Cyprinus carpio Skeleton Byproduct as a Source of Collagen for Gelatin Preparation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.05/2.1.00/03.0089
European Regional Development Fund under the project CEBIA-Tech
QK1920190
National Agency for Agriculture Research of the Czech Republic under the project
PubMed
35328584
PubMed Central
PMC8949102
DOI
10.3390/ijms23063164
PII: ijms23063164
Knihovny.cz E-zdroje
- Klíčová slova
- Cyprinus carpio, biopolymers, biotechnology, by-product, circular economy, collagen, fish, gelatin, skeletons, sustainable polymers,
- MeSH
- kapři * MeSH
- kolagen MeSH
- kostra MeSH
- voda MeSH
- želatina * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen MeSH
- voda MeSH
- želatina * MeSH
Byproducts obtained from fish processing account for up to 70% of their live weight and represent a large amount of unused raw materials rich in proteins, fats, minerals, and vitamins. Recently, the management of the use of predominantly cold-water fish byproducts has become a priority for many processing companies. This paper describes the biotechnological processing of byproducts of warm-water Cyprinus carpio skeletons into gelatins. A Taguchi experimental design with two process factors (HCl concentration during demineralization of the starting material and the amount of enzyme during enzyme conditioning of the collagen) examined at three levels (0.5, 1.0 and 2.0 wt%; 0.0, 0.1 and 0.2 wt% respectively) was used to optimize the processing of fish tissue into gelatin. Depending on the preparation conditions, four gelatin fractions were prepared by multi-stage extraction from the starting material with a total yield of 18.7-55.7%. Extensive characterization of the gel-forming and surface properties of the prepared gelatins was performed. Gelatins belong to the group of zero-low-medium Bloom value (0-170 Bloom) and low-medium viscosity (1.1-4.9 mPa·s) gelatins and are suitable for some food, pharmaceutical, and cosmetic applications. During processing, the pigment can be isolated; the remaining solid product can then be used in agriculture, and H3PO4Ca can be precipitated from the liquid byproduct after demineralization. The carp byproduct processing technology is environmentally friendly and meets the requirements of zero-waste technology.
Zobrazit více v PubMed
Ockerman H.W., Hansen C.I. Animal By-Product Processing and Utilization. 1st ed. CRC Press; London, UK: 2000. pp. 23–83. DOI
Jayathilakan K., Sultana K., Radhakrishna K., Bawa A.S. Utilization of by products and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012;49:278–293. doi: 10.1007/s13197-011-0290-7. PubMed DOI PMC
Komeroski M.R., Homem R.V., Schmidt H.O., Rockett F.C., Lira L., Farias D.V., Kist T.L., Doneda D., Rios A.O., Oliveira V.R. Effect of whey protein and mixed flours on the quality parameters of gluten-free breads. Int. J. Gastron. Food Sci. 2021;24:100361. doi: 10.1016/j.ijgfs.2021.100361. DOI
Zhang S., Wang J., Jiang H. Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem. 2021;346:128860. doi: 10.1016/j.foodchem.2020.128860. PubMed DOI
Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal By-Products Regulation) [(accessed on 6 May 2021)]. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:300:0001:0033:EN:PDF.
Food and Agriculture Organization of the United Nation GLOBEFISH–Information and Analysis on World Fish Trade, 2021. [(accessed on 7 May 2021)]. Available online: http://www.fao.org/in-action/globefish/fishery-information/resource-detail/es/c/338772/
ECD-FAO Agricultural Outlook 2020–2029. Chapter 8. Fish. [(accessed on 15 December 2021)]. Available online: http://www.oecd-ilibrary.org/sites/4dd9b3d0-en/index.html?itemId=/content/component/4dd9b3d0-en#section-d1e19913.
