A New Sensitive Method for the Detection of Mycoplasmas Using Fluorescence Microscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31775352
PubMed Central
PMC6952905
DOI
10.3390/cells8121510
PII: cells8121510
Knihovny.cz E-zdroje
- Klíčová slova
- cell cultures, immunofluorescence detection, mycoplasma infection,
- MeSH
- barvení a značení MeSH
- buňky A549 MeSH
- DNA-polymerasa I chemie MeSH
- fluorescenční mikroskopie metody MeSH
- lidé MeSH
- Mycoplasma fermentans izolace a purifikace MeSH
- Mycoplasma hominis izolace a purifikace MeSH
- Mycoplasma izolace a purifikace MeSH
- mykoplazmové infekce mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-polymerasa I MeSH
Contamination of cell cultures by mycoplasmas is a very common phenomenon. As they can substantially alter cell metabolism and potentially spread to all cell cultures in laboratory, their early detection is necessary. One of the fastest and cheapest methods of mycoplasma detection relies on the direct staining of mycoplasmas' DNA by DAPI or Hoechst dyes. Although this method is easy and fast to perform, it suffers from the low signal provided by these dyes compared to the nuclear DNA. Therefore, the reporter cell lines are used for cultivation of mycoplasmas before DAPI or the Hoechst staining step. In the study presented, we have developed and tested a new immunofluorescence assay for the detection of mycoplasmas. The method is based on the enzymatic labeling using DNA polymerase I and modified nucleotides utilizing nicks in the mycoplasmas' DNA. Modified nucleotides are incorporated into mycoplasmas' DNA and subsequently visualized by immunofluorescence microscopy. The developed approach is independent of the mycoplasma strain, does not intensely stain nuclear DNA, does not stain other bacteria, and provides higher sensitivity than the approach based on the direct labeling using DAPI or Hoechst dyes.
Zobrazit více v PubMed
Thompson C.C., Vieira N.M., Vicente A.C.P., Thompson F.L. Towards a genome based taxonomy of Mycoplasmas. Infect. Genet. Evol. 2011;11:1798–1804. doi: 10.1016/j.meegid.2011.07.020. PubMed DOI
Volokhov D.V., Graham L.J., Brorson K.A., Chizhikov V.E. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques. Mol. Cell Probes. 2011;25:69–77. doi: 10.1016/j.mcp.2011.01.002. PubMed DOI
Halbedel S., Stulke J. Tools for the genetic analysis of Mycoplasma. Int. J. Med. Microbiol. 2007;297:37–44. doi: 10.1016/j.ijmm.2006.11.001. PubMed DOI
Drexler H.G., Uphoff C.C. Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology. 2002;39:75–90. doi: 10.1023/A:1022913015916. PubMed DOI PMC
Uphoff C.C., Brauer S., Grunicke D., Gignac S.M., MacLeod R.A., Quentmeier H., Steube K., Tummler M., Voges M., Wagner B., et al. Sensitivity and specificity of five different mycoplasma detection assays. Leukemia. 1992;6:335–341. PubMed
Young L., Sung J., Stacey G., Masters J.R. Detection of Mycoplasma in cell cultures. Nat. Protoc. 2010;5:929–934. doi: 10.1038/nprot.2010.43. PubMed DOI
Baum S.G. Mycoplasma Infections. In: Goldman L., Schafer A.I., editors. Goldman’s Cecil Medicine, 24TH EDITION. Elsevier Inc.; Amsterdam, The Netherlands: 2012. pp. 1912–1916.
