
Gorby YA, Yanina S, McLean JS, Ross KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ischi S, Logan B, Nealson KH, Frederickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis MR-1 and other microorganisms. Proc Natl Acad Sci USA. 2006;103:11358–11363. doi: 10.1073/pnas.0604517103. PubMed DOI PMC
Blango MG, Mulvey MA. Bacterial landlines: contact-dependent signaling in bacterial populations. Curr Opin Microbiol. 2009;12:177–181. doi: 10.1016/j.mib.2009.01.011. PubMed DOI PMC
Atkinson S, Williams PL. Quorum sensing and social networking in the microbial world. J R Soc Interface. 2009;6:959–978. doi: 10.1098/rsif.2009.0203. PubMed DOI PMC
Pacheco AR, Sperandio V. Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol. 2009;12:192–198. doi: 10.1016/j.mib.2009.01.006. PubMed DOI PMC
Straight PD, Kolter. Interspecies chemical communication in bacterial development. Annu Rev Microbiol. 2009;63:99–118. doi: 10.1146/annurev.micro.091208.073248. PubMed DOI
Schertzer JW, Boulette ML, Whiteley M. More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol. 2009;17:189–195. doi: 10.1016/j.tim.2009.02.001. PubMed DOI
Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W, Bossier P. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol. 2007;9:2486–2495. doi: 10.1111/j.1462-2920.2007.01367.x. PubMed DOI
Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Envir Microbiol. 2007;73:4100–4109. doi: 10.1128/AEM.00360-07. PubMed DOI PMC
Rieger T, Neubauer Z, Blahůšková A, Cvrčková F, Markoš A. Bacterial body plans: colony ontogeny in Serratia marcescens. Communicative Integrative Biology. 2008;1:78–87. PubMed PMC
Ewing WH, Davis BR, Fife MA, Lessel EF. Biochemical characterization of Serratia liquefaciens (Grimes and Hennerty) Bascomb et al. (formerly Enterobacter liquefaciens) and Serratia rubidaea (Stapp) comb. nov. and designation of type and neotype strains. Int J Syst Bacteriol. 1973;23:217–225. doi: 10.1099/00207713-23-3-217. DOI
Czárán T, Hoekstra RF. Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLoS ONE. 2009;4:e6655. doi: 10.1371/journal.pone.0006655. PubMed DOI PMC
Cho HJ, Jönsson H, Campbell K, Melke P, Williams JW, Jedynak B, Stevens AM, Groisman A, Levchenko A. Self-organization in high-density bacterial colonies: efficient crowd control. PLoS Biol. 2007;5:e302. doi: 10.1371/journal.pbio.0050302. PubMed DOI PMC
Hodgkinson JT, Welch M, Spring DR. Learning the language of bacteria. ACS Chem Biol. 2007;2:715–717. doi: 10.1021/cb700227k. PubMed DOI
Joint I, Downie JA, Williams P. Bacterial conversations: talking, listening and eavesdropping. An introduction. Phil Trans R Soc B. 2007;362:1115–1117. doi: 10.1098/rstb.2007.2038. PubMed DOI PMC
Williams P, Winzer K, Chan WC, Cámara M. Look who's talking: communication and quorum sensing in the bacterial world. Phil Trans R Soc B. 2007;362:1119–1134. doi: 10.1098/rstb.2007.2039. PubMed DOI PMC
Ben-Jacob E, Becker I, Shapira Y, Levine H. Bacterial linguistic communication and social intelligence. Trends Microbiol. 2004;12:366–72. doi: 10.1016/j.tim.2004.06.006. PubMed DOI
Ben Jacob E, Shapira Y, Tauber AI. Seeking the foundations of cognition in bacteria: From Schrödinger's negative entropy to latent information. Physica A. 2006;359:495–524. doi: 10.1016/j.physa.2005.05.096. DOI
Crespi BJ. The evolution of social behavior in microorganisms. Trends Ecol Evol. 2001;16:178–183. doi: 10.1016/S0169-5347(01)02115-2. PubMed DOI
Shapiro JA. In: Bacteria as Multicellular Organisms. Dworkin M, Shapiro JA, editor. Oxford University Press; 1997. Multicellularity: The rule, not the exception. Lessons from E. coli colonies; pp. 14–49.