Monteiro A., Paquincha D., Martins F., Queirós R.P., Saraiva J.A., Švarc-Gajić J., Nastić N., Delerue-Matos C., Carvalho A.P. Liquid by-products from fish canning industry as sustainable sources of ω3 lipids. J. Environ. Manag. 2018;219:9–17. doi: 10.1016/j.jenvman.2018.04.102. PubMed DOI
Zamorano-Apodaca J.C., García-Sifuentes C.O., Carvajal-Millan E., Vallejo-Galland B., Scheuren-Acevedo S.M., Lugo-Sánchez M.E. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem. 2020;331:127350. doi: 10.1016/j.foodchem.2020.127350. PubMed DOI
Hardy R.W. Fish Processing by-products and their reclamation. In: Pearson A.M., Dutson T.R., editors. Inedible Meat By-Products. 1st ed. Volume 8. Springer; Dordrecht, The Netherland: 1992. pp. 199–216. (Advances in Meat Research Series).
Araújo C.S., Rodrigues A.M.C., Peixoto Joele M.R.S., Araújo E.A.F., Lourenço L.F.H. Optimizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology. Food Packag. Shelf Life. 2018;16:23–30. doi: 10.1016/j.fpsl.2018.01.009. DOI
Tuomisto J.T., Asikainen A., Meriläinen P., Haapasaari P. Health effects of nutrients and environmental pollutants in Baltic herring and salmon: A quantitative benefit-risk assessment. BMC Public Health. 2020;20:64. doi: 10.1186/s12889-019-8094-1. PubMed DOI PMC
Cal L., Suarez-Bregua P., Cerdá-Reverter J.M., Braasch I., Rotllant J. Fish pigmentation and the melanocortin system. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2017;211:26–33. doi: 10.1016/j.cbpa.2017.06.001. PubMed DOI
Senevirathne M., Kim S.K. Utilization of seafood processing by-products: Medicinal applications. Adv. Food Nutr. Res. 2012;65:495–512. doi: 10.1016/B978-0-12-416003-3.00032-9. PubMed DOI
Yang X.R., Zhao Y.Q., Qiu Y.T., Chi C.F., Wang B. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Mar. Drugs. 2019;17:78. doi: 10.3390/md17020078. PubMed DOI PMC
Nurilmala M., Hizbullah H.H., Karnia E., Kusumaningtyas E., Ochiai Y. Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Mar. Drugs. 2020;18:98. doi: 10.3390/md18020098. PubMed DOI PMC
Mariod A.A., Adam H.F. Review: Gelatin, source, extraction and industrial applications. Acta Sci. Pol. Technol. Aliment. 2013;12:135–147.
Sultana S., Ali M.E., Uddin Ahamad M.N. Gelatine, collagen, and single cell proteins as a natural and newly emerging food ingredients. In: Ali M.E., Ahmad Nizar N.N., editors. Preparation and Processing of Religious and Cultural Foods. 1st ed. Volume 11. Woodhead Publishing; Duxford, UK: 2018. pp. 215–239. (Woodhead Publishing Series in Food Science, Technology and Nutrition). DOI
Karim A.A., Bhat R. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci. Technol. 2008;19:644–656. doi: 10.1016/j.tifs.2008.08.001. DOI
Boran G., Regenstein J.M. Fish gelatin. Adv. Food Nutr. Res. 2010;60:119–143. doi: 10.1016/S1043-4526(10)60005-8. PubMed DOI
Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC
Alipal J., Mohd Pu’ad N.A.S., Lee T.C., Nayan N.H.M., Sahari N., Basri H., Idris M.I., Abdullah H.Z. A review of gelatin: Properties, sources, process, applications, and commercialization. Mater. Today Proc. 2021;42:240–250. doi: 10.1016/j.matpr.2020.12.922. DOI
Nazmi N.N.M., Isa M.I., Sarbon N.M. Characterisation of biodegradable protein based films from gelatin alternative: A review. Int. Food Res. J. 2020;27:971–987.
