A Rapid Approach for Identifying Cell Lines Lacking Functional Cytidine Deaminase

. 2025 Apr 03 ; 26 (7) : . [epub] 20250403

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40244204

Grantová podpora
NU22-08-00148 Ministry of Health
TN01000013 Technology Agency of the Czech Republic
LM2018133 Ministry of Education Youth and Sports
LX22NPO5102 Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004644 Ministry of Education Youth and Sports
LM2023033 Ministry of Education Youth and Sports

CDD plays a pivotal role within the pyrimidine salvage pathway. In this study, a novel, rapid method for the identification of cell lines lacking functional cytidine deaminase was developed. This innovative method utilizes immunocytochemical detection of the product of 5-fluorocytidine deamination, 5-fluorouridine in cellular RNA, enabling the identification of these cells within two hours. The approach employs an anti-bromodeoxyuridine antibody that also specifically binds to 5-fluorouridine and its subsequent detection by a fluorescently labeled antibody. Our results also revealed a strong correlation between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and cytidine deaminase content. On the other hand, no correlation was observed between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and deoxycytidine monophosphate deaminase content. Similarly, no correlation was observed between this ratio and equilibrative nucleoside transporters 1 or 2. Finally, concentrative nucleoside transporters 1, 2, or 3 also do not correlate with the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio.

Zobrazit více v PubMed

Frances A., Cordelier P. The Emerging Role of Cytidine Deaminase in Human Diseases: A New Opportunity for Therapy? Mol. Ther. 2020;28:357–366. doi: 10.1016/j.ymthe.2019.11.026. PubMed DOI PMC

de Vos D., van Overveld W. Decitabine: A historical review of the development of an epigenetic drug. Ann. Hematol. 2005;84((Suppl. S1)):3–8. doi: 10.1007/s00277-005-0008-x. PubMed DOI PMC

Gilbert J.A., Salavaggione O.E., Ji Y., Pelleymounter L.L., Eckloff B.W., Wieben E.D., Ames M.M., Weinshilboum R.M. Gemcitabine pharmacogenomics: Cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin. Cancer Res. 2006;12:1794–1803. doi: 10.1158/1078-0432.CCR-05-1969. PubMed DOI

Hamada A., Kawaguchi T., Nakano M. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet. 2002;41:705–718. doi: 10.2165/00003088-200241100-00002. PubMed DOI

Heinemann V., Xu Y.Z., Chubb S., Sen A., Hertel L.W., Grindey G.B., Plunkett W. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: A mechanism of self-potentiation. Cancer Res. 1992;52:533–539. PubMed

Lamba J.K. Pharmacogenomics of cytarabine in childhood leukemia. Pharmacogenomics. 2011;12:1629–1632. doi: 10.2217/pgs.11.148. PubMed DOI

Xu Y.Z., Plunkett W. Modulation of deoxycytidylate deaminase in intact human leukemia cells. Action of 2′,2′-difluorodeoxycytidine. Biochem. Pharmacol. 1992;44:1819–1827. doi: 10.1016/0006-2952(92)90077-v. PubMed DOI

de Sousa Cavalcante L., Monteiro G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 2014;741:8–16. doi: 10.1016/j.ejphar.2014.07.041. PubMed DOI

Mini E., Nobili S., Caciagli B., Landini I., Mazzei T. Cellular pharmacology of gemcitabine. Ann. Oncol. 2006;17((Suppl. S5)):v7–v12. doi: 10.1093/annonc/mdj941. PubMed DOI

Hamed S.S., Straubinger R.M., Jusko W.J. Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. Cancer Chemother. Pharmacol. 2013;72:553–563. doi: 10.1007/s00280-013-2226-6. PubMed DOI PMC

Grant S. Ara-C: Cellular and molecular pharmacology. Adv. Cancer Res. 1998;72:197–233. doi: 10.1016/s0065-230x(08)60703-4. PubMed DOI

Issa J.P., Gharibyan V., Cortes J., Jelinek J., Morris G., Verstovsek S., Talpaz M., Garcia-Manero G., Kantarjian H.M. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 2005;23:3948–3956. doi: 10.1200/JCO.2005.11.981. PubMed DOI

Jones P.A., Taylor S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93. doi: 10.1016/0092-8674(80)90237-8. PubMed DOI

Budman D.R., Meropol N.J., Reigner B., Creaven P.J., Lichtman S.M., Berghorn E., Behr J., Gordon R.J., Osterwalder B., Griffin T. Preliminary studies of a novel oral fluoropyrimidine carbamate: Capecitabine. J. Clin. Oncol. 1998;16:1795–1802. doi: 10.1200/JCO.1998.16.5.1795. PubMed DOI

Miwa M., Ura M., Nishida M., Sawada N., Ishikawa T., Mori K., Shimma N., Umeda I., Ishitsuka H. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer. 1998;34:1274–1281. doi: 10.1016/s0959-8049(98)00058-6. PubMed DOI

Ishikawa T., Sekiguchi F., Fukase Y., Sawada N., Ishitsuka H. Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res. 1998;58:685–690. PubMed

Verweij J. Rational design of new tumoractivated cytotoxic agents. Oncology. 1999;57((Suppl. S1)):9–15. doi: 10.1159/000055263. PubMed DOI

Terranova-Barberio M., Roca M.S., Zotti A.I., Leone A., Bruzzese F., Vitagliano C., Scogliamiglio G., Russo D., D’Angelo G., Franco R., et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715–7731. doi: 10.18632/oncotarget.6802. PubMed DOI PMC

Grem J.L., Keith B. Mechanisms of Action of Cancer Chemotherapeutic Agents: Antimetabolites. In: Alison M.R., editor. The Cancer Handbook. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2005.

Ligasová A., Piskláková B., Friedecký D., Koberna K. A new technique for the analysis of metabolic pathways of cytidine analogues and cytidine deaminase activities in cells. Sci. Rep. 2023;13:20530. doi: 10.1038/s41598-023-47792-4. PubMed DOI PMC

Longley D.B., Harkin D.P., Johnston P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074. PubMed DOI

Vodenkova S., Buchler T., Cervena K., Veskrnova V., Vodicka P., Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020;206:107447. doi: 10.1016/j.pharmthera.2019.107447. PubMed DOI

Ligasová A., Koberna K. Quantification of fixed adherent cells using a strong enhancer of the fluorescence of DNA dyes. Sci. Rep. 2019;9:8701. doi: 10.1038/s41598-019-45217-9. PubMed DOI PMC

Cvačková Z., Albring K.F., Koberna K., Ligasová A., Huber O., Raška I., Staněk D. Pontin is localized in nucleolar fibrillar centers. Chromosoma. 2008;117:487–497. doi: 10.1007/s00412-008-0170-8. PubMed DOI PMC

Ligasová A., Frydrych I., Piskláková B., Friedecký D., Koberna K. The kinetics of uracil-N-glycosylase distribution inside replication foci. Sci. Rep. 2025;15:3026. doi: 10.1038/s41598-024-84408-x. PubMed DOI PMC

Ligasová A., Vydržalová M., Burianová R., Bručková L., Večeřová R., Janošťáková A., Koberna K. A New Sensitive Method for the Detection of Mycoplasmas Using Fluorescence Microscopy. Cells. 2019;8:1510. doi: 10.3390/cells8121510. PubMed DOI PMC

Ligasová A., Rosenberg I., Bocková M., Homola J., Koberna K. Anchored linear oligonucleotides: The effective tool for the real-time measurement of uracil DNA glycosylase activity. Open Biol. 2021;11:210136. doi: 10.1098/rsob.210136. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC

Kamentsky L., Jones T.R., Fraser A., Bray M.A., Logan D.J., Madden K.L., Ljosa V., Rueden C., Eliceiri K.W., Carpenter A.E. Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics. 2011;27:1179–1180. doi: 10.1093/bioinformatics/btr095. PubMed DOI PMC

Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...