DNA damage can impair normal cellular functions and result in various pathophysiological processes including cardiovascular diseases and cancer. We compared the genotoxic potential of diverse DNA damaging agents, and focused on their effects on the DNA damage response (DDR) and cell fate in human lung cells BEAS-2B. Polycyclic aromatic hydrocarbons [PAHs; benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP)] induced DNA strand breaks and oxidative damage to DNA; anticancer drugs doxorubicin (DOX) and 5-bromo-2'-deoxyuridine (BrdU) were less effective. DOX triggered the most robust p53 signaling indicating activation of DDR, followed by cell cycle arrest in the G2/M phase, induction of apoptosis and senescence, possibly due to the severe and irreparable DNA lesions. BrdU not only activated p53, but also increased the percentage of G1-phased cells and caused a massive accumulation of senescent cells. In contrast, regardless the activation of p53, both PAHs did not substantially affect the cell cycle distribution or senescence. Finally, a small fraction of cells accumulated only in the G2/M phase and exhibited increased cell death after the prolonged incubation with B[a]P. Overall, we characterized differential responses to diverse DNA damaging agents resulting in specific cell fate and highlighted the key role of DNA lesion type and the p53 signaling persistence.
- MeSH
- Apoptosis MeSH
- Bromodeoxyuridine pharmacology MeSH
- DNA MeSH
- Humans MeSH
- Tumor Suppressor Protein p53 * metabolism MeSH
- Lung metabolism MeSH
- Polycyclic Aromatic Hydrocarbons * toxicity MeSH
- DNA Damage MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cellular growth and the preparation of cells for division between two successive cell divisions is called the cell cycle. The cell cycle is divided into several phases; the length of these particular cell cycle phases is an important characteristic of cell life. The progression of cells through these phases is a highly orchestrated process governed by endogenous and exogenous factors. For the elucidation of the role of these factors, including pathological aspects, various methods have been developed. Among these methods, those focused on the analysis of the duration of distinct cell cycle phases play important role. The main aim of this review is to guide the readers through the basic methods of the determination of cell cycle phases and estimation of their length, with a focus on the effectiveness and reproducibility of the described methods.
The reported method allows for a simple and rapid monitoring of DNA replication and cell cycle progression in eukaryotic cells in vitro. The DNA of replicating cells is labeled by incorporation of a metabolically-active fluorescent (Cy3) deoxyuridine triphosphate derivative, which is delivered into the cells by a synthetic transporter (SNTT1). The cells are then fixed, stained with DAPI and analyzed by flow cytometry. Thus, this protocol obviates post-labeling steps, which are indispensable in currently used incorporation assays (BrdU, EdU). The applicability of the protocol is demonstrated in analyses of cell cycles of adherent (U-2 OS, HeLa S3, RAW 264.7, J774 A.1, Chem-1, U-87 MG) and suspension (CCRF-CEM, MOLT-4, THP-1, HL-60, JURKAT) cell cultures, including those affected by a DNA polymerase inhibitor (aphidicolin). Owing to a short incorporation time (5-60 min) and reduced number of steps, the protocol can be completed within 1-2 h with a minimal cell loss and with excellent reproducibility.
- MeSH
- Staining and Labeling methods MeSH
- Bromodeoxyuridine administration & dosage MeSH
- Cell Cycle * MeSH
- DNA analysis MeSH
- Fluorescent Dyes administration & dosage MeSH
- HeLa Cells MeSH
- HL-60 Cells MeSH
- Jurkat Cells MeSH
- Carbocyanines administration & dosage MeSH
- Humans MeSH
- Flow Cytometry methods MeSH
- DNA Replication * MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π-π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.
- MeSH
- Deoxyuridine chemistry MeSH
- G-Quadruplexes * MeSH
- Humans MeSH
- Models, Molecular MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Promoter Regions, Genetic MeSH
- Proto-Oncogene Proteins c-kit genetics MeSH
- Pyrenes chemistry MeSH
- Thermodynamics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate β-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of β-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage.
- MeSH
- Adaptor Proteins, Signal Transducing genetics metabolism MeSH
- Bacterial Proteins metabolism MeSH
- DNA chemistry genetics MeSH
- Floxuridine MeSH
- Glycosyltransferases metabolism MeSH
- Helicobacter pylori metabolism pathogenicity MeSH
- Helicobacter Infections metabolism microbiology MeSH
- Host-Pathogen Interactions physiology MeSH
- Humans MeSH
- Lipopolysaccharides metabolism MeSH
- Mutation MeSH
- Cell Line, Tumor MeSH
- Stomach Neoplasms genetics microbiology pathology MeSH
- NF-kappa B genetics metabolism MeSH
- DNA Damage MeSH
- Protein Kinases genetics metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- DNA Replication drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Streptococcus pneumoniae is a Gram-positive bacterium that is a major agent of community-acquired bacterial pneumonia, meningitis and sepsis. Although the mismatch repair function of S. pneumoniae has been assigned to the hexA-hexB gene products, an enzyme capable of the direct elimination of noncanonical nucleotides from the cytoplasm has not been described for this bacterium. Our results show that Spr1057, a protein with previously unknown function, is involved in the inactivation of mutagenic pyrimidine nucleotides and was accordingly designated PynA (pyrimidine nucleotidase A). Biochemical assays confirmed the phosphatase activity of the recombinant enzyme and revealed its metal ion dependence for optimal enzyme activity. We demonstrated that PynA forms a homodimer with higher in vitro activity towards noncanonical 5-fluoro-2'-deoxyuridine monophosphate than towards canonical thymidine monophosphate. Furthermore, we showed via in vivo assays that PynA protects cells against noncanonical pyrimidine derivatives such as 5-fluoro-2'-deoxyuridine and prevents the incorporation of the potentially mutagenic 5-bromo-2'-deoxyuridine (5-BrdU) into DNA. Fluctuation analysis performed under S. pneumoniae exposure to 5-BrdU revealed that the pynA null strain accumulates random mutations with high frequency, resulting in a 30-fold increase in the mutation rate. The data support a model in which PynA, a protein conserved in other Gram-positive bacteria, functions as a house-cleaning enzyme by selectively eliminating noncanonical nucleotides and maintaining the purity of dNTP pools, similar to the YjjG protein described for Escherichia coli.
- MeSH
- 5'-Nucleotidase chemistry metabolism MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Deoxyuridine metabolism MeSH
- Cations metabolism MeSH
- Mutation Rate * MeSH
- Streptococcus pneumoniae enzymology genetics MeSH
- Substrate Specificity MeSH
- Thymidine Monophosphate metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The thymidine analogues BrdU (5-bromo-2´-deoxyuridine) and EdU (5-ethynyl-2´-deoxyuridine) are routinely used for determination of the cells synthesizing DNA in the S-phase of the cell cycle. Availability of the anti-BrdU antibody clone MoBu-1 detecting only BrdU allowed to develop a method for the sequential DNA labelling by these two thymidine analogues for determining the cell cycle kinetic parameters.In the current step-by-step protocol, we present` two approaches optimized for in vivo study of the cell cycle and the limitations that such approaches imply: (1) determination of the cell flow rate into the G2-phase by dual EdU/BrdU DNA-labelling method and (2) determination of the outflow of DNA-labelled cells arising from the mitosis.
- MeSH
- Data Analysis MeSH
- Staining and Labeling methods MeSH
- Bromodeoxyuridine metabolism MeSH
- Cell Differentiation MeSH
- Cell Cycle * MeSH
- Bone Marrow Cells metabolism MeSH
- Deoxyuridine analogs & derivatives MeSH
- DNA biosynthesis MeSH
- Immunophenotyping MeSH
- Mitosis MeSH
- Mice MeSH
- Flow Cytometry MeSH
- Rheology MeSH
- S Phase MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.
- MeSH
- Arabidopsis cytology genetics MeSH
- Cell Nucleolus metabolism MeSH
- Deoxyuridine analogs & derivatives metabolism MeSH
- Transcription, Genetic MeSH
- Plant Roots metabolism MeSH
- DNA Replication genetics MeSH
- DNA, Ribosomal genetics MeSH
- S Phase genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The approach for the detection of replicational activity in cells using 5-bromo-2'-deoxyuridine, a low concentration of hydrochloric acid and exonuclease III is presented in the study. The described method was optimised with the aim to provide a fast and robust tool for the detection of DNA synthesis with minimal impact on the cellular structures using image and flow cytometry. The approach is based on the introduction of breaks into the DNA by the low concentration of hydrochloric acid followed by the subsequent enzymatic extension of these breaks using exonuclease III. Our data showed that the method has only a minimal effect on the tested protein localisations and is applicable both for formaldehyde- and ethanol-fixed cells. The approach partially also preserves the fluorescence of the fluorescent proteins in the HeLa cells expressing Fluorescent Ubiquitin Cell Cycle Indicator. In the case of the short labelling pulses that disabled the use of 5-ethynyl-2'-deoxyuridine because of the low specific signal, the described method provided a bright signal enabling reliable recognition of replicating cells. The optimized protocol was also successfully tested for the detection of trifluridine, the nucleoside used as an antiviral drug and in combination with tipiracil also for the treatment of some types of cancer.
5-Bromo-2'-deoxyuridine (BrdU) labelling and immunostaining is commonly used for the detection of DNA replication using specific antibodies. Previously, we found that these antibodies significantly differ in their affinity to BrdU. Our present data showed that one of the reasons for the differences in the replication signal is the speed of antibody dissociation. Whereas highly efficient antibodies created stable complexes with BrdU, the low efficiency antibodies were unstable. A substantial loss of the signal occurred within several minutes. The increase of the complex stability can be achieved by i) formaldehyde fixation or ii) a quick reaction with a secondary antibody. These steps allowed the same or even higher signal/background ratio to be reached as in the highly efficient antibodies. Based on our findings, we optimised an approach for the fully enzymatic detection of BrdU enabling the fast detection of replicational activity without a significant effect on the tested proteins or the fluorescence of the fluorescent proteins. The method was successfully applied for image and flow cytometry. The speed of the method is comparable to the approach based on 5-ethynyl-2'-deoxyuridine. Moreover, in the case of short labelling pulses, the optimised method is even more sensitive. The approach is also applicable for the detection of 5-trifluoromethyl-2'-deoxyuridine.
- MeSH
- Bromodeoxyuridine chemistry MeSH
- Cell Cycle MeSH
- A549 Cells MeSH
- Microscopy, Fluorescence MeSH
- HeLa Cells MeSH
- Humans MeSH
- Copper chemistry MeSH
- Antibodies chemistry MeSH
- Flow Cytometry MeSH
- DNA Replication physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH