An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
- MeSH
- diabetes mellitus * MeSH
- lidé MeSH
- MCM komplex, komponenta 2 genetika MeSH
- MCM proteiny metabolismus MeSH
- myši MeSH
- nádory * MeSH
- proteiny buněčného cyklu metabolismus MeSH
- replikace DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genotoxic therapy such as radiation serves as a frontline cancer treatment, yet acquired resistance that leads to tumor reoccurrence is frequent. We found that cancer cells maintain viability during irradiation by reversibly increasing genome-wide DNA breaks, thereby limiting premature mitotic progression. We identify caspase-activated DNase (CAD) as the nuclease inflicting these de novo DNA lesions at defined loci, which are in proximity to chromatin-modifying CCCTC-binding factor (CTCF) sites. CAD nuclease activity is governed through phosphorylation by DNA damage response kinases, independent of caspase activity. In turn, loss of CAD activity impairs cell fate decisions, rendering cancer cells vulnerable to radiation-induced DNA double-strand breaks. Our observations highlight a cancer-selective survival adaptation, whereby tumor cells deploy regulated DNA breaks to delimit the detrimental effects of therapy-evoked DNA damage.
Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSβ, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSβ recognizes and destabilizes G4 structures in vitro. These data suggest that MutSβ destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.
- MeSH
- DNA metabolismus MeSH
- homeostáza telomer MeSH
- lidé MeSH
- nádory * genetika MeSH
- R-smyčka MeSH
- RNA dlouhá nekódující * metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.
- MeSH
- chromozomální nestabilita účinky léků MeSH
- DNA biosyntéza MeSH
- G1 fáze účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- komplex rozpoznávající replikační počátek metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- R-smyčka * MeSH
- rekombinasa Rad51 * antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate β-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of β-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- DNA chemie genetika MeSH
- floxuridin MeSH
- glykosyltransferasy metabolismus MeSH
- Helicobacter pylori metabolismus patogenita MeSH
- infekce vyvolané Helicobacter pylori metabolismus mikrobiologie MeSH
- interakce hostitele a patogenu fyziologie MeSH
- lidé MeSH
- lipopolysacharidy metabolismus MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- nádory žaludku genetika mikrobiologie patologie MeSH
- NF-kappa B genetika metabolismus MeSH
- poškození DNA MeSH
- proteinkinasy genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- replikace DNA účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.
- MeSH
- aktivní transport - buněčné jádro MeSH
- DNA nádorová genetika metabolismus MeSH
- HeLa buňky MeSH
- heteroduplexy nukleové kyseliny genetika metabolismus MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- messenger RNA biosyntéza genetika MeSH
- nádory genetika metabolismus MeSH
- nestabilita genomu * MeSH
- polyadenylace MeSH
- poškození DNA * MeSH
- prekurzory RNA biosyntéza genetika MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- replikace DNA * MeSH
- RNA nádorová biosyntéza genetika MeSH
- štěpení RNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition.
- MeSH
- helikasy RecQ fyziologie MeSH
- lidé MeSH
- nádory etiologie MeSH
- nestabilita genomu MeSH
- replikace DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Collisions between replication and transcription machineries represent a significant source of genomic instability. RECQ5 DNA helicase binds to RNA-polymerase (RNAP) II during transcription elongation and suppresses transcription-associated genomic instability. Here, we show that RECQ5 also associates with RNAPI and enforces the stability of ribosomal DNA arrays. We demonstrate that RECQ5 associates with transcription complexes in DNA replication foci and counteracts replication fork stalling in RNAPI- and RNAPII-transcribed genes, suggesting that RECQ5 exerts its genome-stabilizing effect by acting at sites of replication-transcription collisions. Moreover, RECQ5-deficient cells accumulate RAD18 foci and BRCA1-dependent RAD51 foci that are both formed at sites of interference between replication and transcription and likely represent unresolved replication intermediates. Finally, we provide evidence for a novel mechanism of resolution of replication-transcription collisions wherein the interaction between RECQ5 and proliferating cell nuclear antigen (PCNA) promotes RAD18-dependent PCNA ubiquitination and the helicase activity of RECQ5 promotes the processing of replication intermediates.
- MeSH
- biologické modely MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- elongace genetické transkripce MeSH
- fyziologický stres genetika MeSH
- genetická transkripce * MeSH
- HEK293 buňky MeSH
- helikasy RecQ metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- multienzymové komplexy metabolismus MeSH
- otevřené čtecí rámce genetika MeSH
- prekurzory RNA genetika MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- protein BRCA1 metabolismus MeSH
- rekombinasa Rad51 metabolismus MeSH
- replikace DNA * MeSH
- ribozomální DNA metabolismus MeSH
- ubikvitinace MeSH
- ubikvitinligasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase, a master regulator of DNA-damage response, is activated by RPA-coated single-stranded DNA (ssDNA) generated at stalled replication forks or DNA double-strand breaks (DSBs). Here, we identify the mismatch-binding protein MutSβ, a heterodimer of MSH2 and MSH3, as a key player in this process. MSH2 and MSH3 form a complex with ATR and its regulatory partner ATRIP, and their depletion compromises the formation of ATRIP foci and phosphorylation of ATR substrates in cells responding to replication-associated DSBs. Purified MutSβ binds to hairpin loop structures that persist in RPA-ssDNA complexes and promotes ATRIP recruitment. Mutations in the mismatch-binding domain of MSH3 abolish the binding of MutSβ to DNA hairpin loops and its ability to promote ATR activation by ssDNA. These results suggest that hairpin loops might form in ssDNA generated at sites of DNA damage and trigger ATR activation in a process mediated by MutSβ.
- MeSH
- aktivace enzymů MeSH
- ATM protein metabolismus MeSH
- DNA vazebné proteiny chemie metabolismus fyziologie MeSH
- dvouřetězcové zlomy DNA * MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- homolog 2 proteinu MutS chemie fyziologie MeSH
- homologní rekombinace MeSH
- jednovláknová DNA chemie MeSH
- lidé MeSH
- oprava DNA MeSH
- posttranslační úpravy proteinů MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH