-
Something wrong with this record ?
Uptake and elimination kinetics of the biocide triclosan and the synthetic musks galaxolide and tonalide in the earthworm Dendrobaena veneta when exposed to sewage sludge
I. Havranek, C. Coutris, HR. Norli, PA. Rivier, EJ. Joner,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28079271
DOI
10.1002/etc.3737
Knihovny.cz E-resources
- MeSH
- Benzopyrans analysis metabolism toxicity MeSH
- Disinfectants analysis metabolism toxicity MeSH
- Soil Pollutants analysis toxicity MeSH
- Sewage chemistry MeSH
- Oligochaeta drug effects metabolism MeSH
- Food Chain MeSH
- Soil chemistry MeSH
- Tetrahydronaphthalenes analysis metabolism toxicity MeSH
- Toxicokinetics MeSH
- Triclosan analysis metabolism toxicity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Sewage sludge is an important amendment that enriches soils with organic matter and provides plants with nutrients such as nitrogen and phosphorus. However, knowledge on the fate and effects of organic pollutants present in the sludge on soil organisms is limited. In the present study, the uptake of triclosan, galaxolide, and tonalide in the earthworm Dendrobaena veneta was measured 1 wk after amendment of agricultural soil with sewage sludge, while elimination kinetics were assessed over a 21-d period after transferring worms to clean soil. After 1-wk exposure, earthworms had accumulated 2.6 ± 0.6 μg g-1 galaxolide, 0.04 ± 0.02 μg g-1 tonalide, and 0.6 ± 0.2 μg g-1 triclosan. Both synthetic musks were efficiently excreted and below the limit of quantification after 3 and 14 d of depuration for tonalide and galaxolide, respectively. Triclosan concentrations, on the other hand, did not decrease significantly over the depuration period, which may lead to the transfer of triclosan in the food web. Environ Toxicol Chem 2017;36:2068-2073. © 2017 SETAC.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016810
- 003
- CZ-PrNML
- 005
- 20180518125503.0
- 007
- ta
- 008
- 180515s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/etc.3737 $2 doi
- 035 __
- $a (PubMed)28079271
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Havranek, Ivo $u Institute of Environmental Engineering, Technical University of Ostrava, Ostrava, Czech Republic. Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway.
- 245 10
- $a Uptake and elimination kinetics of the biocide triclosan and the synthetic musks galaxolide and tonalide in the earthworm Dendrobaena veneta when exposed to sewage sludge / $c I. Havranek, C. Coutris, HR. Norli, PA. Rivier, EJ. Joner,
- 520 9_
- $a Sewage sludge is an important amendment that enriches soils with organic matter and provides plants with nutrients such as nitrogen and phosphorus. However, knowledge on the fate and effects of organic pollutants present in the sludge on soil organisms is limited. In the present study, the uptake of triclosan, galaxolide, and tonalide in the earthworm Dendrobaena veneta was measured 1 wk after amendment of agricultural soil with sewage sludge, while elimination kinetics were assessed over a 21-d period after transferring worms to clean soil. After 1-wk exposure, earthworms had accumulated 2.6 ± 0.6 μg g-1 galaxolide, 0.04 ± 0.02 μg g-1 tonalide, and 0.6 ± 0.2 μg g-1 triclosan. Both synthetic musks were efficiently excreted and below the limit of quantification after 3 and 14 d of depuration for tonalide and galaxolide, respectively. Triclosan concentrations, on the other hand, did not decrease significantly over the depuration period, which may lead to the transfer of triclosan in the food web. Environ Toxicol Chem 2017;36:2068-2073. © 2017 SETAC.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a benzopyrany $x analýza $x metabolismus $x toxicita $7 D001578
- 650 _2
- $a dezinficiencia $x analýza $x metabolismus $x toxicita $7 D004202
- 650 _2
- $a potravní řetězec $7 D020387
- 650 _2
- $a Oligochaeta $x účinky léků $x metabolismus $7 D009835
- 650 _2
- $a odpadní vody $x chemie $7 D012722
- 650 _2
- $a půda $x chemie $7 D012987
- 650 _2
- $a látky znečišťující půdu $x analýza $x toxicita $7 D012989
- 650 _2
- $a tetrahydronaftaleny $x analýza $x metabolismus $x toxicita $7 D013764
- 650 _2
- $a toxikokinetika $7 D066007
- 650 _2
- $a triclosan $x analýza $x metabolismus $x toxicita $7 D014260
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Coutris, Claire $u Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway.
- 700 1_
- $a Norli, Hans Ragnar $u Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway.
- 700 1_
- $a Rivier, Pierre-Adrien $u Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway.
- 700 1_
- $a Joner, Erik J $u Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway.
- 773 0_
- $w MED00001560 $t Environmental toxicology and chemistry $x 1552-8618 $g Roč. 36, č. 8 (2017), s. 2068-2073
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28079271 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180518125641 $b ABA008
- 999 __
- $a ok $b bmc $g 1300434 $s 1013650
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 36 $c 8 $d 2068-2073 $e 20170213 $i 1552-8618 $m Environmental toxicology and chemistry $n Environ Toxicol Chem $x MED00001560
- LZP __
- $a Pubmed-20180515