Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-09381S
Czech Science Foundation
GAUK 958216
Charles University
RVO 61388971
Czech Academy of Sciences
PubMed
34070491
PubMed Central
PMC8198273
DOI
10.3390/ijms22115597
PII: ijms22115597
Knihovny.cz E-zdroje
- Klíčová slova
- Saccharomyces cerevisiae, colony development and differentiation, mitochondrial retrograde signaling, proteomic analysis, yeast colonies,
- MeSH
- aminokyseliny metabolismus MeSH
- analýza jednotlivých buněk MeSH
- biosyntetické dráhy genetika MeSH
- chromatografie kapalinová MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u hub genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- signální transdukce genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- transkripční faktory BHLH-Zip genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- intracelulární signální peptidy a proteiny MeSH
- MKS1 protein, S cerevisiae MeSH Prohlížeč
- proteom MeSH
- represorové proteiny MeSH
- RTG1 protein, S cerevisiae MeSH Prohlížeč
- RTG2 protein, S cerevisiae MeSH Prohlížeč
- RTG3 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory BHLH-Zip MeSH
During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.
Zobrazit více v PubMed
Guha M., Avadhani N.G. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion. 2013;13:577–591. doi: 10.1016/j.mito.2013.08.007. PubMed DOI PMC
Jazwinski S.M. The retrograde response: A conserved compensatory reaction to damage from within and from without. Prog. Mol. Biol. Transl. Sci. 2014;127:133–154. PubMed PMC
Liu Z., Butow R.A. Mitochondrial retrograde signaling. Annu. Rev. Genet. 2006;40:159–185. doi: 10.1146/annurev.genet.40.110405.090613. PubMed DOI
Ferreira Junior J.R., Spirek M., Liu Z., Butow R.A. Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae. Gene. 2005;354:2–8. doi: 10.1016/j.gene.2005.03.048. PubMed DOI
Liu Z., Sekito T., Spirek M., Thornton J., Butow R.A. Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol. Cell. 2003;12:401–411. doi: 10.1016/S1097-2765(03)00285-5. PubMed DOI
Dilova I., Aronova S., Chen J.C., Powers T. Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J. Biol. Chem. 2004;279:46527–46535. doi: 10.1074/jbc.M409012200. PubMed DOI
Dilova I., Chen C.Y., Powers T. Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr. Biol. 2002;12:389–395. doi: 10.1016/S0960-9822(02)00677-2. PubMed DOI
Chelstowska A., Butow R.A. RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J. Biol. Chem. 1995;270:18141–18146. doi: 10.1074/jbc.270.30.18141. PubMed DOI
Epstein C.B., Waddle J.A., Hale IV W., Dave V., Thornton J., Macatee T.L., Garner H.R., Butow R.A. Genome-wide responses to mitochondrial dysfunction. Mol. Biol. Cell. 2001;12:297–308. doi: 10.1091/mbc.12.2.297. PubMed DOI PMC
Guaragnella N., Coyne L.P., Chen X.J., Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: Learning from Saccharomyces cerevisiae. FEMS Yeast Res. 2018;18:foy088. doi: 10.1093/femsyr/foy088. PubMed DOI PMC
Palkova Z., Vachova L. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin. Cell Dev. Biol. 2016;57:110–119. doi: 10.1016/j.semcdb.2016.04.006. PubMed DOI
Vachova L., Palkova Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 2018;18:foy033. doi: 10.1093/femsyr/foy033. PubMed DOI
Podholová K., Plocek V., Rešetárová S., Kučerová H., Hlaváček O., Váchová L., Palková Z. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 2016;7:15299–15314. doi: 10.18632/oncotarget.8084. PubMed DOI PMC
Cap M., Stepanek L., Harant K., Vachova L., Palkova Z. Cell differentiation within a yeast colony: Metabolic and regulatory parallels with a tumor-affected organism. Mol. Cell. 2012;46:436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI
Palkova Z., Devaux F., Ricicova M., Minarikova L., Le Crom S., Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol. Biol. Cell. 2002;13:3901–3914. doi: 10.1091/mbc.e01-12-0149. PubMed DOI PMC
Palkova Z., Janderova B., Gabriel J., Zikanova B., Pospisek M., Forstova J. Ammonia mediates communication between yeast colonies. Nature. 1997;390:532–536. doi: 10.1038/37398. PubMed DOI
Vachova L., Hatakova L., Cap M., Pokorna M., Palkova Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid. Med. Cell Longev. 2013;2013:102485. doi: 10.1155/2013/102485. PubMed DOI PMC
Cap M., Vachova L., Palkova Z. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle. 2015;14:3488–3497. doi: 10.1080/15384101.2015.1093706. PubMed DOI PMC
Franken J., Kroppenstedt S., Swiegers J.H., Bauer F.F. Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: A role for carnitine in stress protection. Curr. Genet. 2008;53:347–360. doi: 10.1007/s00294-008-0191-0. PubMed DOI
Van Rossum H.M., Kozak B.U., Niemeijer M.S., Duine H.J., Luttik M.A., Boer V.M., Kotter P., Daran J.M., van Maris A.J., Pronk J.T. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Res. 2016;16:fow017. doi: 10.1093/femsyr/fow017. PubMed DOI PMC
Xiberras J., Klein M., Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses—Knowledge gaps regarding the central carbon catabolism of this ‘non-fermentable’ carbon source. Biotechnol. Adv. 2019;37:107378. doi: 10.1016/j.biotechadv.2019.03.017. PubMed DOI
Xiberras J., Klein M., Prosch C., Malubhoy Z., Nevoigt E. Anaplerotic reactions active during growth of Saccharomyces cerevisiae on glycerol. FEMS Yeast Res. 2020;20:foz086. doi: 10.1093/femsyr/foz086. PubMed DOI
Graybill E.R., Rouhier M.F., Kirby C.E., Hawes J.W. Functional comparison of citrate synthase isoforms from S. cerevisiae. Arch. Biochem. Biophys. 2007;465:26–37. doi: 10.1016/j.abb.2007.04.039. PubMed DOI
Nakatsukasa K., Nishimura T., Byrne S.D., Okamoto M., Takahashi-Nakaguchi A., Chibana H., Okumura F., Kamura T. The ubiquitin ligase SCF(Ucc1) acts as a metabolic switch for the glyoxylate cycle. Mol. Cell. 2015;59:22–34. doi: 10.1016/j.molcel.2015.04.013. PubMed DOI
Liu Z., Butow R.A. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell Biol. 1999;19:6720–6728. doi: 10.1128/MCB.19.10.6720. PubMed DOI PMC
Schuller H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 2003;43:139–160. doi: 10.1007/s00294-003-0381-8. PubMed DOI
Becker-Kettern J., Paczia N., Conrotte J.F., Kay D.P., Guignard C., Jung P.P., Linster C.L. Saccharomyces cerevisiae forms D-2-Hydroxyglutarate and couples its degradation to D-lactate formation via a cytosolic transhydrogenase. J. Biol. Chem. 2016;291:6036–6058. doi: 10.1074/jbc.M115.704494. PubMed DOI PMC
Pallotta M.L. Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek. 2012;102:163–175. doi: 10.1007/s10482-012-9724-0. PubMed DOI
De Bari L., Atlante A., Armeni T., Kalapos M.P. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer’s disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res. Rev. 2019;53:100915. doi: 10.1016/j.arr.2019.100915. PubMed DOI
Stewart B.J., Navid A., Kulp K.S., Knaack J.L., Bench G. D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast. 2013;30:81–91. doi: 10.1002/yea.2942. PubMed DOI PMC
Passarella S., Schurr A. l-Lactate transport and metabolism in mitochondria of Hep G2 cells-The Cori cycle revisited. Front. Oncol. 2018;8:120. doi: 10.3389/fonc.2018.00120. PubMed DOI PMC
Dilova I., Powers T. Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:112–119. doi: 10.1111/j.1567-1364.2005.00008.x. PubMed DOI
Tate J.J., Cox K.H., Rai R., Cooper T.G. Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression. J. Biol. Chem. 2002;277:20477–20482. doi: 10.1074/jbc.M200962200. PubMed DOI PMC
Giannattasio S., Liu Z., Thornton J., Butow R.A. Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression. J. Biol. Chem. 2005;280:42528–42535. doi: 10.1074/jbc.M509187200. PubMed DOI
Sekito T., Thornton J., Butow R.A. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol. Biol. Cell. 2000;11:2103–2115. doi: 10.1091/mbc.11.6.2103. PubMed DOI PMC
Palkova Z., Wilkinson D., Vachova L. Aging and differentiation in yeast populations: Elders with different properties and functions. FEMS Yeast Res. 2014;14:96–108. doi: 10.1111/1567-1364.12103. PubMed DOI
Wilkinson D., Marsikova J., Hlavacek O., Gilfillan G.D., Jezkova E., Aaløkken R., Vachova L., Palkova Z. Transcriptome remodeling of differentiated cells during chronological ageing of yeast colonies: New insights into metabolic differentiation. Oxid. Med. Cell Longev. 2018;2018:4932905. doi: 10.1155/2018/4932905. PubMed DOI PMC
Ihmels J., Friedlander G., Bergmann S., Sarig O., Ziv Y., Barkai N. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 2002;31:370–377. doi: 10.1038/ng941. PubMed DOI
Graack H.R., Wittmann-Liebold B. Mitochondrial ribosomal proteins (MRPs) of yeast. Biochem. J. 1998;329:433–448. doi: 10.1042/bj3290433. PubMed DOI PMC
Lai L.C., Kosorukoff A.L., Burke P.V., Kwast K.E. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. Eukaryot Cell. 2006;5:1468–1489. doi: 10.1128/EC.00107-06. PubMed DOI PMC
Kim H.J., Maiti P., Barrientos A. Mitochondrial ribosomes in cancer. Semin. Cancer Biol. 2017;47:67–81. doi: 10.1016/j.semcancer.2017.04.004. PubMed DOI PMC
Sheff M.A., Thorn K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 2004;21:661–670. doi: 10.1002/yea.1130. PubMed DOI
Guldener U., Heck S., Fielder T., Beinhauer J., Hegemann J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519–2524. doi: 10.1093/nar/24.13.2519. PubMed DOI PMC
Gietz R.D., Woods R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. PubMed
Vachova L., Chernyavskiy O., Strachotova D., Bianchini P., Burdikova Z., Fercikova I., Kubinova L., Palkova Z. Architecture of developing multicellular yeast colony: Spatio-temporal expression of Ato1p ammonium exporter. Environ. Microbiol. 2009;11:1866–1877. doi: 10.1111/j.1462-2920.2009.01911.x. PubMed DOI
Vachova L., Stovicek V., Hlavacek O., Chernyavskiy O., Stepanek L., Kubinova L., Palkova Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J. Cell Biol. 2011;194:679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC
Marsikova J., Pavlickova M., Wilkinson D., Vachova L., Hlavacek O., Hatakova L., Palkova Z. The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc. Natl. Acad. Sci. USA. 2020;117:15123–15131. doi: 10.1073/pnas.1922076117. PubMed DOI PMC
Hughes C.S., Moggridge S., Muller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019;14:68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI
Vachova L., Kucerova H., Devaux F., Ulehlova M., Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ. Microbiol. 2009;11:494–504. doi: 10.1111/j.1462-2920.2008.01789.x. PubMed DOI
Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies