DNA Dyes-Highly Sensitive Reporters of Cell Quantification: Comparison with Other Cell Quantification Methods
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, přehledy
Grantová podpora
project ENOCH, grant number CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
project EATRIS-CZ, grant number LM2018133
Ministerstvo Školství, Mládeže a Tělovýchovy
TN01000013
Technology Agency of the Czech Republic
PubMed
34576986
PubMed Central
PMC8465179
DOI
10.3390/molecules26185515
PII: molecules26185515
Knihovny.cz E-zdroje
- Klíčová slova
- DNA dyes, cell metabolism, cell quantification, enzymatic conversion of substrate,
- MeSH
- biotest MeSH
- DNA analýza chemie metabolismus MeSH
- fluorescenční barviva * MeSH
- počet buněk metody MeSH
- proliferace buněk MeSH
- viabilita buněk MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA MeSH
- fluorescenční barviva * MeSH
Cell quantification is widely used both in basic and applied research. A typical example of its use is drug discovery research. Presently, plenty of methods for cell quantification are available. In this review, the basic techniques used for cell quantification, with a special emphasis on techniques based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers through the possibilities of cell quantification with various methods and to show the strengths and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length. As these methods are frequently accompanied by an analysis of cell proliferation and cell viability, some of these approaches are also described.
Zobrazit více v PubMed
Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015;111:A3.B1.–A3.B3.. doi: 10.1002/0471142735.ima03bs111. PubMed DOI PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Ligasova A., Koberna K. Quantification of fixed adherent cells using a strong enhancer of the fluorescence of DNA dyes. Sci. Rep. 2019;9:8701. doi: 10.1038/s41598-019-45217-9. PubMed DOI PMC
Bazhulina N.P., Nikitin A.M., Rodin S.A., Surovaya A.N., Kravatsky Y.V., Pismensky V.F., Archipova V.S., Martin R., Gursky G.V. Binding of Hoechst 33258 and its derivatives to DNA. J. Biomol. Struct. Dyn. 2009;26:701–718. doi: 10.1080/07391102.2009.10507283. PubMed DOI
Blaheta R.A., Franz M., Auth M.K.H., Wenisch H.J.C., Markus B.H. A Rapid Nonradioactive Fluorescence Assay for the Measurement of Both Cell Number and Proliferation. J. Immunol. Methods. 1991;142:199–206. doi: 10.1016/0022-1759(91)90107-Q. PubMed DOI
Silva E.F., Ramos E.B., Rocha M.S. DNA interaction with Hoechst 33258: Stretching experiments decouple the different binding modes. J. Phys. Chem. B. 2013;117:7292–7296. doi: 10.1021/jp403945e. PubMed DOI
Bucevicius J., Lukinavicius G., Gerasimaite R. The Use of Hoechst Dyes for DNA Staining and Beyond. Chemosensors. 2018;6:18. doi: 10.3390/chemosensors6020018. DOI
Gomes C.J., Harman M.W., Centuori S.M., Wolgemuth C.W., Martinez J.D. Measuring DNA content in live cells by fluorescence microscopy. Cell Div. 2018;13:6. doi: 10.1186/s13008-018-0039-z. PubMed DOI PMC
Zhao H., Traganos F., Dobrucki J., Wlodkowic D., Darzynkiewicz Z. Induction of DNA damage response by the supravital probes of nucleic acids. Cytom. A. 2009;75:510–519. doi: 10.1002/cyto.a.20727. PubMed DOI PMC
McCaffrey T.A., Agarwal L.A., Weksler B.B. A rapid fluorometric DNA assay for the measurement of cell density and proliferation in vitro. Vitr. Cell Dev. Biol. 1988;24:247–252. doi: 10.1007/BF02623555. PubMed DOI