Garner C.M., Hubbold L.M., Chakraborti P.R. Mycoplasma detection in cell cultures: a comparison of four methods. Br. J. Biomed. Sci. 2000;57:295–301. PubMed
Nikfarjam L., Farzaneh P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J. 2012;13:203–212. PubMed PMC
Rottem S., Barile M.F. Beware of mycoplasmas. Trends Biotechnol. 1993;11:143–151. doi: 10.1016/0167-7799(93)90089-R. PubMed DOI
Uphoff C.C., Drexler H.G. Eradication of Mycoplasma contaminations from cell cultures. Curr. Protoc. Mol. Biol. 2014;106:28.5.1–28.5.12. doi: 10.1002/0471142727.mb2805s106. PubMed DOI
Vankuppeveld F.J.M., Johansson K.E., Galama J.M.D., Kissing J., Bolske G., Vanderlogt J.T.M., Melchers W.J.G. Detection of Mycoplasma Contamination in Cell-Cultures by a Mycoplasma Group-Specific Pcr. Appl. Environ. Microb. 1994;60:149–152. PubMed PMC
Benisheva T., Loewer J. Comparison of Three Methods for the Detection of Mycoplasms in Cell Cultures. Biotechnol. Biotechnol. Equip. 1994;8:42–45. doi: 10.1080/13102818.1994.10818806. DOI
Gigahertz-Optik, Inc. II.6. Spectral Sensitivity of the Human Eye. [(accessed on 7 October 2019)]; Available online: https://light-measurement.com/spectral-sensitivity-of-eye/
Spring K.R., Davidson M.W. Concepts in Digital Imaging Technology: Quantum Efficiency. [(accessed on 4 October 2019)]; Available online: http://hamamatsu.magnet.fsu.edu/articles/quantumefficiency.html.
Andor_Zyla_5.5_and_4.2_PLUS_Specifications. [(accessed on 4 October 2019)]; Available online: http://www.andor.com/pdfs/specifications/Andor_Zyla_5.5_and_4.2_PLUS_Specifications.pdf.
Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Kamentsky L., Jones T.R., Fraser A., Bray M.A., Logan D.J., Madden K.L., Ljosa V., Rueden C., Eliceiri K.W., Carpenter A.E. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics. 2011;27:1179–1180. doi: 10.1093/bioinformatics/btr095. PubMed DOI PMC
Baczynska A., Svenstrup H.F., Fedder J., Birkelund S., Christiansen G. Development of real-time PCR for detection of Mycoplasma hominis. BMC Microbiol. 2004;4:35. doi: 10.1186/1471-2180-4-35. PubMed DOI PMC
Ligasová A., Strunin D., Koberna K. A New Method of the Visualization of the Double-Stranded Mitochondrial and Nuclear DNA. PLoS ONE. 2013;8:e66864. doi: 10.1371/journal.pone.0066864. PubMed DOI PMC
Ligasová A., Strunin D., Liboska R., Rosenberg I., Koberna K. Atomic scissors: a new method of tracking the 5-bromo-2’-deoxyuridine-labeled DNA in situ. PLoS ONE. 2012;7:e52584. doi: 10.1371/journal.pone.0052584. PubMed DOI PMC
Minion F.C., Jarvill-Taylor K.J., Billings D.E., Tigges E. Membrane-associated nuclease activities in mycoplasmas. J. Bacteriol. 1993;175:7842–7847. doi: 10.1128/jb.175.24.7842-7847.1993. PubMed DOI PMC
Citti C., Blanchard A. Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends Microbiol. 2013;21:196–203. doi: 10.1016/j.tim.2013.01.003. PubMed DOI
Kapuscinski J., Szer W. Interactions of 4’, 6-diamidine-2-phenylindole with synthetic polynucleotides. Nucleic Acids Res. 1979;6:3519–3534. doi: 10.1093/nar/6.11.3519. PubMed DOI PMC
Uphoff C.C., Gignac S.M., Drexler H.G. Mycoplasma contamination in human leukemia cell lines. I. Comparison of various detection methods. J. Immunol. Methods. 1992;149:43–53. doi: 10.1016/S0022-1759(12)80047-0. PubMed DOI
Jean A., Tardy F., Allatif O., Grosjean I., Blanquier B., Gerlier D. Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1.5 kb fragment of 16S rRNA genes. PLoS ONE. 2017;12:e0172358. doi: 10.1371/journal.pone.0172358. PubMed DOI PMC
Geraghty R.J., Capes-Davis A., Davis J.M., Downward J., Freshney R.I., Knezevic I., Lovell-Badge R., Masters J.R.W., Meredith J., Stacey G.N., et al. Guidelines for the use of cell lines in biomedical research. Brit. J. Cancer. 2014;111:1021–1046. doi: 10.1038/bjc.2014.166. PubMed DOI PMC
Xu Y., Egan W., Chang A., Webber K. Mycoplasma In-Process and Lot Release Testing: To PCR or Not to PCR. BioProcess. Int. 2005;3:30–39.