The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies

. 2020 Jun 30 ; 117 (26) : 15123-15131. [epub] 20200615

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32541056

Yeast form complex highly organized colonies in which cells undergo spatiotemporal phenotypic differentiation in response to local gradients of nutrients, metabolites, and specific signaling molecules. Colony fitness depends on cell interactions, cooperation, and the division of labor between differentiated cell subpopulations. Here, we describe the regulation and dynamics of the expansion of papillae that arise during colony aging, which consist of cells that overcome colony regulatory rules and disrupt the synchronized colony structure. We show that papillae specifically expand within the U cell subpopulation in differentiated colonies. Papillae emerge more frequently in some strains than in others. Genomic analyses further revealed that the Whi2p-Psr1p/Psr2p complex (WPPC) plays a key role in papillae expansion. We show that cells lacking a functional WPPC have a sizable interaction-specific fitness advantage attributable to production of and resistance to a diffusible compound that inhibits growth of other cells. Competitive superiority and high relative fitness of whi2 and psr1psr2 strains are particularly pronounced in dense spatially structured colonies and are independent of TORC1 and Msn2p/Msn4p regulators previously associated with the WPPC function. The WPPC function, described here, might be a regulatory mechanism that balances cell competition and cooperation in dense yeast populations and, thus, contributes to cell synchronization, pattern formation, and the expansion of cells with a competitive fitness advantage.

Zobrazit více v PubMed

Tshikantwa T. S., Ullah M. W., He F., Yang G., Current trends and potential applications of microbial interactions for human welfare. Front. Microbiol. 9, 1156 (2018). PubMed PMC

Elias S., Banin E., Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004 (2012). PubMed

Höfs S., Mogavero S., Hube B., Interaction of Candida albicans with host cells: Virulence factors, host defense, escape strategies, and the microbiota. J. Microbiol. 54, 149–169 (2016). PubMed

Ursell L. K., Metcalf J. L., Parfrey L. W., Knight R., Defining the human microbiome. Nutr. Rev. 70 (suppl. 1), S38–S44 (2012). PubMed PMC

Zhang S., Merino N., Okamoto A., Gedalanga P., Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb. Biotechnol. 11, 833–847 (2018). PubMed PMC

Tarnita C. E., The ecology and evolution of social behavior in microbes. J. Exp. Biol. 220, 18–24 (2017). PubMed

Popat R. et al. ., Quorum-sensing and cheating in bacterial biofilms. Proc. Biol. Sci. 279, 4765–4771 (2012). PubMed PMC

Nair R. R., Fiegna F., Velicer G. J., Indirect evolution of social fitness inequalities and facultative social exploitation. Proc. Biol. Sci. 285, 20180054 (2018). PubMed PMC

Ostrowski E. A. et al. ., Genomic signatures of cooperation and conflict in the social amoeba. Curr. Biol. 25, 1661–1665 (2015). PubMed PMC

Greig D., Travisano M., Density-dependent effects on allelopathic interactions in yeast. Evolution 62, 521–527 (2008). PubMed

Rendueles O., Amherd M., Velicer G. J., Positively frequency-dependent interference competition maintains diversity and pervades a natural population of cooperative microbes. Curr. Biol. 25, 1673–1681 (2015). PubMed

Cao P., Dey A., Vassallo C. N., Wall D., How myxobacteria cooperate. J. Mol. Biol. 427, 3709–3721 (2015). PubMed PMC

van Gestel J., Vlamakis H., Kolter R., Division of labor in biofilms: The ecology of cell differentiation. Microbiol. Spectr. 3, MB-0002-2014 (2015). PubMed

Ratcliff W. C., Denison R. F., Borrello M., Travisano M., Experimental evolution of multicellularity. Proc. Natl. Acad. Sci. U.S.A. 109, 1595–1600 (2012). PubMed PMC

Ratcliff W. C., Fankhauser J. D., Rogers D. W., Greig D., Travisano M., Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015). PubMed PMC

Koschwanez J. H., Foster K. R., Murray A. W., Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011). Correction in: PLoS Biol.9 (2011). PubMed PMC

Váchová L., Palková Z., How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 18, foy033 (2018). PubMed

Palková Z. et al. ., Ammonia mediates communication between yeast colonies. Nature 390, 532–536 (1997). PubMed

Váchová L., Hatáková L., Cáp M., Pokorná M., Palková Z., Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid. Med. Cell. Longev. 2013, 102485 (2013). PubMed PMC

Palková Z., Váchová L., Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin. Cell Dev. Biol. 57, 110–119 (2016). PubMed

Cáp M., Stěpánek L., Harant K., Váchová L., Palková Z., Cell differentiation within a yeast colony: Metabolic and regulatory parallels with a tumor-affected organism. Mol. Cell 46, 436–448 (2012). PubMed

Cáp M., Váchová L., Palková Z., Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. J. Biol. Chem. 284, 32572–32581 (2009). PubMed PMC

Čáp M., Váchová L., Palková Z., Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle 14, 3488–3497 (2015). PubMed PMC

Yang H. et al. ., Papillation in Bacillus anthracis colonies: A tool for finding new mutators. Mol. Microbiol. 79, 1276–1293 (2011). PubMed

Comyn S. A., Flibotte S., Mayor T., Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in Saccharomyces cerevisiae. Sci. Rep. 7, 4183 (2017). PubMed PMC

Lang G. I. et al. ., Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013). PubMed PMC

Szamecz B. et al. ., The genomic landscape of compensatory evolution. PLoS Biol. 12, e1001935 (2014). PubMed PMC

Teng X. et al. ., Genome-wide consequences of deleting any single gene. Mol. Cell 52, 485–494 (2013). PubMed PMC

van Leeuwen J. et al. ., Exploring genetic suppression interactions on a global scale. Science 354, aag0839 (2016). PubMed PMC

Kaida D., Yashiroda H., Toh-e A., Kikuchi Y., Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells 7, 543–552 (2002). PubMed

Mendl N. et al. ., Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J. Cell Sci. 124, 1339–1350 (2011). PubMed

Chen Y., Stabryla L., Wei N., Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl. Environ. Microbiol. 82, 2156–2166 (2016). PubMed PMC

Lis P. et al. ., Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 7, 10153–10173 (2016). PubMed PMC

Radcliffe P., Trevethick J., Tyers M., Sudbery P., Deregulation of CLN1 and CLN2 in the Saccharomyces cerevisiae whi2 mutant. Yeast 13, 707–715 (1997). PubMed

Chen X. et al. ., Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genet. 14, e1007592 (2018). PubMed PMC

Teng X., Hardwick J. M., Whi2: A new player in amino acid sensing. Curr. Genet. 65, 701–709 (2019). PubMed

Liu Z., Xiang Y., Sun G., The KCTD family of proteins: Structure, function, disease relevance. Cell Biosci. 3, 45 (2013). PubMed PMC

Lang G. I., Murray A. W., Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178, 67–82 (2008). PubMed PMC

Harata K., Nishiuchi T., Kubo Y., Colletotrichum orbiculare WHI2, a yeast stress-response regulator homolog, controls the biotrophic stage of hemibiotrophic infection through TOR Signaling. Mol. Plant Microbe Interact. 29, 468–483 (2016). PubMed

Qian W., Ma D., Xiao C., Wang Z., Zhang J., The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep. 2, 1399–1410 (2012). PubMed PMC

Cheng W. C. et al. ., Fis1 deficiency selects for compensatory mutations responsible for cell death and growth control defects. Cell Death Differ. 15, 1838–1846 (2008). PubMed PMC

Tucker C. L., Fields S., Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genomics 5, 216–224 (2004). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...