Cesarone C.F., Bolognesi C., Santi L. Improved Micro-Fluorometric DNA Determination in Biological-Material Using 33258-Hoechst. Anall. Biochem. 1979;100:188–197. doi: 10.1016/0003-2697(79)90131-3. PubMed DOI
Papadimitriou E., Lelkes P.I. Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J. Immunol. Methods. 1993;162:41–45. doi: 10.1016/0022-1759(93)90405-V. PubMed DOI
Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 1980;102:344–352. doi: 10.1016/0003-2697(80)90165-7. PubMed DOI
West D.C., Sattar A., Kumar S. A simplified in situ solubilization procedure for the determination of DNA and cell number in tissue cultured mammalian cells. Anal. Biochem. 1985;147:289–295. doi: 10.1016/0003-2697(85)90274-X. PubMed DOI
Rago R., Mitchen J., Wilding G. DNA Fluorometric Assay in 96-Well Tissue-Culture Plates Using Hoechst-33258 after Cell-Lysis by Freezing in Distilled Water. Anal. Biochem. 1990;191:31–34. doi: 10.1016/0003-2697(90)90382-J. PubMed DOI
Dann O., Bergen G., Demant E., Volz G. Trypanocide Diamidines of 2-Phenylbenzofuran, 2-Phenylindene and 2-Phenylindole. Liebigs Ann. Chem. 1971;749:68–89. doi: 10.1002/jlac.19717490110. DOI
Williamson J., McLaren D.J. Effects of DAPI a new diamidine trypanocide, on the ultrastructure of Trypanosoma rhodesiense. Trans. R Soc. Trop Med. Hyg. 1978;72:660–661. doi: 10.1016/0035-9203(78)90029-9. PubMed DOI
Tanious F.A., Veal J.M., Buczak H., Ratmeyer L.S., Wilson W.D. DAPI (4’,6-diamidino-2-phenylindole) binds differently to DNA and RNA: Minor-groove binding at AT sites and intercalation at AU sites. Biochemistry. 1992;31:3103–3112. doi: 10.1021/bi00127a010. PubMed DOI
Barcellona M.L., Cardiel G., Gratton E. Time-resolved fluorescence of DAPI in solution and bound to polydeoxynucleotides. Biochem. Biophys Res. Commun. 1990;170:270–280. doi: 10.1016/0006-291X(90)91270-3. PubMed DOI
Quent V.M.C., Loessner D., Friis T., Reichert J.C., Hutmacher D.W. Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J. Cell Mol. Med. 2010;14:1003–1013. doi: 10.1111/j.1582-4934.2010.01013.x. PubMed DOI PMC
Blaheta R.A., Kronenberger B., Woitaschek D., Weber S., Scholz M., Schuldes H., Encke A., Markus B.H. Development of an ultrasensitive in vitro assay to monitor growth of primary cell cultures with reduced mitotic activity. J. Immunol. Methods. 1998;211:159–169. doi: 10.1016/S0022-1759(97)00202-0. PubMed DOI
Godinho C.P., Prata C.S., Pinto S.N., Cardoso C., Bandarra N.M., Fernandes F., Sa-Correia I. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci. Rep. 2018;8:7860. doi: 10.1038/s41598-018-26128-7. PubMed DOI PMC
Dengler W.A., Schulte J., Berger D.P., Mertelsmann R., Fiebig H.H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs. 1995;6:522–532. doi: 10.1097/00001813-199508000-00005. PubMed DOI
Feng J., Wang T., Zhang S., Shi W., Zhang Y. An optimized SYBR Green I/PI assay for rapid viability assessment and antibiotic susceptibility testing for Borrelia burgdorferi. PLoS ONE. 2014;9:e111809. doi: 10.1371/journal.pone.0111809. PubMed DOI PMC
Rosenberg M., Azevedo N.F., Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019;9:6483. doi: 10.1038/s41598-019-42906-3. PubMed DOI PMC
Wang J., Wei Y., Zhao S.S., Zhou Y., He W., Zhang Y., Deng W.S. The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment. PLoS ONE. 2017;12:e0176120. doi: 10.1371/journal.pone.0176120. PubMed DOI PMC
Dragan A.I., Casas-Finet J.R., Bishop E.S., Strouse R.J., Schenerman M.A., Geddes C.D. Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys. J. 2010;99:3010–3019. doi: 10.1016/j.bpj.2010.09.012. PubMed DOI PMC
Ng K.W., Leong D.T., Hutmacher D.W. The challenge to measure cell proliferation in two and three dimensions. Tissue Eng. 2005;11:182–191. doi: 10.1089/ten.2005.11.182. PubMed DOI
Singer V.L., Jones L.J., Yue S.T., Haugland R.P. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 1997;249:228–238. doi: 10.1006/abio.1997.2177. PubMed DOI
Pabbruwe M.B., Stewart K., Chaudhuri J.B. A comparison of colorimetric and DNA quantification assays for the assessment of meniscal fibrochondrocyte proliferation in microcarrier culture. Biotechnol. Lett. 2005;27:1451–1455. doi: 10.1007/s10529-005-1308-x. PubMed DOI
Jones L.J., Gray M., Yue S.T., Haugland R.P., Singer V.L. Sensitive determination of cell number using the CyQUANT cell proliferation assay. J. Immunol. Methods. 2001;254:85–98. doi: 10.1016/S0022-1759(01)00404-5. PubMed DOI
Myers M.A. Direct measurement of cell numbers in microtitre plate cultures using the fluorescent dye SYBR green I. J. Immunol. Methods. 1998;212:99–103. doi: 10.1016/S0022-1759(98)00011-8. PubMed DOI
Briggs C., Jones M. SYBR Green I-induced fluorescence in cultured immune cells: A comparison with Acridine Orange. Acta Histochem. 2005;107:301–312. doi: 10.1016/j.acthis.2005.06.010. PubMed DOI
Boehnke K., Mirancea N., Pavesio A., Fusenig N.E., Boukamp P., Stark H.J. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur. J. Cell Biol. 2007;86:731–746. doi: 10.1016/j.ejcb.2006.12.005. PubMed DOI
Berridge M.V., Herst P.M., Tan A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 2005;11:127–152. doi: 10.1016/S1387-2656(05)11004-7. PubMed DOI
Adan A., Kiraz Y., Baran Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016;17:1213–1221. doi: 10.2174/1389201017666160808160513. PubMed DOI
Stockert J.C., Horobin R.W., Colombo L.L., Blazquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018;120:159–167. doi: 10.1016/j.acthis.2018.02.005. PubMed DOI
Carmichael J., DeGraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 1987;47:936–942. PubMed
Benov L. Effect of growth media on the MTT colorimetric assay in bacteria. PLoS ONE. 2019;14:e0219713. doi: 10.1371/journal.pone.0219713. PubMed DOI PMC
Gasque K.C.D., Al-Ahj L.P., Oliveira R.C., Magalhaes A.C. Cell Density and Solvent Are Critical Parameters Affecting Formazan Evaluation in MTT Assay. Braz. Arch. Biol. Technol. 2014;57:381–385. doi: 10.1590/S1516-89132014005000007. DOI
Cory A.H., Owen T.C., Barltrop J.A., Cory J.G. Use of an Aqueous Soluble Tetrazolium Formazan Assay for Cell-Growth Assays in Culture. Cancer Commun. 1991;3:207–212. doi: 10.3727/095535491820873191. PubMed DOI
Kuhn D.M., Balkis M., Chandra J., Mukherjee P.K., Ghannoum M.A. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J. Clin. Microbiol. 2003;41:506–508. doi: 10.1128/JCM.41.1.506-508.2003. PubMed DOI PMC
Berridge M.V., Tan A.S. Characterization of the Cellular Reduction of 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (Mtt)-Subcellular-Localization, Substrate Dependence, and Involvement of Mitochondrial Electron-Transport in Mtt Reduction. Arch. Biochem. Biophys. 1993;303:474–482. doi: 10.1006/abbi.1993.1311. PubMed DOI
Nakayama G.R., Caton M.C., Nova M.P., Parandoosh Z. Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J. Immunol. Methods. 1997;204:205–208. doi: 10.1016/S0022-1759(97)00043-4. PubMed DOI
