Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LTAUSA18162
MEYS
LTC20036
MEYS
460214
GAUK
RVO 61388971
Czech Academy of Sciences
PubMed
38624209
PubMed Central
PMC11077963
DOI
10.1128/mbio.00689-24
Knihovny.cz E-zdroje
- Klíčová slova
- Saccharomyces cerevisiae, cell-specific regulation, differentiated colonies, proteasomal degradation, spatially structured populations, transcription factor, yeast,
- MeSH
- protein-serin-threoninkinasy metabolismus genetika MeSH
- proteolýza MeSH
- proteosyntéza MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae - proteiny * genetika metabolismus MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- stabilita proteinů MeSH
- transkripční faktory bZIP * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GCN2 protein, S cerevisiae MeSH Prohlížeč
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory bZIP * MeSH
Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation.IMPORTANCEIn nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.
Faculty of Science Charles University BIOCEV Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV Prague Czech Republic
Zobrazit více v PubMed
Palková Z, Devaux F, Ricicová M, Mináriková L, Le Crom S, Jacq C. 2002. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13:3901–3914. doi:10.1091/mbc.e01-12-0149 PubMed DOI PMC
Palková Z, Forstová J. 2000. Yeast colonies synchronise their growth and development. J Cell Sci 113 (Pt 11):1923–1928. doi:10.1242/jcs.113.11.1923 PubMed DOI
Váchová L, Palková Z. 2018. How structured yeast multicellular communities live, age and die?. FEMS Yeast Res 18:foy033. doi:10.1093/femsyr/foy033 PubMed DOI
Allen C, Büttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M. 2006. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100. doi:10.1083/jcb.200604072 PubMed DOI PMC
Čáp M, Palková Z. 2024. The characteristics of differentiated yeast subpopulations depend on their lifestyle and available nutrients. Sci Rep 14:3681. doi:10.1038/s41598-024-54300-9 PubMed DOI PMC
Cáp M, Stěpánek L, Harant K, Váchová L, Palková Z. 2012. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell 46:436–448. doi:10.1016/j.molcel.2012.04.001 PubMed DOI
Palková Z, Váchová L. 2021. Spatially structured yeast communities: understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J 19:5613–5621. doi:10.1016/j.csbj.2021.10.012 PubMed DOI PMC
Váchová L, Hatáková L, Cáp M, Pokorná M, Palková Z. 2013. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid Med Cell Longev 2013:102485. doi:10.1155/2013/102485 PubMed DOI PMC
DeBerardinis RJ, Cheng T. 2010. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324. doi:10.1038/onc.2009.358 PubMed DOI PMC
Podholová K, Plocek V, Rešetárová S, Kučerová H, Hlaváček O, Váchová L, Palková Z. 2016. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget 7:15299–15314. doi:10.18632/oncotarget.8084 PubMed DOI PMC
Čáp M, Váchová L, Palková Z. 2015. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle 14:3488–3497. doi:10.1080/15384101.2015.1093706 PubMed DOI PMC
Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J. 2010. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56:1–32. doi:10.1007/s00294-009-0287-1 PubMed DOI
Hinnebusch AG, Natarajan K. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32. doi:10.1128/EC.01.1.22-32.2002 PubMed DOI PMC
Marbach I, Licht R, Frohnmeyer H, Engelberg D. 2001. Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276:16944–16951. doi:10.1074/jbc.M100383200 PubMed DOI
Yang R, Wek SA, Wek RC. 2000. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol Cell Biol 20:2706–2717. doi:10.1128/MCB.20.8.2706-2717.2000 PubMed DOI PMC
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368. doi:10.1128/MCB.21.13.4347-4368.2001 PubMed DOI PMC
Rawal Y, Chereji RV, Valabhoju V, Qiu H, Ocampo J, Clark DJ, Hinnebusch AG. 2018. Gcn4 binding in coding regions can activate internal and canonical 5' promoters in yeast. Mol Cell 70:297–311. doi:10.1016/j.molcel.2018.03.007 PubMed DOI PMC
Struhl K. 1988. The JUN oncoprotein, a vertebrate transcription factor, activates transcription in yeast. Nature 332:649–650. doi:10.1038/332649a0 PubMed DOI