Djagny K.B., Wang Z., Xu S. Gelatin: A valuable protein for food and pharmaceutical industries, review. Crit. Rev. Food Sci. Nutr. 2001;41:481–492. doi: 10.1080/20014091091904. PubMed DOI
Barbooti M.M., Raouf S.R., Al-Hamdani F.H.K. Optimization of production of food grade gelatin from bovine hide wastes. Eng. Technol. J. 2008;26:240–253.
Schrieber R., Gareis H. Gelatine Handbook–Theory and Industrial Practice. 1st ed. Wiley-VCH; Weinheim, Germany: 2007. pp. 45–117. DOI
Chakka A.K., Muhammed A., Sakhare P.Z., Bhaskar N. Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste Biomass Valor. 2017;8:2583–2593. doi: 10.1007/s12649-016-9756-1. DOI
Almeida P.F., da Silva Lannes S.C. Extraction and physicochemical characterization of gelatin from chicken by-product. J. Food Process Eng. 2013;36:824–833. doi: 10.1111/jfpe.12051. DOI
Montero M., Acosta Ó.G. Tuna skin gelatin production: Optimization of extraction steps and process scale-up. CyTA—J. Food. 2020;18:580–590. doi: 10.1080/19476337.2020.1801849. DOI
Norziah M.H., Al-Hassan A., Khairulnizam A.B., Mordi M.N., Norita M. Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties. Food Hydrocoll. 2009;23:1610–1616. doi: 10.1016/j.foodhyd.2008.12.004. DOI
Sinthusamran S., Benjakul S., Kishimura H. Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem. 2014;152:276–284. doi: 10.1016/j.foodchem.2013.11.109. PubMed DOI
Ahmad M., Benjakul S. Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocoll. 2011;25:381–388. doi: 10.1016/j.foodhyd.2010.07.004. DOI
Pradarameswari K.A., Zaelani K., Waluyo E., Nurdiani R. IOP Conference Series: Earth and Environmental Science, Proceedings of the Asean-Fen International Fisheries Symposium, Batu City, East Java, Indonesia, 7–9 November 2017. Volume 137. IOP Publishing Ltd.; Bristol, UK: 2018. The physico-chemical properties of pangas catfish (Pangasius pangasius) skin gelatin; p. 012067. DOI
Irwandi J., Faridayanti S., Mohamed E.S.M., Hamzah M.S., Torla H.H., Che Man Y.B. Extraction and characterization of gelatin from different marine fish species in Malaysia. Int. Food Res. J. 2009;16:381–389.
Arumugam G.K.S., Sharma D., Balakrishnan R.M., Ponnan Ettiyappan J.B. Extraction, optimization and characterization of collagen sole fish skin. Sustain. Chem. Pharm. 2018;9:19–26. doi: 10.1016/j.scp.2018.04.003. DOI
Gómez-Guillœn M.C., Montero M.V.P. Extraction of gelatin from megrim (Lepidorhombus boscii) skins with several organic acids. J. Food Sci. 2001;66:213–216. doi: 10.1111/j.1365-2621.2001.tb11319.x. DOI
Nalinanon S., Benjakul S., Visessanguan W., Kishimura H. Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food Hydrocoll. 2008;22:615–622. doi: 10.1016/j.foodhyd.2007.01.012. DOI
Kasankala L.M., Xue Y., Weilong Y., Hong S.D., He Q. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology. Bioresour. Technol. 2007;98:3338–3343. doi: 10.1016/j.biortech.2006.03.019. PubMed DOI
Da Trindade Alfaro A., Fonseca G., Prentice C. Enhancement of functional properties of wami tilapia (Oreochromis urolepis hornorum) skin gelatin at different pH values. Food Bioproc. Technol. 2013;6:2118–2127. doi: 10.1007/s11947-012-0859-9. DOI
Shahiri Tabarestani H., Maghsoudlou Y., Motamedzadegan A., Sadeghi Mahoonak A.R. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss) Bioresour. Technol. 2010;101:6207–6214. doi: 10.1016/j.biortech.2010.02.071. PubMed DOI