Zachari M.A., Chondrou P.S., Pouliliou S.E., Mitrakas A.G., Abatzoglou I., Zois C.E., Koukourakis M.I. Evaluation of the alamarblue assay for adherent cell irradiation experiments. Dose Response. 2014;12:246–258. doi: 10.2203/dose-response.13-024.Koukourakis. PubMed DOI PMC
O’Brien J., Wilson I., Orton T., Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000;267:5421–5426. doi: 10.1046/j.1432-1327.2000.01606.x. PubMed DOI
Ahmed S.A., Gogal R.M., Walsh J.E. A New Rapid and Simple Nonradioactive Assay to Monitor and Determine the Proliferation of Lymphocytes-an Alternative to [H-3] Thymidine Incorporation Assay. J. Immunol. Methods. 1994;170:211–224. doi: 10.1016/0022-1759(94)90396-4. PubMed DOI
Takahashi T., Maruyama W., Deng Y., Dostert P., Nakahara D., Niwa T., Ohta S., Naoi M. Cytotoxicity of endogenous isoquinolines to human dopaminergic neuroblastoma SH-SY5Y cells. J. Neural. Transm. 1997;104:59–66. doi: 10.1007/BF01271294. PubMed DOI
Rampersad S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors. 2012;12:12347–12360. doi: 10.3390/s120912347. PubMed DOI PMC
Farinelli S.E., Greene L.A. Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J. Neurosci. 1996;16:1150–1162. doi: 10.1523/JNEUROSCI.16-03-01150.1996. PubMed DOI PMC
Durrant D., Richards J.E., Walker W.T., Baker K.A., Simoni D., Lee R.M. Mechanism of cell death induced by cis-3,4′,5-trimethoxy-3′-aminostilbene in ovarian cancer. Gynecol. Oncol. 2008;110:110–117. doi: 10.1016/j.ygyno.2008.02.031. PubMed DOI
White M.J., DiCaprio M.J., Greenberg D.A. Assessment of neuronal viability with Alamar blue in cortical and granule cell cultures. J. Neurosci. Methods. 1996;70:195–200. doi: 10.1016/S0165-0270(96)00118-5. PubMed DOI
Al-Nasiry S., Geusens N., Hanssens M., Luyten C., Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod. 2007;22:1304–1309. doi: 10.1093/humrep/dem011. PubMed DOI
Dotsika E.N., Sanderson C.J. A fluorometric assay for determining cell growth in lymphocyte proliferation and lymphokine assays. J. Immunol. Methods. 1987;105:55–62. doi: 10.1016/0022-1759(87)90413-3. PubMed DOI
Neri S., Mariani E., Meneghetti A., Cattini L., Facchini A. Calcein-acetyoxymethyl cytotoxicity assay: Standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin. Diagn. Lab. Immunol. 2001;8:1131–1135. doi: 10.1128/CDLI.8.6.1131-1135.2001. PubMed DOI PMC
Lichtenfels R., Biddison W.E., Schulz H., Vogt A.B., Martin R. Care-Lass (Calcein-Release-Assay), an Improved Fluorescence-Based Test System to Measure Cytotoxic T-Lymphocyte Activity. J. Immunol. Methods. 1994;172:227–239. doi: 10.1016/0022-1759(94)90110-4. PubMed DOI
Yang T.T., Sinai P., Kain S.R. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Anal. Biochem. 1996;241:103–108. doi: 10.1006/abio.1996.0383. PubMed DOI
Huschtscha L.I., Lucibello F.C., Bodmer W.F. A rapid micro method for counting cells “in situ” using a fluorogenic alkaline phosphatase enzyme assay. Vitr. Cell Dev. Biol. 1989;25:105–108. doi: 10.1007/BF02624419. PubMed DOI
Connolly D.T., Knight M.B., Harakas N.K., Wittwer A.J., Feder J. Determination of the Number of Endothelial-Cells in Culture Using an Acid-Phosphatase Assay. Anal. Biochem. 1986;152:136–140. doi: 10.1016/0003-2697(86)90131-4. PubMed DOI
Riss T.L., Moravec R.A., Niles A.L., Duellman S., Benink H.A., Worzella T.J., Minor L. Cell Viability Assays. In: Markossian S., Grossman A., Brimacombe K., Arkin M., Auld D., Austin C.P., Baell J., Chung T.D.Y., Coussens N.P., Dahlin J.L., et al., editors. Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; Bethesda, MD, USA: 2004.
Petty R.D., Sutherland L.A., Hunter E.M., Cree I.A. Comparison of MTT and ATP-based assays for the measurement of viable cell number. J. Biolumin. Chemilumin. 1995;10:29–34. doi: 10.1002/bio.1170100105. PubMed DOI
Mueller H., Kassack M.U., Wiese M. Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J. Biomol. Screen. 2004;9:506–515. doi: 10.1177/1087057104265386. PubMed DOI
Jurikova M., Danihel L., Polak S., Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016;118:544–552. doi: 10.1016/j.acthis.2016.05.002. PubMed DOI
Ligasova A., Koberna K. DNA Replication: From Radioisotopes to Click Chemistry. Molecules. 2018;23:3007. doi: 10.3390/molecules23113007. PubMed DOI PMC
Koberna K., Ligasova A., Malinsky J., Pliss A., Siegel A.J., Cvackova Z., Fidlerova H., Masata M., Fialova M., Raska I., et al. Electron microscopy of DNA replication in 3-D: Evidence for similar-sized replication foci throughout S-phase. J. Cell Biochem. 2005;94:126–138. doi: 10.1002/jcb.20300. PubMed DOI
Kennedy B.K., Barbie D.A., Classon M., Dyson N., Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 2000;14:2855–2868. doi: 10.1101/gad.842600. PubMed DOI PMC
Ligasova A., Konecny P., Frydrych I., Koberna K. Looking for ugly ducklings: The role of the stability of BrdU-antibody complex and the improved method of the detection of DNA replication. PLoS ONE. 2017;12:e0174893. doi: 10.1371/journal.pone.0174893. PubMed DOI PMC
Ligasova A., Konecny P., Frydrych I., Koberna K. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2’-deoxyuridine, low concentration of hydrochloric acid and exonuclease III. PLoS ONE. 2017;12:e0175880. doi: 10.1371/journal.pone.0175880. PubMed DOI PMC
Ligasova A., Strunin D., Liboska R., Rosenberg I., Koberna K. Atomic scissors: A new method of tracking the 5-bromo-2′-deoxyuridine-labeled DNA in situ. PLoS ONE. 2012;7:e52584. doi: 10.1371/journal.pone.0052584. PubMed DOI PMC
Li X., Melamed M.R., Darzynkiewicz Z. Detection of apoptosis and DNA replication by differential labeling of DNA strand breaks with fluorochromes of different color. Exp. Cell Res. 1996;222:28–37. doi: 10.1006/excr.1996.0004. PubMed DOI
Ligasova A., Liboska R., Friedecky D., Micova K., Adam T., Ozdian T., Rosenberg I., Koberna K. Dr Jekyll and Mr Hyde: A strange case of 5-ethynyl-2’-deoxyuridine and 5-ethynyl-2’-deoxycytidine. Open Biol. 2016;6:150172. doi: 10.1098/rsob.150172. PubMed DOI PMC
Salic A., Mitchison T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:2415–2420. doi: 10.1073/pnas.0712168105. PubMed DOI PMC
Strzalka W., Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot. 2011;107:1127–1140. doi: 10.1093/aob/mcq243. PubMed DOI PMC
Foley J.F., Dietrich D.R., Swenberg J.A., Maronpot R.R. Detection and Evaluation of Proliferating Cell Nuclear Antigen (Pcna) in Rat-Tissue by an Improved Immunohistochemical Procedure. J. Histotechnol. 1991;14:237–241. doi: 10.1179/his.1991.14.4.237. DOI
O’Hara R.E., Arsenault M.G., Esparza Gonzalez B.P., Patriquen A., Hartwig S. Three Optimized Methods for In Situ Quantification of Progenitor Cell Proliferation in Embryonic Kidneys Using BrdU, EdU, and PCNA. Can. J. Kidney Health Dis. 2019;6:2054358119871936. doi: 10.1177/2054358119871936. PubMed DOI PMC
Miller I., Min M.W., Yang C., Tian C.Z., Gookin S., Carter D., Spencer S.L. Ki67 is a Graded Rather than a Binary Marker of Proliferation versus Quiescence. Cell Rep. 2018;24:1105–1112. doi: 10.1016/j.celrep.2018.06.110. PubMed DOI PMC
Gerdes J., Lemke H., Baisch H., Wacker H.H., Schwab U., Stein H. Cell-Cycle Analysis of a Cell Proliferation-Associated Human Nuclear Antigen Defined by the Monoclonal-Antibody Ki-67. J. Immunol. 1984;133:1710–1715. PubMed
Kim J.Y., Jeong H.S., Chung T., Kim M., Lee J.H., Jung W.H., Koo J.S. The value of phosphohistone H3 as a proliferation marker for evaluating invasive breast cancers: A comparative study with Ki67. Oncotarget. 2017;8:65064–65076. doi: 10.18632/oncotarget.17775. PubMed DOI PMC
Kim S.I., Kim H.J., Lee H.J., Lee K., Hong D., Lim H., Cho K., Jung N., Yi Y.W. Application of a non-hazardous vital dye for cell counting with automated cell counters. Anal. Biochem. 2016;492:8–12. doi: 10.1016/j.ab.2015.09.010. PubMed DOI
Kim J.S., Nam M.H., An S.S., Lim C.S., Hur D.S., Chung C., Chang J.K. Comparison of the automated fluorescence microscopic viability test with the conventional and flow cytometry methods. J. Clin. Lab. Anal. 2011;25:90–94. doi: 10.1002/jcla.20438. PubMed DOI PMC
Cadena-Herrera D., Esparza-De Lara J.E., Ramirez-Ibanez N.D., Lopez-Morales C.A., Perez N.O., Flores-Ortiz L.F., Medina-Rivero E. Validation of three viable-cell counting methods: Manual, semi-automated, and automated. Biotechnol. Rep. (Amst) 2015;7:9–16. doi: 10.1016/j.btre.2015.04.004. PubMed DOI PMC
Yip D.K., Auersperg N. The dye-exclusion test for cell viability: Persistence of differential staining following fixation. Vitro. 1972;7:323–329. doi: 10.1007/BF02661722. PubMed DOI
BRAND Counting Chambers. [(accessed on 2 June 2021)]. Available online: https://www.brand.de/en/counting-chambers.
Decker T., Lohmann-Matthes M.L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods. 1988;115:61–69. doi: 10.1016/0022-1759(88)90310-9. PubMed DOI
Korzeniewski C., Callewaert D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods. 1983;64:313–320. doi: 10.1016/0022-1759(83)90438-6. PubMed DOI
Tabernilla A., Dos Santos Rodrigues B., Pieters A., Caufriez A., Leroy K., Van Campenhout R., Cooreman A., Gomes A.R., Arnesdotter E., Gijbels E., et al. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int. J. Mol. Sci. 2021;22:5038. doi: 10.3390/ijms22095038. PubMed DOI PMC
Batchelor R.H., Zhou M.J. Use of cellular glucose-6-phosphate dehydrogenase for cell quantitation: Applications in cytotoxicity and apoptosis assays. Anal. Biochem. 2004;329:35–42. doi: 10.1016/j.ab.2004.02.007. PubMed DOI
Kaja S., Payne A.J., Naumchuk Y., Koulen P. Quantification of Lactate Dehydrogenase for Cell Viability Testing Using Cell Lines and Primary Cultured Astrocytes. Curr. Protoc. Toxicol. 2017;72:2–26. doi: 10.1002/cptx.21. PubMed DOI PMC
Bopp S.K., Lettieri T. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharm. 2008;8:8. doi: 10.1186/1471-2210-8-8. PubMed DOI PMC
Corey M.J., Kinders R.J., Brown L.G., Vessella R.L. A very sensitive coupled luminescent assay for cytotoxicity and complement-mediated lysis. J. Immunol Methods. 1997;207:43–51. doi: 10.1016/S0022-1759(97)00098-7. PubMed DOI
Matta H., Gopalakrishnan R., Choi S.J., Prakash R., Natarajan V., Prins R., Gong S.J., Chitnis S.D., Kahn M., Han X., et al. Development and characterization of a novel luciferase based cytotoxicity assay. Sci. Rep. 2018;8:199–doi10. PubMed PMC
Riss T. Is Your MTT Assay Really the Best Choice? [(accessed on 14 July 2021)]. Available online: https://worldwide.promega.com/resources/pubhub/is-your-mtt-assay-really-the-best-choice/
Virag L., Kerekgyarto C., Fachet J. A simple, rapid and sensitive fluorimetric assay for the measurement of cell-mediated cytotoxicity. J. Immunol. Methods. 1995;185:199–208. doi: 10.1016/0022-1759(95)00115-Q. PubMed DOI