Anchored linear oligonucleotides: the effective tool for the real-time measurement of uracil DNA glycosylase activity
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34665968
PubMed Central
PMC8526170
DOI
10.1098/rsob.210136
Knihovny.cz E-resources
- Keywords
- Förster resonance energy transfer, base excision repair, immobilized oligonucleotides, surface plasmon resonance, uracil DNA glycosylase,
- MeSH
- Cell Nucleus metabolism MeSH
- Humans MeSH
- Magnetic Iron Oxide Nanoparticles MeSH
- Oligonucleotide Probes chemistry metabolism MeSH
- DNA Repair MeSH
- Fluorescence Resonance Energy Transfer MeSH
- Uracil-DNA Glycosidase metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Oligonucleotide Probes MeSH
- Uracil-DNA Glycosidase MeSH
Base excision repair is one of the important DNA repair mechanisms in cells. The fundamental role in this complex process is played by DNA glycosylases. Here, we present a novel approach for the real-time measurement of uracil DNA glycosylase activity, which employs selected oligonucleotides immobilized on the surface of magnetic nanoparticles and Förster resonance energy transfer. We also show that the approach can be performed by surface plasmon resonance sensor technology. We demonstrate that the immobilization of oligonucleotides provides much more reliable data than the free oligonucleotides including molecular beacons. Moreover, our results show that the method provides the possibility to address the relationship between the efficiency of uracil DNA glycosylase activity and the arrangement of the used oligonucleotide probes. For instance, the introduction of the nick into oligonucleotide containing the target base (uracil) resulted in the substantial decrease of uracil DNA glycosylase activity of both the bacterial glycosylase and glycosylases naturally present in nuclear lysates.
See more in PubMed
Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475-1485. (10.1056/NEJMra0804615) PubMed DOI
Pan MR, Li K, Lin SY, Hung WC. 2016. Connecting the dots: from DNA damage and repair to aging. Int. J. Mol. Sci. 17, 685. (10.3390/ijms17050685) PubMed DOI PMC
Dobbelstein M, Sorensen CS. 2015. Exploiting replicative stress to treat cancer. Nat. Rev. Drug Discov. 14, 405-423. (10.1038/nrd4553) PubMed DOI
Chow HM, Herrup K. 2015. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 16, 672-684. (10.1038/nrn4020) PubMed DOI
Ishida T, Ishida M, Tashiro S, Yoshizumi M, Kihara Y. 2014. Role of DNA damage in cardiovascular disease. Circ. J. 78, 42-50. (10.1253/circj.cj-13-1194) PubMed DOI
Madabhushi R, Pan L, Tsai LH. 2014. DNA damage and its links to neurodegeneration. Neuron 83, 266-282. (10.1016/j.neuron.2014.06.034) PubMed DOI PMC
Grundy GJ, Parsons JL. 2020. Base excision repair and its implications to cancer therapy. Essays Biochem. 64, 831-843. (10.1042/EBC20200013) PubMed DOI PMC
Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA. 2001. Base excision repair in nuclear and mitochondrial DNA. Prog. Nucleic Acid Res. Mol. Biol. 68, 285-297. (10.1016/s0079-6603(01)68107-8) PubMed DOI
Sharma RA, Dianov GL. 2007. Targeting base excision repair to improve cancer therapies. Mol. Aspects Med. 28, 345-374. (10.1016/j.mam.2007.06.002) PubMed DOI
Demple B, Herman T, Chen DS. 1991. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl Acad. Sci. USA 88, 11 450-11 454. (10.1073/pnas.88.24.11450) PubMed DOI PMC
Robson CN, Hickson ID. 1991. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 19, 5519-5523. (10.1093/nar/19.20.5519) PubMed DOI PMC
Burra S, Marasco D, Malfatti MC, Antoniali G, Virgilio A, Esposito V, Demple B, Galeone A, Tell G. 2019. Human AP-endonuclease (Ape1) activity on telomeric G4 structures is modulated by acetylatable lysine residues in the N-terminal sequence. DNA Repair. 73, 129-143. (10.1016/j.dnarep.2018.11.010) PubMed DOI PMC
Poletto M, Vascotto C, Scognamiglio PL, Lirussi L, Marasco D, Tell G. 2013. Role of the unstructured N-terminal domain of the hAPE1 (human apurinic/apyrimidinic endonuclease 1) in the modulation of its interaction with nucleic acids and NPM1 (nucleophosmin). Biochem. J. 452, 545-557. (10.1042/BJ20121277) PubMed DOI
Carter RJ, Parsons JL. 2016. Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell Biol. 36, 1426-1437. (10.1128/MCB.00030-16) PubMed DOI PMC
Matsumoto Y, Kim K. 1995. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269, 699-702. (10.1126/science.7624801) PubMed DOI
Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH. 1996. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379, 183-186. (10.1038/379183a0) PubMed DOI
Hardeland U, Kunz C, Focke F, Szadkowski M, Schar P. 2007. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2. Nucleic Acids Res. 35, 3859-3867. (10.1093/nar/gkm337) PubMed DOI PMC
Krokan HE, Bjoras M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583. (10.1101/cshperspect.a012583) PubMed DOI PMC
Hagen L, et al. 2008. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J. 27, 51-61. (10.1038/sj.emboj.7601958) PubMed DOI PMC
Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, Schar P. 2001. Thymine DNA glycosylase. Prog. Nucleic Acid Res. Mol. Biol. 68, 235-253. (10.1016/s0079-6603(01)68103-0) PubMed DOI
Visnes T, Akbari M, Hagen L, Slupphaug G, Krokan HE. 2008. The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair (Amst.) 7, 1869-1881. (10.1016/j.dnarep.2008.07.012) PubMed DOI
Pettersen HS, Visnes T, Vagbo CB, Svaasand EK, Doseth B, Slupphaug G, Kavli B, Krokan HE. 2011. UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res. 39, 8430-8444. (10.1093/nar/gkr563) PubMed DOI PMC
Bulgar AD, et al. 2012. Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Cell Death Dis. 3, e252. (10.1038/cddis.2011.135) PubMed DOI PMC
Weeks LD, Fu P, Gerson SL. 2013. Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol. Cancer Ther. 12, 2248-2260. (10.1158/1535-7163.MCT-13-0172) PubMed DOI PMC
Karran P, Lindahl T. 1978. Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues. J. Biol. Chem. 253, 5877-5879. (10.1016/S0021-9258(17)34545-3) PubMed DOI
Kreklau EL, Limp-Foster M, Liu N, Xu Y, Kelley MR, Erickson LC. 2001. A novel fluorometric oligonucleotide assay to measure O(6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res. 29, 2558-2566. (10.1093/nar/29.12.2558) PubMed DOI PMC
Ljungquist S. 1977. A new endonuclease from Escherichia coli acting at apurinic sites in DNA. J. Biol. Chem. 252, 2808-2814. (10.1016/S0021-9258(17)40434-0) PubMed DOI
Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder RH, Saparbaev MK. 2004. A molecular beacon assay for measuring base excision repair activities. Biochem. Biophys. Res. Commun. 319, 240-246. (10.1016/j.bbrc.2004.04.179) PubMed DOI
Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S. 1991. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl Acad. Sci. USA 88, 4690-4694. (10.1073/pnas.88.11.4690) PubMed DOI PMC
Chen MJ, Li WK, Ma CB, Wu KF, He HL, Wang KM. 2019. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Microchim. Acta 186, 110. (10.1007/s00604-019-3247-6) PubMed DOI
Kim Y, Park Y, Lee CY, Park HG. 2020. Colorimetric assay for uracil DNA glycosylase activity based on toehold-mediated strand displacement circuit. Biotechnol. J. 15, e1900420. (10.1002/biot.201900420) PubMed DOI
Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL. 2015. Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 140, 5998-6004. (10.1039/c5an01158b) PubMed DOI
Nie H, Wang W, Li W, Nie Z, Yao S. 2015. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 140, 2771-2777. (10.1039/c4an02339k) PubMed DOI
Li CC, Zhang Y, Tang B, Zhang CY. 2018. Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases. Chem. Commun. (Camb.) 54, 5839-5842. (10.1039/c8cc01695j) PubMed DOI
Kladova OA, Iakovlev DA, Groisman R, Ishchenko AA, Saparbaev MK, Fedorova OS, Kuznetsov NA. 2020. An assay for the activity of base excision repair enzymes in cellular extracts using fluorescent DNA probes. Biochemistry Moscow. 85, 480-489. (10.1134/S0006297920040082) PubMed DOI
Li J, Svilar D, McClellan S, Kim JH, Ahn EE, Vens C, Wilson DM, Sobol RW III. 2018. DNA repair molecular beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 9, 31 719-31 743. (10.18632/oncotarget.25859) PubMed DOI PMC
Pimkova K, Bockova M, Hegnerova K, Suttnar J, Cermak J, Homola J, Dyr JE. 2012. Surface plasmon resonance biosensor for the detection of VEGFR-1-a protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem. 402, 381-387. (10.1007/s00216-011-5395-3) PubMed DOI
Springer T, Piliarik M, Homola J. 2010. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sens. Actuator B-Chem. 145, 588-591. (10.1016/j.snb.2009.11.018) DOI
Herranz S, Bockova M, Marazuela MD, Homola J, Moreno-Bondi MC. 2010. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal. Chem. 398, 2625-2634. (10.1007/s00216-010-3856-8) PubMed DOI
Vaisocherova H, Brynda E, Homola J. 2015. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal. Bioanal. Chem. 407, 3927-3953. (10.1007/s00216-015-8606-5) PubMed DOI
Ligasova A, Vydrzalova M, Burianova R, Bruckova L, Vecerova R, Janost'akova A, Koberna K. 2019. A new sensitive method for the detection of mycoplasmas using fluorescence microscopy. Cells 8, 1510. (10.3390/cells8121510) PubMed DOI PMC
Ligasova A, Liboska R, Friedecky D, Micova K, Adam T, Ozdian T, Rosenberg I, Koberna K. 2016. Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2 ‘-deoxyuridine and 5-ethynyl-2′-deoxycytidine. Open Biol. 6, 150172. (10.1098/rsob.150172) PubMed DOI PMC
Carpenter AE, et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100. (10.1186/gb-2006-7-10-r100) PubMed DOI PMC
Kamentsky L, et al. 2011. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179-1180. (10.1093/bioinformatics/btr095) PubMed DOI PMC
Ligasová A, Rosenberg I, Bocková M, Homola J, Koberna K. 2021. Anchored linear oligonucleotides: the effective tool for the real-time measurement of uracil DNA glycosylase activity. Figshare. PubMed PMC