Ninan G., Jose J., Abubacker Z. Preparation and characterization of gelatin extracted from the skins of rohu (Labeo Rohita) and common carp (Cyprinus carpio) J. Food Process. Preserv. 2010;35:143–162. doi: 10.1111/j.1745-4549.2009.00467.x. DOI
Mokrejš P., Mrázek P., Gál R., Pavlačková J. Biotechnological preparation of gelatines from chicken paws. Polymers. 2019;11:1060. doi: 10.3390/polym11061060. PubMed DOI PMC
Gál R., Mokrejš P., Mrázek P., Pavlačková J., Janáčová D., Orsavová J. Chicken heads as a promising by-product for preparation of food gelatins. Molecules. 2020;25:494. doi: 10.3390/molecules25030494. PubMed DOI PMC
Jridi M., Nasri R., Lassoued I., Souissi N., Mbarek A., Barkia A., Nasri M. Chemical and biophysical properties of gelatins extracted from alkali-pretreated skin of cuttlefish (Sepia officinalis) using pepsin. Food Res. Int. 2013;54:1680–1687. doi: 10.1016/j.foodres.2013.09.026. DOI
Badway H.M.R., Abd El-Moniem S.M., Soliman A.M., Rabie M.A. Physicochemical properties of gelatin extracted from Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) fish skins. Zagazig J. Agric. Res. 2019;46:1529–1537. doi: 10.21608/zjar.2019.48170. DOI
Jongjareonrak A., Rawdkuen S., Chaijan M., Benjakul S., Osako K., Tanaka M. Chemical compositions and characterisation of skin gelatin from farmed giant catfish (Pangasianodon gigas) LWT—Food Sci. Technol. 2010;43:161–165. doi: 10.1016/j.lwt.2009.06.012. DOI
Nagarajan M., Benjakul S., Prodpran T., Songtipya P., Kishimura H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012;29:389–397. doi: 10.1016/j.foodhyd.2012.04.001. DOI
Arnesen J.A., Gildberg A. Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresour. Technol. 2007;98:53–57. doi: 10.1016/j.biortech.2005.11.021. PubMed DOI
Muyonga J.H., Cole C.G.B., Duodu K.G. Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocoll. 2004;18:581–592. doi: 10.1016/j.foodhyd.2003.08.009. DOI
Yang H., Chen Q., Xiao Y., Li C., Bi H., Zhang M., Wei L., Du Y. Effect of preparation method on physicochemical, scavenging, and proliferative properties of gelatin from yak skin. J. Food Process. Preserv. 2020;44:e14884. doi: 10.1111/jfpp.14884. DOI
Mrázek P., Mokrejš P., Gál R., Orsavová J. Chicken skin gelatine as an alternative to pork and beef gelatins. Potravin. Slovak J. Food Sci. 2019;13:224–233. doi: 10.5219/1022. DOI
Dhakal D., Koomsap P., Lamichhane A., Sadiq M.B., Anal A.K. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. 2018;23:23–30. doi: 10.1016/j.fbio.2018.03.003. DOI
Surangna J., Anal A.K. Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis. Food Sci. Technol. 2016;69:295–302. doi: 10.1016/j.lwt.2016.01.057. DOI
Li F., Jia D., Yao K. Amino acid composition and functional properties of collagen polypeptide from yak (Bos grunniens) bone. LWT—Food Sci. Technol. 2009;42:945–949. doi: 10.1016/j.lwt.2008.12.005. DOI
Shahidi F., Han X.Q., Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus-villosus) Food Chem. 1995;53:285–293. doi: 10.1016/0308-8146(95)93934-J. DOI
Jamilah B., Harvinder K.G. Properties of gelatins from skins of fish—Black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica) Food Chem. 2002;77:81–84. doi: 10.1016/S0308-8146(01)00328-4. DOI
European Pharmacopoeia 9.0 European Directorate for the Quality of Medicines & Health Care. 2017. [(accessed on 8 January 2021)]. Available online: https://www.edqm.eu/en/news/shutdown-european-pharmacopoeia-9th-edition.
Food Chemical Codex 12. [(accessed on 8 January 2021)]. Available online: https://www.foodchemicalscodex.org/
Djabourov M., Leblond J., Papon P. Gelation of aqueous gelatin solutions. I. Structural investigation. J. Phys. 1988;49:319–332. doi: 10.1051/jphys:01988004902031900. DOI
Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Alfaro A.T., Biluca F.C., Marquetti C., Tonial I.B., Nilson E., de Souza N.E. African catfish (Clarias gariepinus) skin gelatin: Extraction optimization and physical–chemical properties. Food Res. Int. 2014;65:416–422. doi: 10.1016/j.foodres.2014.05.070. DOI
Karim A.A., Bhat R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009;23:563–576. doi: 10.1016/j.foodhyd.2008.07.002. DOI
Sultana S., Hossain M.A.M., Zaidul I.S.M., Ali M.E. Multiplex PCR to discriminate bovine, porcine, and fish DNA in gelatin and confectionery products. LWT—Food Sci. Technol. 2018;92:169–176. doi: 10.1016/j.lwt.2018.02.019. DOI
Mahmood K., Muhammad L., Arin F., Kamilah H., Razak A., Sulaiman S. Review of fish gelatin extraction, properties and packaging applications. Food Sci. Qual. Manag. 2016;56:47–59.
Eysturskard J., Haug I.J., Elharfaoui N., Djabourov M., Draget K.I. Structural and mechanical properties of fish gelatin as a function of extraction conditions. Food Hydrocoll. 2009;23:1702–1711. doi: 10.1016/j.foodhyd.2009.01.008. DOI
Ahmad T., Ismail A., Ahmad S.A., Khalil K.A., Kee L.T., Awad E.A., Sazili A.Q. Extraction, characterization and molecular structure of bovine skin gelatin extracted with plant enzymes bromelain and zingibain. J. Food Sci. Technol. 2020;57:3772–3781. doi: 10.1007/s13197-020-04409-2. PubMed DOI PMC
Elharfaoui N., Djabourov M., Babel W. Molecular weight influence on gelatin gels: Structure, enthalpy and rheology. Macromol. Symp. 2007;256:149–157. doi: 10.1002/masy.200751017. DOI
Ross-Murphy S.B. Structure and rheology of gelatin gels: Recent progress. Polymer. 1992;33:2622–2627. doi: 10.1016/0032-3861(92)91146-S. DOI
Díaz-Calderón P., Flores E., González-Muñoz A., Pepczynska M., Quero F., Enrione J. Influence of extraction variables on the structure and physical properties of salmon gelatin. Food Hydrocoll. 2017;71:118–128. doi: 10.1016/j.foodhyd.2017.05.004. DOI
Sila A., Martinez-Alvarez O., Krichen F., Gomez-Guillen M.C., Bougatef A. Gelatin prepared from European eel (Anguilla anguilla) skin: Physicochemical, textural, viscoelastic and surface properties. Colloid Surf. A. 2017;529:643–650. doi: 10.1016/j.colsurfa.2017.06.032. DOI
Gilsenan P.M., Ross-Murphy S.B. Rheological characterization of gelatins from mammalian and marine sources. Food Hydrocoll. 2000;14:191–195. doi: 10.1016/S0268-005X(99)00050-8. DOI
Derkach S.R., Kuchina Y.A., Baryshnikov A.V., Kolotova D.S., Voron’ko N.G. Tailoring cod gelatin structure and physical properties with acid and alkaline extraction. Polymers. 2019;11:1724. doi: 10.3390/polym11101724. PubMed DOI PMC
Gómez-Guillén M.C., Turnay J., Fernández-Díaz M.D., Ulmo N., Lizarbe M.A., Montero P. Structural and physical properties of gelatin extracted from marine species: A comparative study. Food Hydrocoll. 2002;16:25–34. doi: 10.1016/S0268-005X(01)00035-2. DOI
Gómez-Guillen M.C., Gimenez B., Lopez-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI
Khiari Z., Rico D., Martin-Diana B.A., Barry-Ryana C. Comparison between gelatines extracted from mackerel and blue whiting bones after pre-treatments. Food Chem. 2013;139:347–354. doi: 10.1016/j.foodchem.2013.01.017. PubMed DOI
Cheow C.S., Norizah M.S., Kyaw Z.Y., Howell N.K. Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma) Food Chem. 2007;101:386–391. doi: 10.1016/j.foodchem.2006.01.046. DOI
Arnesen J.A., Gildberg A. Extraction of muscle proteins and gelatine from cod head. Process Biochem. 2006;41:697–700. doi: 10.1016/j.procbio.2005.09.001. DOI
Kolodziejska I., Skierka E., Sadowska M., Kolodziejski W., Niecikowska C. Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chem. 2008;107:700–706. doi: 10.1016/j.foodchem.2007.08.071. DOI
Widyasari R., Rawdkuen S. Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food Appl. Biosci. J. 2014;2:83–95. doi: 10.14456/fabj.2014.7. DOI
Taufik M., Triatmojo S., Erwanto Y., Santoso U. Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin; Proceedings of the 5th International Seminar on Tropical Animal Production; Yogyakarta, Indonesia. 19–22 October 2010; pp. 649–656.
Haug I.J., Draget K.I. Gelatin. In: Phillips G., Williams P., editors. Handbook of Hydrocolloids. 2nd ed. Volume 6. Woodhead Publishing; Cambridge, UK: 2009. pp. 142–163.
Nollet L.M.L., Toldrá F. Handbook of Food Analysis. 3rd ed. CRC Press; Boca Raton, FL, USA: 2015. pp. 357–754. DOI
Meat and Meat Products–Determination of Hydroxyproline Content. ISO; Geneva, Switzerland: [(accessed on 2 January 2021)]. Available online: https://cdn.standards.iteh.ai/samples/8848/908d030b1d6a4807bc2ac15fee8d51f9/SIST-ISO-3496-1995.pdf.
Vázquez-Ortiz F.A., González-Méndez N.F. Determination of collagen as a quality index in Bologna from Northwestern Mexico. J. Food Compos. Anal. 1996;9:269–276. doi: 10.1006/jfca.1996.0032. DOI
Antony J. Design of Experiments for Engineers and Scientists. 2nd ed. Elsevier; London, UK: 2014. pp. 33–85. DOI
Official Procedure of the Gelatin Manufacturers Institute of America, Inc. Standard Testing Methods for Edible Gelatin. [(accessed on 20 July 2021)]. Available online: http://www.gelatin-gmia.com/images/GMIA_Official_Methods_of_Gelatin_Revised_2013.pdf/
Nasrin T.A.A., Noomhorm A., Anal A.K. Physico-chemical characterization of culled plantain pulp starch, peel starch and flour. Int. J. Food Prop. 2015;18:165–177. doi: 10.1080/10942912.2013.828747. DOI
Sathe S.K., Deshpande S.S., Salunkhe D.K. Functional properties of lupin seed (Supinus mutabilis) proteins and protein concentrates. J. Food Sci. 1982;47:491–497. doi: 10.1111/j.1365-2621.1982.tb10110.x. DOI
Neto V.Q., Narain N., Silva J.B., Bora P.S. Functional properties of raw and heat processed cashew nut (Anarcardium occidentale L.) kernel protein isolates. Nahrung. 2001;45:258–262. doi: 10.1002/1521-3803(20010801)45:4<258::AID-FOOD258>3.0.CO;2-3. PubMed DOI
Moosavi-Nasab M., Yazdani-Dehnavi M., Mirzapour-Kouhdasht A. The effects of enzymatically aided acid-swelling process on gelatin extracted from fish by-products. Food Sci. Nutr. 2020;8:5017–5025. doi: 10.1002/fsn3.1799. PubMed DOI PMC
Collagen Hydrolysates from Animal By-Products in Topical Cosmetic Formulations