Developmental plasticity of bacterial colonies and consortia in germ-free and gnotobiotic settings
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22894147
PubMed Central
PMC3583141
DOI
10.1186/1471-2180-12-178
PII: 1471-2180-12-178
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli růst a vývoj fyziologie MeSH
- kultivační média chemie MeSH
- mikrobiální interakce * MeSH
- Serratia růst a vývoj fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média MeSH
BACKGROUND: Bacteria grown on semi-solid media can build two types of multicellular structures, depending on the circumstances. Bodies (colonies) arise when a single clone is grown axenically (germ-free), whereas multispecies chimeric consortia contain monoclonal microcolonies of participants. Growth of an axenic colony, mutual interactions of colonies, and negotiation of the morphospace in consortial ecosystems are results of intricate regulatory and metabolic networks. Multicellular structures developed by Serratia sp. are characteristically shaped and colored, forming patterns that reflect their growth conditions (in particular medium composition and the presence of other bacteria). RESULTS: Building on our previous work, we developed a model system for studying ontogeny of multicellular bacterial structures formed by five Serratia sp. morphotypes of two species grown in either "germ-free" or "gnotobiotic" settings (i.e. in the presence of bacteria of other conspecific morphotype, other Serratia species, or E. coli). Monoclonal bodies show regular and reproducible macroscopic appearance of the colony, as well as microscopic pattern of its growing margin. Standard development can be modified in a characteristic and reproducible manner in close vicinity of other bacterial structures (or in the presence of their products). Encounters of colonies with neighbors of a different morphotype or species reveal relationships of dominance, cooperation, or submission; multiple interactions can be summarized in "rock - paper - scissors" network of interrelationships. Chimerical (mixed) plantings consisting of two morphotypes usually produced a "consortium" whose structure is consistent with the model derived from interaction patterns observed in colonies. CONCLUSIONS: Our results suggest that development of a bacterial colony can be considered analogous to embryogenesis in animals, plants, or fungi: to proceed, early stages require thorough insulation from the rest of the biosphere. Only later, the newly developing body gets connected to the ecological interactions in the biosphere. Mixed "anlagen" cannot accomplish the first, germ-free phase of development; hence, they will result in the consortium of small colonies. To map early development and subsequent interactions with the rest of the biospheric web, simplified gnotobiotic systems described here may turn to be of general use, complementing similar studies on developing multicellular eukaryots under germ-free or gnotobiotic conditions.
Zobrazit více v PubMed
Aguilar C, Vlamakis H, Losick R, Kolter R. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol. 2007;10:638–43. doi: 10.1016/j.mib.2007.09.006. PubMed DOI PMC
Ben-Jacob E, Levine H. Self-engineering capabilities of bacteria. J R Soc Interface. 2005;3:197–214. PubMed PMC
Čepl JJ, Pátková I, Blahůšková A, Cvrčková F, Markos A. Patterning of mutually interacting bacterial bodies: close contacts and airborne signals. BMC Microbiol. 2010;10:139. doi: 10.1186/1471-2180-10-139. PubMed DOI PMC
Shapiro JA. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Phil Biol Biomed Sci. 2007;38:807–819. PubMed
Shapiro JA. In: Multicellularity: The rule, not the exception. Lessons fromE.colicolonies. Dworkin M, Shapiro JA, editor. Oxford: University Press; 1997. Bacteria as multicellular organism; pp. 14–49.
Arumugam M, Raes J, Pelletier E. et al.Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944. PubMed DOI PMC
Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG. Vibrio Fischeri lux genes play an important role in colonization and the development of the host light organ. J Bacteriol. 2000;182:4578–4586. doi: 10.1128/JB.182.16.4578-4586.2000. PubMed DOI PMC
Douglas AE. Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 1989;64:409–34. doi: 10.1111/j.1469-185X.1989.tb00682.x. PubMed DOI
Hayman DS. Mycorrhizae of nitrogen-fixing legumes. World J Microbiol Biotech. 1986;2:121–145. doi: 10.1007/BF00937189. DOI
Long SR. Rhizobium symbiosis: nod factors in perspective. Plant Cell. 1996;8:1885–1898. PubMed PMC
O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49–79. doi: 10.1146/annurev.micro.54.1.49. PubMed DOI
Waters CM, Bassler BL. Quorum sensing: cell-to-Cell communication in Bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46. doi: 10.1146/annurev.cellbio.21.012704.131001. PubMed DOI
Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 2007;153:3923–38. doi: 10.1099/mic.0.2007/012856-0. PubMed DOI
Yim G, Wang HH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci. 2007;362:1195–2000. doi: 10.1098/rstb.2007.2044. PubMed DOI PMC
Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacterioli. 2004;186:692–698. doi: 10.1128/JB.186.3.692-698.2004. PubMed DOI PMC
Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol. 2005;186:3477–3485. PubMed PMC
Van Houdt R, Givskov M, Michiels CV. Quorum sensing in Serratia. FEMS Microbiol Rev. 2007;31:407–424. doi: 10.1111/j.1574-6976.2007.00071.x. PubMed DOI
Ben-Jacob E, Shmueli H, Shochet O, Tenenbaum A. Adaptive self-organization during growth of bacterial colonies. Physica A. 1992;187:378–424. doi: 10.1016/0378-4371(92)90002-8. DOI
Golding I, Cohen I, Kozlovsky Y, Ben-Jacob E. Studies of sector formation in expanding bacterial colonies. Europhys Lett. 1999;48:587–593. doi: 10.1209/epl/i1999-00524-7. DOI
Rieger T, Neubauer Z, Blahůšková A, Cvrčková F, Markoš A. Bacterial body plans: colony ontogeny in Serratia marcescens. Communicative Integrative Biology. 2008;1:78–87. doi: 10.4161/cib.1.1.6547. PubMed DOI PMC
Markoš A. The ontogeny of Gaia: the role of microorganisms in planetary information network. J theor Biol. 1995;176:175–180. doi: 10.1006/jtbi.1995.0186. PubMed DOI
Jefferson K. What drives bacteria to produce a biofilm? FEMS Microbiology Letters. 2004;236:163–173. PubMed
Koschwanez JH, Foster KR, Murray AW. Sucrose utilizationin budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 2011;9:e1001122. doi: 10.1371/journal.pbio.1001122. PubMed DOI PMC
Webb JS, Givskov M, Kjelleberg S. Bacterial biofilms. Prokaryotic adventures in multicellularity. Curr Opin Microbiol. 2003;6:578–585. doi: 10.1016/j.mib.2003.10.014. PubMed DOI
Reid RP, Visscher PT, Decho AW, Stolz JF, Beboutk BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Beboutk L, Steppe TF, DesMaraisk DJ. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature. 2000;406:989–992. doi: 10.1038/35023158. PubMed DOI
Stewart PS, Camper AK, Handran SD, Huang C, Warnecke M. Spatial distribution and koexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol. 1997;33:2–10. doi: 10.1007/s002489900002. PubMed DOI
Hallatschek O, Nelson DR. Life at the front of expanding population. Evolution. 2010;64:193–206. doi: 10.1111/j.1558-5646.2009.00809.x. PubMed DOI
Korolev KS, Xavier JB, Nelson DR, Foster KR. A quantitative test of population genetics using spatio-genetic patterns in bacterial colonies. Amer Naturalist. 2011;178:538–552. doi: 10.1086/661897. PubMed DOI PMC
Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol. 2006;188:3099–3109. doi: 10.1128/JB.188.8.3099-3109.2006. PubMed DOI PMC
Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6:e1000823. doi: 10.1371/journal.pgen.1000823. PubMed DOI PMC
Kuthan M, Devaux F, Janderová B, Slaninová I, Jacq C, Palková Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003;47:745–754. doi: 10.1046/j.1365-2958.2003.03332.x. PubMed DOI
Sachs JL, Skophammer RG, Regus JU. Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci. 2011;108:10800–10807. doi: 10.1073/pnas.1100304108. PubMed DOI PMC
Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol. 2005;187:7193–7203. doi: 10.1128/JB.187.21.7193-7203.2005. PubMed DOI PMC
Dienes L. Reproductive Processes in Proteus cultures. Proc Soc Exp Biol Med. 1946;63(2):265–70. PubMed
Senior BV, Larsson P. A higly discriminatory multi-typing scheme for P.mirabilis and P. vulgaris. J Med Microbiol. 1983;16:193–202. doi: 10.1099/00222615-16-2-193. PubMed DOI
Munson EL, Pfaller MA, Doern GV. Modification of Dienes mutual inhibition test for epidemiological characterization of Pseudomonas aeruginosa Isolates. J Clin Microbiol. 2002;40:4285–4288. doi: 10.1128/JCM.40.11.4285-4288.2002. PubMed DOI PMC
Budding AE, Ingham CJ, Bitter W, Vandenbroucke-Grauls CM, Schneeberger PM. The Dienes phenomenon: competition and territoriality in swarming Proteus mirabilis. J Bacteriol. 2009;191:3892–900. doi: 10.1128/JB.00975-08. PubMed DOI PMC
Be’er A, Ariel G, Kalisman O, Helmanc Y, Sirota-Madic A, Zhang HP, Florin EL, Payne SM, Ben-Jacob E, Swinneya HL. Lethal protein produced in response to competition between sibling bacterial colonies. Proc Natl Acad Sci USA. 2010;107:6258–6263. doi: 10.1073/pnas.1001062107. PubMed DOI PMC
Be’er A, Zhang HP, Florin EL, Payne SM, Ben-Jacob E, Swinney HL. Deadly competition between sibling bacterial colonies. Proc Natl Acad Sci USA. 2009;106:428–433. doi: 10.1073/pnas.0811816106. PubMed DOI PMC
Kerr B, Riley MA, Feldman MW, Bohannan BJM. Local dispersal promotes biodiversity in a real game of rock-paper-scissors. Nature. 2002;418:171–174. doi: 10.1038/nature00823. PubMed DOI
Nahum JR, Harding BN, Kerr B. Evolution of restraint in a structured rock-paper-scissors community. Proc Natl Acad Sci. 2011;108:10831–10838. doi: 10.1073/pnas.1100296108. PubMed DOI PMC
Fuller AT, Horton JM. Marcescin, an antibiotic substance from Serratia marcescens. J Gen Microbiol. 1950;4:417–33. PubMed
Ben Jacob E, Cohen I, Gutnick DL. Cooperative organization of bacterial colonies: from genotype to morphotype. Annual Review of Microbiology. 1998;52:779–806. doi: 10.1146/annurev.micro.52.1.779. PubMed DOI
Ben Jacob E, Shapira Y, Tauber AI. Seeking the foundations of cognition in bacteria: from Schrödinger's negative entropy to latent information. Physica A. 2006;359:495–524.
Ben-Jacob E, Becker I, Shapira Y, Levine H. Bacterial linguistic communication and social intelligence. Trends Microbiol. 2004;12:366–372. doi: 10.1016/j.tim.2004.06.006. PubMed DOI
Boles BR, Thoende M, Singh PK. Self-generated diversity produces ''insurance effects'' in biofilm communities. Proc Natl Acad Sci USA. 2004;101:16630–16635. doi: 10.1073/pnas.0407460101. PubMed DOI PMC
Koh KS, Lam KW, Alhede M, Queck SY, Labbate M, Kjelleberg S, Rice SA. Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J Bacteriol. 2007;189:119–130. doi: 10.1128/JB.00930-06. PubMed DOI PMC
Rosenzweig RF, Adams J. Microbial adaptation to a changeable environment: cell-cell interactions mediate physiological and genetic differentiation. Bioessays. 1994;16:715–717. doi: 10.1002/bies.950161005. PubMed DOI
Rosenzweig RF, Sharp RR, Treves D, Adams J. Microbial environment in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics. 1994;137:903–917. PubMed PMC
Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature. 2010;467:82–86. doi: 10.1038/nature09354. PubMed DOI PMC
Variations and heredity in bacterial colonies