A Rapid Approach for Identifying Cell Lines Lacking Functional Cytidine Deaminase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU22-08-00148
Ministry of Health
TN01000013
Technology Agency of the Czech Republic
LM2018133
Ministry of Education Youth and Sports
LX22NPO5102
Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004644
Ministry of Education Youth and Sports
LM2023033
Ministry of Education Youth and Sports
PubMed
40244204
PubMed Central
PMC11989883
DOI
10.3390/ijms26073344
PII: ijms26073344
Knihovny.cz E-zdroje
- Klíčová slova
- 5-fluorocytidine deamination, 5-fluorouridine, cytidine deaminase, equilibrative and concentrative nucleoside transporters,
- MeSH
- buněčné linie MeSH
- cytidin analogy a deriváty metabolismus MeSH
- cytidindeaminasa * metabolismus nedostatek genetika MeSH
- lidé MeSH
- uridin analogy a deriváty metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-fluorouridine MeSH Prohlížeč
- cytidin MeSH
- cytidindeaminasa * MeSH
- uridin MeSH
CDD plays a pivotal role within the pyrimidine salvage pathway. In this study, a novel, rapid method for the identification of cell lines lacking functional cytidine deaminase was developed. This innovative method utilizes immunocytochemical detection of the product of 5-fluorocytidine deamination, 5-fluorouridine in cellular RNA, enabling the identification of these cells within two hours. The approach employs an anti-bromodeoxyuridine antibody that also specifically binds to 5-fluorouridine and its subsequent detection by a fluorescently labeled antibody. Our results also revealed a strong correlation between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and cytidine deaminase content. On the other hand, no correlation was observed between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and deoxycytidine monophosphate deaminase content. Similarly, no correlation was observed between this ratio and equilibrative nucleoside transporters 1 or 2. Finally, concentrative nucleoside transporters 1, 2, or 3 also do not correlate with the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio.
Zobrazit více v PubMed
Frances A., Cordelier P. The Emerging Role of Cytidine Deaminase in Human Diseases: A New Opportunity for Therapy? Mol. Ther. 2020;28:357–366. doi: 10.1016/j.ymthe.2019.11.026. PubMed DOI PMC
de Vos D., van Overveld W. Decitabine: A historical review of the development of an epigenetic drug. Ann. Hematol. 2005;84((Suppl. S1)):3–8. doi: 10.1007/s00277-005-0008-x. PubMed DOI PMC
Gilbert J.A., Salavaggione O.E., Ji Y., Pelleymounter L.L., Eckloff B.W., Wieben E.D., Ames M.M., Weinshilboum R.M. Gemcitabine pharmacogenomics: Cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin. Cancer Res. 2006;12:1794–1803. doi: 10.1158/1078-0432.CCR-05-1969. PubMed DOI
Hamada A., Kawaguchi T., Nakano M. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet. 2002;41:705–718. doi: 10.2165/00003088-200241100-00002. PubMed DOI
Heinemann V., Xu Y.Z., Chubb S., Sen A., Hertel L.W., Grindey G.B., Plunkett W. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: A mechanism of self-potentiation. Cancer Res. 1992;52:533–539. PubMed
Lamba J.K. Pharmacogenomics of cytarabine in childhood leukemia. Pharmacogenomics. 2011;12:1629–1632. doi: 10.2217/pgs.11.148. PubMed DOI
Xu Y.Z., Plunkett W. Modulation of deoxycytidylate deaminase in intact human leukemia cells. Action of 2′,2′-difluorodeoxycytidine. Biochem. Pharmacol. 1992;44:1819–1827. doi: 10.1016/0006-2952(92)90077-v. PubMed DOI
de Sousa Cavalcante L., Monteiro G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 2014;741:8–16. doi: 10.1016/j.ejphar.2014.07.041. PubMed DOI
Mini E., Nobili S., Caciagli B., Landini I., Mazzei T. Cellular pharmacology of gemcitabine. Ann. Oncol. 2006;17((Suppl. S5)):v7–v12. doi: 10.1093/annonc/mdj941. PubMed DOI
