• This record comes from PubMed

Anchored linear oligonucleotides: the effective tool for the real-time measurement of uracil DNA glycosylase activity

. 2021 Oct ; 11 (10) : 210136. [epub] 20211020

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Base excision repair is one of the important DNA repair mechanisms in cells. The fundamental role in this complex process is played by DNA glycosylases. Here, we present a novel approach for the real-time measurement of uracil DNA glycosylase activity, which employs selected oligonucleotides immobilized on the surface of magnetic nanoparticles and Förster resonance energy transfer. We also show that the approach can be performed by surface plasmon resonance sensor technology. We demonstrate that the immobilization of oligonucleotides provides much more reliable data than the free oligonucleotides including molecular beacons. Moreover, our results show that the method provides the possibility to address the relationship between the efficiency of uracil DNA glycosylase activity and the arrangement of the used oligonucleotide probes. For instance, the introduction of the nick into oligonucleotide containing the target base (uracil) resulted in the substantial decrease of uracil DNA glycosylase activity of both the bacterial glycosylase and glycosylases naturally present in nuclear lysates.

See more in PubMed

Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475-1485. (10.1056/NEJMra0804615) PubMed DOI

Pan MR, Li K, Lin SY, Hung WC. 2016. Connecting the dots: from DNA damage and repair to aging. Int. J. Mol. Sci. 17, 685. (10.3390/ijms17050685) PubMed DOI PMC

Dobbelstein M, Sorensen CS. 2015. Exploiting replicative stress to treat cancer. Nat. Rev. Drug Discov. 14, 405-423. (10.1038/nrd4553) PubMed DOI

Chow HM, Herrup K. 2015. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 16, 672-684. (10.1038/nrn4020) PubMed DOI

Ishida T, Ishida M, Tashiro S, Yoshizumi M, Kihara Y. 2014. Role of DNA damage in cardiovascular disease. Circ. J. 78, 42-50. (10.1253/circj.cj-13-1194) PubMed DOI

Madabhushi R, Pan L, Tsai LH. 2014. DNA damage and its links to neurodegeneration. Neuron 83, 266-282. (10.1016/j.neuron.2014.06.034) PubMed DOI PMC

Grundy GJ, Parsons JL. 2020. Base excision repair and its implications to cancer therapy. Essays Biochem. 64, 831-843. (10.1042/EBC20200013) PubMed DOI PMC

Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA. 2001. Base excision repair in nuclear and mitochondrial DNA. Prog. Nucleic Acid Res. Mol. Biol. 68, 285-297. (10.1016/s0079-6603(01)68107-8) PubMed DOI

Sharma RA, Dianov GL. 2007. Targeting base excision repair to improve cancer therapies. Mol. Aspects Med. 28, 345-374. (10.1016/j.mam.2007.06.002) PubMed DOI

Demple B, Herman T, Chen DS. 1991. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl Acad. Sci. USA 88, 11 450-11 454. (10.1073/pnas.88.24.11450) PubMed DOI PMC

Robson CN, Hickson ID. 1991. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 19, 5519-5523. (10.1093/nar/19.20.5519) PubMed DOI PMC

Burra S, Marasco D, Malfatti MC, Antoniali G, Virgilio A, Esposito V, Demple B, Galeone A, Tell G. 2019. Human AP-endonuclease (Ape1) activity on telomeric G4 structures is modulated by acetylatable lysine residues in the N-terminal sequence. DNA Repair. 73, 129-143. (10.1016/j.dnarep.2018.11.010) PubMed DOI PMC

Poletto M, Vascotto C, Scognamiglio PL, Lirussi L, Marasco D, Tell G. 2013. Role of the unstructured N-terminal domain of the hAPE1 (human apurinic/apyrimidinic endonuclease 1) in the modulation of its interaction with nucleic acids and NPM1 (nucleophosmin). Biochem. J. 452, 545-557. (10.1042/BJ20121277) PubMed DOI

Carter RJ, Parsons JL. 2016. Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell Biol. 36, 1426-1437. (10.1128/MCB.00030-16) PubMed DOI PMC

Matsumoto Y, Kim K. 1995. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269, 699-702. (10.1126/science.7624801) PubMed DOI

Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH. 1996. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379, 183-186. (10.1038/379183a0) PubMed DOI

Hardeland U, Kunz C, Focke F, Szadkowski M, Schar P. 2007. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2. Nucleic Acids Res. 35, 3859-3867. (10.1093/nar/gkm337) PubMed DOI PMC

Krokan HE, Bjoras M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583. (10.1101/cshperspect.a012583) PubMed DOI PMC

Hagen L, et al. 2008. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J. 27, 51-61. (10.1038/sj.emboj.7601958) PubMed DOI PMC

Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, Schar P. 2001. Thymine DNA glycosylase. Prog. Nucleic Acid Res. Mol. Biol. 68, 235-253. (10.1016/s0079-6603(01)68103-0) PubMed DOI

Visnes T, Akbari M, Hagen L, Slupphaug G, Krokan HE. 2008. The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair (Amst.) 7, 1869-1881. (10.1016/j.dnarep.2008.07.012) PubMed DOI

Pettersen HS, Visnes T, Vagbo CB, Svaasand EK, Doseth B, Slupphaug G, Kavli B, Krokan HE. 2011. UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res. 39, 8430-8444. (10.1093/nar/gkr563) PubMed DOI PMC

Bulgar AD, et al. 2012. Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Cell Death Dis. 3, e252. (10.1038/cddis.2011.135) PubMed DOI PMC

Weeks LD, Fu P, Gerson SL. 2013. Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol. Cancer Ther. 12, 2248-2260. (10.1158/1535-7163.MCT-13-0172) PubMed DOI PMC

Karran P, Lindahl T. 1978. Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues. J. Biol. Chem. 253, 5877-5879. (10.1016/S0021-9258(17)34545-3) PubMed DOI

Kreklau EL, Limp-Foster M, Liu N, Xu Y, Kelley MR, Erickson LC. 2001. A novel fluorometric oligonucleotide assay to measure O(6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res. 29, 2558-2566. (10.1093/nar/29.12.2558) PubMed DOI PMC

Ljungquist S. 1977. A new endonuclease from Escherichia coli acting at apurinic sites in DNA. J. Biol. Chem. 252, 2808-2814. (10.1016/S0021-9258(17)40434-0) PubMed DOI

Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder RH, Saparbaev MK. 2004. A molecular beacon assay for measuring base excision repair activities. Biochem. Biophys. Res. Commun. 319, 240-246. (10.1016/j.bbrc.2004.04.179) PubMed DOI

Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S. 1991. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl Acad. Sci. USA 88, 4690-4694. (10.1073/pnas.88.11.4690) PubMed DOI PMC

Chen MJ, Li WK, Ma CB, Wu KF, He HL, Wang KM. 2019. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Microchim. Acta 186, 110. (10.1007/s00604-019-3247-6) PubMed DOI

Kim Y, Park Y, Lee CY, Park HG. 2020. Colorimetric assay for uracil DNA glycosylase activity based on toehold-mediated strand displacement circuit. Biotechnol. J. 15, e1900420. (10.1002/biot.201900420) PubMed DOI

Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL. 2015. Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 140, 5998-6004. (10.1039/c5an01158b) PubMed DOI

Nie H, Wang W, Li W, Nie Z, Yao S. 2015. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 140, 2771-2777. (10.1039/c4an02339k) PubMed DOI

Li CC, Zhang Y, Tang B, Zhang CY. 2018. Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases. Chem. Commun. (Camb.) 54, 5839-5842. (10.1039/c8cc01695j) PubMed DOI

Kladova OA, Iakovlev DA, Groisman R, Ishchenko AA, Saparbaev MK, Fedorova OS, Kuznetsov NA. 2020. An assay for the activity of base excision repair enzymes in cellular extracts using fluorescent DNA probes. Biochemistry Moscow. 85, 480-489. (10.1134/S0006297920040082) PubMed DOI

Li J, Svilar D, McClellan S, Kim JH, Ahn EE, Vens C, Wilson DM, Sobol RW III. 2018. DNA repair molecular beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 9, 31 719-31 743. (10.18632/oncotarget.25859) PubMed DOI PMC

Pimkova K, Bockova M, Hegnerova K, Suttnar J, Cermak J, Homola J, Dyr JE. 2012. Surface plasmon resonance biosensor for the detection of VEGFR-1-a protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem. 402, 381-387. (10.1007/s00216-011-5395-3) PubMed DOI

Springer T, Piliarik M, Homola J. 2010. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sens. Actuator B-Chem. 145, 588-591. (10.1016/j.snb.2009.11.018) DOI

Herranz S, Bockova M, Marazuela MD, Homola J, Moreno-Bondi MC. 2010. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal. Chem. 398, 2625-2634. (10.1007/s00216-010-3856-8) PubMed DOI

Vaisocherova H, Brynda E, Homola J. 2015. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal. Bioanal. Chem. 407, 3927-3953. (10.1007/s00216-015-8606-5) PubMed DOI

Ligasova A, Vydrzalova M, Burianova R, Bruckova L, Vecerova R, Janost'akova A, Koberna K. 2019. A new sensitive method for the detection of mycoplasmas using fluorescence microscopy. Cells 8, 1510. (10.3390/cells8121510) PubMed DOI PMC

Ligasova A, Liboska R, Friedecky D, Micova K, Adam T, Ozdian T, Rosenberg I, Koberna K. 2016. Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2 ‘-deoxyuridine and 5-ethynyl-2′-deoxycytidine. Open Biol. 6, 150172. (10.1098/rsob.150172) PubMed DOI PMC

Carpenter AE, et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100. (10.1186/gb-2006-7-10-r100) PubMed DOI PMC

Kamentsky L, et al. 2011. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179-1180. (10.1093/bioinformatics/btr095) PubMed DOI PMC

Ligasová A, Rosenberg I, Bocková M, Homola J, Koberna K. 2021. Anchored linear oligonucleotides: the effective tool for the real-time measurement of uracil DNA glycosylase activity. Figshare. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...