Shapiro JA. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Phil Biol Biomed Sci. 2007;38:807–19. doi: 10.1016/j.shpsc.2007.09.010. PubMed DOI
Jelsbak L, Sogaard-Andersen L. The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc Natl Acad Sci USA. 1999;96:5031–5036. doi: 10.1073/pnas.96.9.5031. PubMed DOI PMC
Kruse T, Lobedanz S, Berthelsen NM, Sogaard-Andersen L. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol Microbiol. 2001;40:156–168. doi: 10.1046/j.1365-2958.2001.02365.x. PubMed DOI
Heal RD, Parsons AT. Novel intercellular communication system in Escherichia coli that confers antibiotic resistance between physically separated populations. J Appl Microbiol. 2002;92:1116–1122. doi: 10.1046/j.1365-2672.2002.01647.x. PubMed DOI
Lu L. Ph.D. Thesis. Texas A&M University; 2004. Autoinducer 2-based quorum sensing response of E. coli to sub-therapeutic tetracycline exposure.http://repository.tamu.edu/handle/1969.1/4198 1969.1/4198.
Palková Z, Devaux F, Řičicová M, Mináriková L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell. 2002;13:3901–3914. doi: 10.1091/mbc.E01-12-0149. PubMed DOI PMC
Grimson MJ, Barker GC. A continuum model for the growth of bacterial colonies on a surface. J Phys A: Math Gen. 1993;26:5645–5654. doi: 10.1088/0305-4470/26/21/006. DOI
Kreft JU, Booth G, Wimpenny JWT. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology. 1998;144:3275–3287. doi: 10.1099/00221287-144-12-3275. PubMed DOI
Panikov NS, Belova SE, Dorofeev AG. Nonlinearity in the growth of bacterial colonies: conditions and causes. Microbiology (Mikrobiologiya) 2002;71:50–56. doi: 10.1023/A:1017998232677. PubMed DOI
Sekowska A, Masson JB, Celani A, Danchin A, Vergassola M. Repulsion and metabolic switches in the collective behavior of bacterial colonies. Biophys J. 2009;97:688–698. doi: 10.1016/j.bpj.2009.04.018. PubMed DOI PMC
Miyata S, Sasaki T. Asymptotic analysis of a chemotactic model of bacteria colonies. Math Biosci. 2006;201:184–194. doi: 10.1016/j.mbs.2005.12.007. PubMed DOI
Cho HJ, Jönsson H, Campbell K, Melke P, Williams JW, Jedynak B, Stevens AM, Groisman A, Levchenko A. Self-organization in high-density bacterial colonies: efficient crowd control. PLoS Biol. 2007;5:e302. doi: 10.1371/journal.pbio.0050302. PubMed DOI PMC
Levine H, Ben-Jacob E. Physical schemata underlying biological pattern formation - examples, issues and strategies. Phys Biol. 2004;1:P14–P22. doi: 10.1088/1478-3967/1/2/P01. PubMed DOI
Pipe L, Grimson MJ. Spatial-temporal modelling of bacterial colony growth on solid media. Mol BioSyst. 2008;4:192–198. doi: 10.1039/b708241j. PubMed DOI
Odagiri K, Takatsuka K. Threshold effect with stochastic fluctuation in bacteria-colony-like proliferation dynamics as analyzed through a comparative study of reaction-diffusion equations and cellular automata. Phys Rev E. 2009;79 PubMed
Ayati BP. A structured-population model of Proteus mirabilis swarm-colony development. J Math Biol. 2006;52:93–114. doi: 10.1007/s00285-005-0345-3. PubMed DOI
Grammaticos B, Badoual M, Aubert M. An (almost) solvable model for bacterial pattern formation. Physica D. 2007;234:90–97. doi: 10.1016/j.physd.2007.07.002. DOI
Arouh S. Analytic model for ring pattern formation by bacterial swarmers. Phys Rev E. 2001;63:031908. doi: 10.1103/PhysRevE.63.031908. PubMed DOI
Python programming language - official website. http://www.python.org