Vogt PK, Bos TJ, Doolittle RF. 1987. Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene Jun. Proc Natl Acad Sci U S A 84:3316–3319. doi:10.1073/pnas.84.10.3316 PubMed DOI PMC
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. 2019. The AP-1 transcriptional complex: Local switch or remote command?. Biochim Biophys Acta Rev Cancer 1872:11–23. doi:10.1016/j.bbcan.2019.04.003 PubMed DOI
Shaulian E, Karin M. 2002. AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. doi:10.1038/ncb0502-e131 PubMed DOI
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. 2017. Hijacking of the AP-1 signaling pathway during development of ATL. Front Microbiol 8:2686. doi:10.3389/fmicb.2017.02686 PubMed DOI PMC
Hess J, Angel P, Schorpp-Kistner M. 2004. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973. doi:10.1242/jcs.01589 PubMed DOI
Jackson RJ, Hellen CUT, Pestova TV. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127. doi:10.1038/nrm2838 PubMed DOI PMC
Vattem KM, Wek RC. 2004. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101:11269–11274. doi:10.1073/pnas.0400541101 PubMed DOI PMC
Hinnebusch AG. 2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450. doi:10.1146/annurev.micro.59.031805.133833 PubMed DOI
Hinnebusch AG. 2011. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 75:434–467. doi:10.1128/MMBR.00008-11 PubMed DOI PMC
Kubota H, Obata T, Ota K, Sasaki T, Ito T. 2003. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2α kinase GCN2. J Biol Chem 278:20457–20460. doi:10.1074/jbc.C300133200 PubMed DOI
Aviram S, Simon E, Gildor T, Glaser F, Kornitzer D. 2008. Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Mol Cell Biol 28:6858–6869. doi:10.1128/MCB.00367-08 PubMed DOI PMC
Bömeke K, Pries R, Korte V, Scholz E, Herzog B, Schulze F, Braus GH. 2006. Yeast Gcn4p stabilization is initiated by the dissociation of the nuclear Pho85p/Pcl5p complex. Mol Biol Cell 17:2952–2962. doi:10.1091/mbc.e05-10-0975 PubMed DOI PMC
Irniger S, Braus GH. 2003. Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr Genet 44:8–18. doi:10.1007/s00294-003-0422-3 PubMed DOI
Pries R, Bömeke K, Irniger S, Grundmann O, Braus GH. 2002. Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. Eukaryot Cell 1:663–672. doi:10.1128/EC.1.5.663-672.2002 PubMed DOI PMC
Shemer R, Meimoun A, Holtzman T, Kornitzer D. 2002. Regulation of the transcription factor Gcn4 by Pho85 cyclin Pcl5. Mol Cell Biol 22:5395–5404. doi:10.1128/MCB.22.15.5395-5404.2002 PubMed DOI PMC
Walvekar AS, Kadamur G, Sreedharan S, Gupta R, Srinivasan R, Laxman S. 2020. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 295:18390–18405. doi:10.1074/jbc.RA120.014248 PubMed DOI PMC
Nateri AS, Riera-Sans L, Da Costa C, Behrens A. 2004. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303:1374–1378. doi:10.1126/science.1092880 PubMed DOI
Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. 2017. Surviving stress: modulation of Atf4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab 28:794–806. doi:10.1016/j.tem.2017.07.003 PubMed DOI PMC
Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. 2012. Data from "Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism" GEO. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35887 PubMed
Plocek V, Fadrhonc K, Maršíková J, Váchová L, Pokorná A, Hlaváček O, Wilkinson D, Palková Z. 2021. Mitochondrial retrograde signaling contributes to metabolic differentiation in yeast colonies. Int J Mol Sci 22:22115597. doi:10.3390/ijms22115597 PubMed DOI PMC
Plocek V, Fadrhonc K, Marsikova J, Vachova L, Pokorna A, Hlavacek O, Wilkinson D, Palkova Z. 2021. Data from "mitochondrial retrograde signaling contributes to metabolic differentiation in yeast colonies". PRIDE. Available from: https://www.ebi.ac.uk/pride/archive/projects/PXD026077 PubMed PMC
Grundmann O, Mösch HU, Braus GH. 2001. Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 276:25661–25671. doi:10.1074/jbc.M101068200 PubMed DOI
Zhang F, Hinnebusch AG. 2011. An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA. Nucleic Acids Res 39:3128–3140. doi:10.1093/nar/gkq1251 PubMed DOI PMC
Gupta R, Hinnebusch AG. 2023. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress. Proc Natl Acad Sci U S A 120:e2300521120. doi:10.1073/pnas.2300521120 PubMed DOI PMC
Rosonina E, Duncan SM, Manley JL. 2012. Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev 26:350–355. doi:10.1101/gad.184689.111 PubMed DOI PMC
Kirchner S, Ignatova Z. 2015. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16:98–112. doi:10.1038/nrg3861 PubMed DOI
Zinshteyn B, Gilbert WV. 2013. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 9:e1003675. doi:10.1371/journal.pgen.1003675 PubMed DOI PMC
Tavernarakis N, Thireos G. 1995. Transcriptional interference caused by GCN4 overexpression reveals multiple interactions mediating transcriptional activation. Mol Gen Genet 247:571–578. doi:10.1007/BF00290348 PubMed DOI
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488. doi:10.1038/nature06926 PubMed DOI PMC
Kim S, Saeki Y, Fukunaga K, Suzuki A, Takagi K, Yamane T, Tanaka K, Mizushima T, Kato K. 2010. Crystal structure of yeast Rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J Biol Chem 285:15159–15166. doi:10.1074/jbc.M110.104042 PubMed DOI PMC
Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D. 2009. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459:861–865. doi:10.1038/nature08063 PubMed DOI PMC
Seong KM, Baek JH, Yu MH, Kim J. 2007. Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome. FEBS Lett 581:2567–2573. doi:10.1016/j.febslet.2007.04.064 PubMed DOI
Rousseau A, Bertolotti A. 2018. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol 19:697–712. doi:10.1038/s41580-018-0040-z PubMed DOI
Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. 2014. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843:1948–1968. doi:10.1016/j.bbamcr.2014.04.006 PubMed DOI
Masson GR. 2019. Towards a model of GCN2 activation. Biochem Soc Trans 47:1481–1488. doi:10.1042/BST20190331 PubMed DOI PMC
Adams CM. 2007. Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids. J Biol Chem 282:16744–16753. doi:10.1074/jbc.M610510200 PubMed DOI
Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. 2016. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351:728–733. doi:10.1126/science.aad0489 PubMed DOI PMC
Torrence ME, MacArthur MR, Hosios AM, Valvezan AJ, Asara JM, Mitchell JR, Manning BD. 2021. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. Elife 10:e63326. doi:10.7554/eLife.63326 PubMed DOI PMC
Park Y, Reyna-Neyra A, Philippe L, Thoreen CC. 2017. mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Rep 19:1083–1090. doi:10.1016/j.celrep.2017.04.042 PubMed DOI PMC
Köditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM. 2007. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110:3610–3617. doi:10.1182/blood-2007-06-094441 PubMed DOI
Bagheri-Yarmand R, Williams MD, Grubbs EG, Gagel RF. 2017. ATF4 targets RET for degradation and is a candidate tumor suppressor gene in medullary thyroid cancer. J Clin Endocrinol Metab 102:933–941. doi:10.1210/jc.2016-2878 PubMed DOI PMC
Sheff MA, Thorn KS. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670. doi:10.1002/yea.1130 PubMed DOI
Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962. doi:10.1002/yea.1142 PubMed DOI
Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96. doi:10.1016/s0076-6879(02)50957-5 PubMed DOI
Palková Z, Janderová B, Gabriel J, Zikánová B, Pospísek M, Forstová J. 1997. Ammonia mediates communication between yeast colonies. Nature 390:532–536. doi:10.1038/37398 PubMed DOI
Váchová L, Chernyavskiy O, Strachotová D, Bianchini P, Burdíková Z, Fercíková I, Kubínová L, Palková Z. 2009. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 11:1866–1877. doi:10.1111/j.1462-2920.2009.01911.x PubMed DOI
Váchová L, Kucerová H, Devaux F, Ulehlová M, Palková Z. 2009. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11:494–504. doi:10.1111/j.1462-2920.2008.01789.x PubMed DOI
Valenti D, Vacca RA, Guaragnella N, Passarella S, Marra E, Giannattasio S. 2008. A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Res 8:400–404. doi:10.1111/j.1567-1364.2008.00348.x PubMed DOI