Hamed S.S., Straubinger R.M., Jusko W.J. Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. Cancer Chemother. Pharmacol. 2013;72:553–563. doi: 10.1007/s00280-013-2226-6. PubMed DOI PMC
Grant S. Ara-C: Cellular and molecular pharmacology. Adv. Cancer Res. 1998;72:197–233. doi: 10.1016/s0065-230x(08)60703-4. PubMed DOI
Issa J.P., Gharibyan V., Cortes J., Jelinek J., Morris G., Verstovsek S., Talpaz M., Garcia-Manero G., Kantarjian H.M. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 2005;23:3948–3956. doi: 10.1200/JCO.2005.11.981. PubMed DOI
Jones P.A., Taylor S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93. doi: 10.1016/0092-8674(80)90237-8. PubMed DOI
Budman D.R., Meropol N.J., Reigner B., Creaven P.J., Lichtman S.M., Berghorn E., Behr J., Gordon R.J., Osterwalder B., Griffin T. Preliminary studies of a novel oral fluoropyrimidine carbamate: Capecitabine. J. Clin. Oncol. 1998;16:1795–1802. doi: 10.1200/JCO.1998.16.5.1795. PubMed DOI
Miwa M., Ura M., Nishida M., Sawada N., Ishikawa T., Mori K., Shimma N., Umeda I., Ishitsuka H. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer. 1998;34:1274–1281. doi: 10.1016/s0959-8049(98)00058-6. PubMed DOI
Ishikawa T., Sekiguchi F., Fukase Y., Sawada N., Ishitsuka H. Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res. 1998;58:685–690. PubMed
Verweij J. Rational design of new tumoractivated cytotoxic agents. Oncology. 1999;57((Suppl. S1)):9–15. doi: 10.1159/000055263. PubMed DOI
Terranova-Barberio M., Roca M.S., Zotti A.I., Leone A., Bruzzese F., Vitagliano C., Scogliamiglio G., Russo D., D’Angelo G., Franco R., et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715–7731. doi: 10.18632/oncotarget.6802. PubMed DOI PMC
Grem J.L., Keith B. Mechanisms of Action of Cancer Chemotherapeutic Agents: Antimetabolites. In: Alison M.R., editor. The Cancer Handbook. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2005.
Ligasová A., Piskláková B., Friedecký D., Koberna K. A new technique for the analysis of metabolic pathways of cytidine analogues and cytidine deaminase activities in cells. Sci. Rep. 2023;13:20530. doi: 10.1038/s41598-023-47792-4. PubMed DOI PMC
Longley D.B., Harkin D.P., Johnston P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074. PubMed DOI
Vodenkova S., Buchler T., Cervena K., Veskrnova V., Vodicka P., Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020;206:107447. doi: 10.1016/j.pharmthera.2019.107447. PubMed DOI
Ligasová A., Koberna K. Quantification of fixed adherent cells using a strong enhancer of the fluorescence of DNA dyes. Sci. Rep. 2019;9:8701. doi: 10.1038/s41598-019-45217-9. PubMed DOI PMC
Cvačková Z., Albring K.F., Koberna K., Ligasová A., Huber O., Raška I., Staněk D. Pontin is localized in nucleolar fibrillar centers. Chromosoma. 2008;117:487–497. doi: 10.1007/s00412-008-0170-8. PubMed DOI PMC
Ligasová A., Frydrych I., Piskláková B., Friedecký D., Koberna K. The kinetics of uracil-N-glycosylase distribution inside replication foci. Sci. Rep. 2025;15:3026. doi: 10.1038/s41598-024-84408-x. PubMed DOI PMC
Ligasová A., Vydržalová M., Burianová R., Bručková L., Večeřová R., Janošťáková A., Koberna K. A New Sensitive Method for the Detection of Mycoplasmas Using Fluorescence Microscopy. Cells. 2019;8:1510. doi: 10.3390/cells8121510. PubMed DOI PMC
Ligasová A., Rosenberg I., Bocková M., Homola J., Koberna K. Anchored linear oligonucleotides: The effective tool for the real-time measurement of uracil DNA glycosylase activity. Open Biol. 2021;11:210136. doi: 10.1098/rsob.210136. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Kamentsky L., Jones T.R., Fraser A., Bray M.A., Logan D.J., Madden K.L., Ljosa V., Rueden C., Eliceiri K.W., Carpenter A.E. Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics. 2011;27:1179–1180. doi: 10.1093/bioinformatics/btr095. PubMed DOI PMC
Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC