Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2'-deoxyuridine and 5-ethynyl-2'-deoxycytidine
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26740587
PubMed Central
PMC4736823
DOI
10.1098/rsob.150172
PII: rsob.150172
Knihovny.cz E-zdroje
- Klíčová slova
- 5-ethynyl-2′-deoxycytidine, 5-ethynyl-2′-deoxyuridine, DNA replication, cytidine deaminase, dCMP deaminase,
- MeSH
- bromodeoxyuridin metabolismus MeSH
- buněčná smrt MeSH
- buněčné jádro metabolismus MeSH
- cytidindeaminasa metabolismus MeSH
- deoxycytidin analogy a deriváty metabolismus MeSH
- deoxyuridin analogy a deriváty metabolismus MeSH
- DNA metabolismus MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- metabolom MeSH
- nádorové buněčné linie MeSH
- protilátky metabolismus MeSH
- replikace DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-ethynyl-2'-deoxycytidine MeSH Prohlížeč
- 5-ethynyl-2'-deoxyuridine MeSH Prohlížeč
- bromodeoxyuridin MeSH
- cytidindeaminasa MeSH
- deoxycytidin MeSH
- deoxyuridin MeSH
- DNA MeSH
- malá interferující RNA MeSH
- protilátky MeSH
5-Ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC) are mainly used as markers of cellular replicational activity. Although EdU is employed as a replicational marker more frequently than EdC, its cytotoxicity is commonly much higher than the toxicity of EdC. To reveal the reason of the lower cytotoxicity of EdC, we performed a DNA analysis of five EdC-treated human cell lines. Surprisingly, not a single one of the tested cell lines contained a detectable amount of EdC in their DNA. Instead, the DNA of all the cell lines contained EdU. The content of incorporated EdU differed in particular cells and EdC-related cytotoxicity was directly proportional to the content of EdU. The results of experiments with the targeted inhibition of the cytidine deaminase (CDD) and dCMP deaminase activities indicated that the dominant role in the conversion pathway of EdC to EdUTP is played by CDD in HeLa cells. Our results also showed that the deamination itself was not able to effectively prevent the conversion of EdC to EdCTP, the conversion of EdC to EdCTP occurs with much lesser effectivity than the conversion of EdU to EdUTP and the EdCTP is not effectively recognized by the replication complex as a substrate for the synthesis of nuclear DNA.
Zobrazit více v PubMed
De Clercq E, et al. 1982. Antiviral, antimetabolic, and cytotoxic activities of 5-substituted 2′-deoxycytidines. Mol. Pharmacol. 21, 217–223. PubMed
De Clercq E, Descamps J, De Somer P, Barr PJ, Jones AS, Walker RT. 1979. (E)-5-(2-Bromovinyl)-2′-deoxyuridine: a potent and selective anti-herpes agent. Proc. Natl Acad. Sci. USA 76, 2947–2951. (doi:10.1073/pnas.76.6.2947) PubMed DOI PMC
Guo J, Li D, Bai S, Xu T, Zhou Z, Zhang Y. 2012. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2′-deoxyuridine. Cardiovasc. Diabetol. 11, 150 (doi:10.1186/1475-2840-11-150) PubMed DOI PMC
Hoshi O, Ushiki T. 2011. Replication banding patterns in human chromosomes detected using 5-ethynyl-2′-deoxyuridine incorporation. Acta Histochem. Cytochem. 44, 233–237. (doi:10.1267/ahc.11029) PubMed DOI PMC
Qu D, Wang G, Wang Z, Zhou L, Chi W, Cong S, Ren X, Liang P, Zhang B. 2011. 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells. Anal. Biochem. 417, 112–121. (doi:10.1016/j.ab.2011.05.037) PubMed DOI
Talarek N, Petit J, Gueydon E, Schwob E. 2015. EdU incorporation for FACS and microscopy analysis of DNA replication in budding yeast. Methods Mol. Biol. 1300, 105–112. (doi:10.1007/978-1-4939-2596-4_7) PubMed DOI
Salic A, Mitchison TJ. 2008. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420. (doi:10.1073/pnas.0712168105) PubMed DOI PMC
Ageno M, Dore E, Frontali C. 1969. The alkaline denaturation of DNA. Biophys J. 9, 1281–1311. (doi:10.1016/S0006-3495(69)86452-0) PubMed DOI PMC
Dimitrova DS, Berezney R. 2002. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 115, 4037–4051. (doi:10.1242/jcs.00087) PubMed DOI
Jackson DA, Pombo A. 1998. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295. (doi:10.1083/jcb.140.6.1285) PubMed DOI PMC
Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E. 2000. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 14, 2855–2868. (doi:10.1101/gad.842600) PubMed DOI PMC
Ligasova A, Liboska R, Rosenberg I, Koberna K. 2015. The fingerprint of anti-bromodeoxyuridine antibodies and its use for the assessment of their affinity to 5-bromo-2′-deoxyuridine in cellular DNA under various conditions. PLoS ONE 10, e0132393 (doi:10.1371/journal.pone.0132393) PubMed DOI PMC
Ligasova A, Strunin D, Liboska R, Rosenberg I, Koberna K. 2012. Atomic scissors: a new method of tracking the 5-bromo-2′-deoxyuridine-labeled DNA in situ. PLoS ONE 7, e52584 (doi:10.1371/journal.pone.0052584) PubMed DOI PMC
Tkatchenko AV. 2006. Whole-mount BrdU staining of proliferating cells by DNase treatment: application to postnatal mammalian retina. Biotechniques 40, 29–32. (doi:10.2144/000112094) PubMed DOI
Zhao H, Dobrucki J, Rybak P, Traganos F, Dorota Halicka H, Darzynkiewicz Z. 2011. Induction of DNA damage signaling by oxidative stress in relation to DNA replication as detected using ‘click chemistry’. Cytometry A 79, 897–902. (doi:10.1002/cyto.a.21137) PubMed DOI PMC
Cristofoli WA, Wiebe LI, De Clercq E, Andrei G, Snoeck R, Balzarini J, Knaus EE. 2007. 5-Alkynyl analogs of arabinouridine and 2′-deoxyuridine: cytostatic activity against herpes simplex virus and varicella-zoster thymidine kinase gene-transfected cells. J. Med. Chem. 50, 2851–2857. (doi:10.1021/jm0701472) PubMed DOI
Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G. 2009. Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75, 535–546. (doi:10.1002/cyto.a.20712) PubMed DOI
Kohlmeier F, Maya-Mendoza A, Jackson DA. 2013. EdU induces DNA damage response and cell death in mESC in culture. Chromosome Res. 21, 87–100. (doi:10.1007/s10577-013-9340-5) PubMed DOI PMC
Ligasova A, Strunin D, Friedecky D, Adam T, Koberna K. 2015. A fatal combination: a thymidylate synthase inhibitor with DNA damaging activity. PLoS ONE 10, e0117459 (doi:10.1371/journal.pone.0117459) PubMed DOI PMC
Meneni S, Ott I, Sergeant CD, Sniady A, Gust R, Dembinski R. 2007. 5-Alkynyl-2′-deoxyuridines: chromatography-free synthesis and cytotoxicity evaluation against human breast cancer cells. Bioorg. Med. Chem. 15, 3082–3088. (doi:10.1016/j.bmc.2007.01.048) PubMed DOI PMC
Ross HH, Rahman M, Levkoff LH, Millette S, Martin-Carreras T, Dunbar EM, Reynolds BA, Laywell ED. 2011. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells. J. Neurooncol. 105, 485–498. (doi:10.1007/s11060-011-0621-6) PubMed DOI PMC
Zhao H, Halicka HD, Li J, Biela E, Berniak K, Dobrucki J, Darzynkiewicz Z. 2013. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2′-deoxyuridine incorporated into DNA. Cytometry A 83, 979–988. (doi:10.1002/cyto.a.22396) PubMed DOI PMC
De Clercq E, Descamps J, Huang GF, Torrence PF. 1978. 5-Nitro-2′-deoxyuridine and 5-nitro-2′-deoxyuridine 5′-monophosphate: antiviral activity and inhibition of thymidylate synthetase in vivo. Mol. Pharmacol. 14, 422–430. PubMed
Balzarini J, De Clercq E, Ayusawa D, Seno T. 1985. Incorporation of 5-substituted pyrimidine nucleoside analogues into DNA of a thymidylate synthetase-deficient murine FM3A carcinoma cell line. Methods Find Exp. Clin. Pharmacol. 7, 19–28. PubMed
Galmarini CM, Mackey JR, Dumontet C. 2001. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 15, 875–890. (doi:10.1038/sj.leu.2402114) PubMed DOI
Liboska R, Ligasova A, Strunin D, Rosenberg I, Koberna K. 2012. Most anti-BrdU antibodies react with 2′-deoxy-5-ethynyluridine—the method for the effective suppression of this cross-reactivity. PLoS ONE 7, e51679 (doi:10.1371/journal.pone.0051679) PubMed DOI PMC
Freshney RI. 2005. Cytotoxicity. In Culture of animal cells. A manual of basic techniques (ed. Freshney RI.), pp. 365–369. Hoboken, NJ: John Wiley and Sons, Inc.
Koberna K, Stanek D, Malinsky J, Eltsov M, Pliss A, Ctrnacta V, Cermanova S, Raska I. 1999. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma 108, 325–335. (doi:10.1007/s004120050384) PubMed DOI
Bennett BD, Yuan J, Kimball EH, Rabinowitz JD. 2008. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299–1311. (doi:10.1038/nprot.2008.107) PubMed DOI PMC
Carpenter AE, et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (doi:10.1186/gb-2006-7-10-r100) PubMed DOI PMC
Kamentsky L, et al. 2011. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180. (doi:10.1093/bioinformatics/btr095) PubMed DOI PMC
Nakayasu H, Berezney R. 1989. Mapping replicational sites in the eucaryotic cell nucleus. J. Cell Biol. 108, 1–11. (doi:10.1083/jcb.108.1.1) PubMed DOI PMC
Koberna K, Malinsky J, Pliss A, Masata M, Vecerova J, Fialova M, Bednar J, Raska I. 2002. Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of ‘Christmas trees’ in situ. J. Cell Biol. 157, 743–748. (doi:10.1083/jcb.200202007) PubMed DOI PMC
de Sousa Cavalcante L, Monteiro G. 2014. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 741, 8–16. (doi:10.1016/j.ejphar.2014.07.041) PubMed DOI
Jansen RS, Rosing H, Schellens JH, Beijnen JH. 2011. Deoxyuridine analog nucleotides in deoxycytidine analog treatment: secondary active metabolites? Fundam. Clin. Pharmacol. 25, 172–185. (doi:10.1111/j.1472-8206.2010.00823.x) PubMed DOI
Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W. 1992. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res. 52, 533–539. PubMed
Xu YZ, Plunkett W. 1992. Modulation of deoxycytidylate deaminase in intact human leukemia cells. Action of 2′,2′-difluorodeoxycytidine. Biochem. Pharmacol. 44, 1819–1827. (doi:10.1016/0006-2952(92)90077-V) PubMed DOI
Bouffard DY, Laliberte J, Momparler RL. 1993. Kinetic studies on 2′,2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem. Pharmacol. 45, 1857–1861. (doi:10.1016/0006-2952(93)90444-2) PubMed DOI
Reese ND, Schiller GJ. 2013. High-dose cytarabine (HD araC) in the treatment of leukemias: a review. Curr. Hematol. Malig. Rep. 8, 141–148. (doi:10.1007/s11899-013-0156-3) PubMed DOI
Hamada A, Kawaguchi T, Nakano M. 2002. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet. 41, 705–718. (doi:10.2165/00003088-200241100-00002) PubMed DOI
Gandhi V, Xu YZ, Estey E. 1998. Accumulation of arabinosyluracil 5′-triphosphate during arabinosylcytosine therapy in circulating blasts of patients with acute myelogenous leukemia. Clin. Cancer Res. 4, 1719–1726. PubMed
Momparler RL. 2005. Pharmacology of 5-aza-2′-deoxycytidine (decitabine). Semin. Hematol. 42, S9–S16. (doi:10.1053/j.seminhematol.2005.05.002) PubMed DOI
The kinetics of uracil-N-glycosylase distribution inside replication foci
New Concept and Apparatus for Cytocentrifugation and Cell Processing for Microscopy Analysis
Quantification of fixed adherent cells using a strong enhancer of the fluorescence of DNA dyes
DNA Replication: From Radioisotopes to Click Chemistry