The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32541056
PubMed Central
PMC7334569
DOI
10.1073/pnas.1922076117
PII: 1922076117
Knihovny.cz E-zdroje
- Klíčová slova
- chimeric populations, competitive advantage, interaction-specific fitness inequality, interference competition, yeast multicellularity,
- MeSH
- membránové proteiny genetika metabolismus MeSH
- proliferace buněk fyziologie MeSH
- proteinfosfatasy genetika metabolismus MeSH
- regulace genové exprese u hub fyziologie MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- proteinfosfatasy MeSH
- PSR1 protein, S cerevisiae MeSH Prohlížeč
- PSR2 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- Whi2 protein, S cerevisiae MeSH Prohlížeč
Yeast form complex highly organized colonies in which cells undergo spatiotemporal phenotypic differentiation in response to local gradients of nutrients, metabolites, and specific signaling molecules. Colony fitness depends on cell interactions, cooperation, and the division of labor between differentiated cell subpopulations. Here, we describe the regulation and dynamics of the expansion of papillae that arise during colony aging, which consist of cells that overcome colony regulatory rules and disrupt the synchronized colony structure. We show that papillae specifically expand within the U cell subpopulation in differentiated colonies. Papillae emerge more frequently in some strains than in others. Genomic analyses further revealed that the Whi2p-Psr1p/Psr2p complex (WPPC) plays a key role in papillae expansion. We show that cells lacking a functional WPPC have a sizable interaction-specific fitness advantage attributable to production of and resistance to a diffusible compound that inhibits growth of other cells. Competitive superiority and high relative fitness of whi2 and psr1psr2 strains are particularly pronounced in dense spatially structured colonies and are independent of TORC1 and Msn2p/Msn4p regulators previously associated with the WPPC function. The WPPC function, described here, might be a regulatory mechanism that balances cell competition and cooperation in dense yeast populations and, thus, contributes to cell synchronization, pattern formation, and the expansion of cells with a competitive fitness advantage.
Zobrazit více v PubMed
Tshikantwa T. S., Ullah M. W., He F., Yang G., Current trends and potential applications of microbial interactions for human welfare. Front. Microbiol. 9, 1156 (2018). PubMed PMC
Elias S., Banin E., Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004 (2012). PubMed
Höfs S., Mogavero S., Hube B., Interaction of Candida albicans with host cells: Virulence factors, host defense, escape strategies, and the microbiota. J. Microbiol. 54, 149–169 (2016). PubMed
Ursell L. K., Metcalf J. L., Parfrey L. W., Knight R., Defining the human microbiome. Nutr. Rev. 70 (suppl. 1), S38–S44 (2012). PubMed PMC
Zhang S., Merino N., Okamoto A., Gedalanga P., Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb. Biotechnol. 11, 833–847 (2018). PubMed PMC
Tarnita C. E., The ecology and evolution of social behavior in microbes. J. Exp. Biol. 220, 18–24 (2017). PubMed
Popat R. et al. ., Quorum-sensing and cheating in bacterial biofilms. Proc. Biol. Sci. 279, 4765–4771 (2012). PubMed PMC
Nair R. R., Fiegna F., Velicer G. J., Indirect evolution of social fitness inequalities and facultative social exploitation. Proc. Biol. Sci. 285, 20180054 (2018). PubMed PMC
Ostrowski E. A. et al. ., Genomic signatures of cooperation and conflict in the social amoeba. Curr. Biol. 25, 1661–1665 (2015). PubMed PMC
Greig D., Travisano M., Density-dependent effects on allelopathic interactions in yeast. Evolution 62, 521–527 (2008). PubMed
Rendueles O., Amherd M., Velicer G. J., Positively frequency-dependent interference competition maintains diversity and pervades a natural population of cooperative microbes. Curr. Biol. 25, 1673–1681 (2015). PubMed
Cao P., Dey A., Vassallo C. N., Wall D., How myxobacteria cooperate. J. Mol. Biol. 427, 3709–3721 (2015). PubMed PMC
van Gestel J., Vlamakis H., Kolter R., Division of labor in biofilms: The ecology of cell differentiation. Microbiol. Spectr. 3, MB-0002-2014 (2015). PubMed
Ratcliff W. C., Denison R. F., Borrello M., Travisano M., Experimental evolution of multicellularity. Proc. Natl. Acad. Sci. U.S.A. 109, 1595–1600 (2012). PubMed PMC
Ratcliff W. C., Fankhauser J. D., Rogers D. W., Greig D., Travisano M., Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015). PubMed PMC
Koschwanez J. H., Foster K. R., Murray A. W., Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011). Correction in: PLoS Biol.9 (2011). PubMed PMC
Váchová L., Palková Z., How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 18, foy033 (2018). PubMed
Palková Z. et al. ., Ammonia mediates communication between yeast colonies. Nature 390, 532–536 (1997). PubMed
Váchová L., Hatáková L., Cáp M., Pokorná M., Palková Z., Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid. Med. Cell. Longev. 2013, 102485 (2013). PubMed PMC
Palková Z., Váchová L., Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin. Cell Dev. Biol. 57, 110–119 (2016). PubMed
Cáp M., Stěpánek L., Harant K., Váchová L., Palková Z., Cell differentiation within a yeast colony: Metabolic and regulatory parallels with a tumor-affected organism. Mol. Cell 46, 436–448 (2012). PubMed
Cáp M., Váchová L., Palková Z., Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. J. Biol. Chem. 284, 32572–32581 (2009). PubMed PMC
Čáp M., Váchová L., Palková Z., Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle 14, 3488–3497 (2015). PubMed PMC
Yang H. et al. ., Papillation in Bacillus anthracis colonies: A tool for finding new mutators. Mol. Microbiol. 79, 1276–1293 (2011). PubMed
Comyn S. A., Flibotte S., Mayor T., Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in Saccharomyces cerevisiae. Sci. Rep. 7, 4183 (2017). PubMed PMC
Lang G. I. et al. ., Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013). PubMed PMC
Szamecz B. et al. ., The genomic landscape of compensatory evolution. PLoS Biol. 12, e1001935 (2014). PubMed PMC
Teng X. et al. ., Genome-wide consequences of deleting any single gene. Mol. Cell 52, 485–494 (2013). PubMed PMC
van Leeuwen J. et al. ., Exploring genetic suppression interactions on a global scale. Science 354, aag0839 (2016). PubMed PMC
Kaida D., Yashiroda H., Toh-e A., Kikuchi Y., Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells 7, 543–552 (2002). PubMed
Mendl N. et al. ., Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J. Cell Sci. 124, 1339–1350 (2011). PubMed
Chen Y., Stabryla L., Wei N., Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl. Environ. Microbiol. 82, 2156–2166 (2016). PubMed PMC
Lis P. et al. ., Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 7, 10153–10173 (2016). PubMed PMC
Radcliffe P., Trevethick J., Tyers M., Sudbery P., Deregulation of CLN1 and CLN2 in the Saccharomyces cerevisiae whi2 mutant. Yeast 13, 707–715 (1997). PubMed
Chen X. et al. ., Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genet. 14, e1007592 (2018). PubMed PMC
Teng X., Hardwick J. M., Whi2: A new player in amino acid sensing. Curr. Genet. 65, 701–709 (2019). PubMed
Liu Z., Xiang Y., Sun G., The KCTD family of proteins: Structure, function, disease relevance. Cell Biosci. 3, 45 (2013). PubMed PMC
Lang G. I., Murray A. W., Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178, 67–82 (2008). PubMed PMC
Harata K., Nishiuchi T., Kubo Y., Colletotrichum orbiculare WHI2, a yeast stress-response regulator homolog, controls the biotrophic stage of hemibiotrophic infection through TOR Signaling. Mol. Plant Microbe Interact. 29, 468–483 (2016). PubMed
Qian W., Ma D., Xiao C., Wang Z., Zhang J., The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep. 2, 1399–1410 (2012). PubMed PMC
Cheng W. C. et al. ., Fis1 deficiency selects for compensatory mutations responsible for cell death and growth control defects. Cell Death Differ. 15, 1838–1846 (2008). PubMed PMC
Tucker C. L., Fields S., Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genomics 5, 216–224 (2004). PubMed PMC
Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies