Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production

. 2022 Mar 04 ; 12 (3) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35100365

Grantová podpora
R01 GM035642 NIGMS NIH HHS - United States

In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.

Zobrazit více v PubMed

Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Neymotin B, Hashimoto T, Bahmani T, Gresham D.. 2016. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen. Mol Biol Cell. 27(8):1383–1896. PubMed PMC

Amberg DC, Burke DJ, Strathern JN.. 2005. Methods in a Yeast Genetics. 2005 ed.Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. p. 201–202.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25(1):25–29. PubMed PMC

Beck T, Hall MN.. 1999. The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402(6762):689–692. PubMed

Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, et al.2000. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem. 275(46):35727–35733. PubMed

Binda M, Bonfils G, Panchaud N, Péli-Gulli MP, De Virgilio C.. 2010. An EGOcentric view of TORC1 signaling. Cell Cycle. 9(2):221–222. PubMed

Binda M, Péli-Gulli MP, Bonfils G, Panchaud N, Urban J, et al.2009. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell. 35(5):563–573. PubMed

Blinder D, Coschigano PW, Magasanik B.. 1996. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J Bacteriol. 178(15):4734–4736. PubMed PMC

Boeckstaens M, Llinares E, Van Vooren P, Marini AM.. 2014. The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein. Nat Commun. 5(3101):3101. PubMed

Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, et al.2012. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 46(1):105–110. PubMed

Broach JR. 2012. Nutritional control of growth and development in yeast. Genetics 192(1):73–105. PubMed PMC

Bysani N, Daugherty JR, Cooper TG.. 1991. Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J Bacteriol. 173(16):4977–4982. PubMed PMC

Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J.. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13(24):3271–3279. PubMed PMC

Carter BL, Sudbery PE.. 1980. Small-sized mutants of Saccharomyces cerevisiae. Genetics 96(3):561–566. PubMed PMC

Carvalho J, Zheng XF.. 2003. Domains of Gln3p interacting with Karyopherins, Ure2p, and the target of rapamycin protein. J Biol Chem. 278(19):16878–16886. PubMed

Chan TF, Bertram PG, Ai W, Zheng XF.. 2001. Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J Biol Chem. 276(9):6463–6467. PubMed

Chen X, Wang G, Zhang Y, Dayhoff-Brannigan M, Diny NL, et al.2018. Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genet. 14(8):e1007592. PubMed PMC

Cherkasova VA, Hinnebusch AG.. 2003. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 17(7):859–872. PubMed PMC

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, et al.2012. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40(Database issue):D700–5. PubMed PMC

Coffman JA, el Berry HM, Cooper TG.. 1994. The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae. J Bacteriol. 176(24):7476–7483. PubMed PMC

Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG.. 1996. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol. 16(3):847–858. PubMed PMC

Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, et al.2014. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 38(2):254–299. PubMed PMC

Cooper TG. 1982. Nitrogen metabolism in Saccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR, editors. Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. p.39–99.

Cooper TG. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev. 26(3):223–238. PubMed PMC

Cooper TG. 2004. Integrated regulation of the nitrogen-carbon interface. In: Winderickx J, Taylor PM, editors. Nutrient-induced Responses in Eukaryotic Cells (Topics in Current Genetics), Vol. 7, Chapter 9. Berlin, Heidelberg: Springer-Verlag. p. 225–257.

Courchesne WE, Magasanik B.. 1988. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol. 170(2):708–713. PubMed PMC

Cunningham TS, Andhare R, Cooper TG.. 2000. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem. 275(19):14408–14414. PubMed PMC

Cox KH, Kulkarni A, Tate JJ, Cooper TG.. 2004. Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae. J Biol Chem. 279(11):10270–10278. PubMed PMC

Di Como CJ, Arndt KT.. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10(15):1904–1916. PubMed

Dubois E, Grenson M.. 1979. Methylamine/ammonia uptake systems in Saccharomyces cerevisiae: multiplicity and regulation. Mol Gen Genet. 175(1):67–76. PubMed

Elliott B, Futcher B.. 1993. Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9(1):33–42. PubMed

Feller A, Boeckstaens M, Marini AM, Dubois E.. 2006. Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae. J Biol Chem. 281(39):28546–22854. PubMed

Feller A, Georis I, Tate JJ, Cooper TG, Dubois E.. 2013. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation. J Biol Chem. 288(3):1841–1855. PubMed PMC

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al.2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 11(12):4241–4257. PubMed PMC

Gene Ontology Consortium. 2021. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49(D1):D325–D334. PubMed PMC

Georis I, Feller A, Vierendeels F, Dubois E.. 2009. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol Cell Biol. 29(13):3803–3815. PubMed PMC

Georis I, Tate JJ, Cooper TG, Dubois E.. 2008. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J Biol Chem. 283(14):8919–8929. PubMed PMC

Georis I, Tate JJ, Cooper TG, Dubois E.. 2011. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine. J Biol Chem. 286(52):44897–44912. PubMed PMC

Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, et al.2007. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 27(8):3065–3086. PubMed PMC

González A, Hall MN.. 2017. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36(4):397–408. PubMed PMC

Guthrie C, Fink GR.. 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194:15. PubMed

Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL.. 1999. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA. 96(26):14866–14870. PubMed PMC

Hatakeyama R, De Virgilio C.. 2019a. TORC1 specifically inhibits microautophagy through ESCRT-0. Curr Genet. 65(5):1243–1249. PubMed PMC

Hatakeyama R, De Virgilio C.. 2019b. A spatially and functionally distinct pool of TORC1 defines signaling endosomes in yeast. Autophagy 15(5):915–916. PubMed PMC

Hatakeyama R, Péli-Gulli MP, Hu Z, Jaquenoud M, Garcia Osuna GM, et al.2019a. Spatially distinct pools of TORC1 balance protein homeostasis. Mol Cell. 73(2):325–338.e8. PubMed

Hinnebusch AG. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 52(2):248–273. PubMed PMC

Hinnebusch AG. 1993. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol. 10(2):215–223. PubMed

Hinnebusch AG. 1994. The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Semin Cell Biol. 5(6):417–426. PubMed

Hinnebusch AG. 2014. The scanning mechanism of eukaryotic translation initiation. Ann Rev Biochem. 83:779–812. PubMed

Hinnebusch AG, Natarajan K.. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 1(1):22–32. PubMed PMC

Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol. 12(1):35–71. PubMed

Hu Z, Raucci S, Jaquenoud M, Hatakeyama R, Stumpe M, et al.2019. Multilayered control of protein turnover by TORC1 and Atg1. Cell Rep. 28(13):3486–3496.e6. PubMed

Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, et al.2019. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 14(1):68–85. PubMed

Ito H, Fukuda Y, Murata K, Kimura A.. 1983. Transformation of intact yeast cells treated with alkali ions. J Bacteriol. 153(1):163–168. PubMed PMC

Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN.. 2001. Tip41 interacts with Tap42 and negatively regulates the TOR signaling pathway. Mol Cell. 8(5):1017–1026. PubMed

Jiang Y, Broach JR.. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18(10):2782–2792. PubMed PMC

Kaida D, Yashiroda H, Toh-e A, Kikuchi Y.. 2002. Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells. 7(6):543–552. PubMed

Kaiser C, Michaelis S, Mitchell A.. 1994. Methods in Yeast Genetics. 1994 ed.Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. p. 209–210.

Kontos K, Godard P, André B, van Helden J, Bontempi G.. 2008. Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae. BMC Proc. 2(Suppl 4):S5. PubMed PMC

Kulkarni AA, Abul-Hamd AT, Rai R, Berry HE, Cooper TG.. 2001. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem. 276(34):32136–32144. PubMed PMC

Kulkarni AA, Buford TD, Rai R, Cooper TG.. 2006. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. FEMS Yeast Res. 6(2):218–229. PubMed PMC

Laxman S, Sutter BM, Shi L, Tu BP.. 2014. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal. 7(356):ra120. PubMed PMC

Liu Z, Thornton J, Spírek M, Butow RA.. 2008. Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol. 28(2):551–563. PubMed PMC

Ljungdahl PO, Daignan-Fornier B.. 2012. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190(3):885–929. PubMed PMC

Magasanik B, Kaiser CA.. 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290(1–2):1–18. PubMed

Marini AM, Vissers S, Urrestarazu A, André B.. 1994. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13(15):3456–3463. PubMed PMC

Maršíková J, Pavlíčková M, Wilkinson D, Váchová L, Hlaváček O, Hatakova L, Palkova Z.. 2020. The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc Natl Acad Sci USA. 117(26):15123–15131. PubMed PMC

Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F.. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15(9):2227–2235. PubMed PMC

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. 2019. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47(D1):D419–D426. PubMed PMC

Neklesa TK, Davis RW.. 2009. A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet. 5(6):e1000515. PubMed PMC

Panchaud N, Peli-Gulli MP, De Virgilio C.. 2013a. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal. 6(277):ra42. PubMed

Panchaud N, Peli-Gulli MP, De Virgilio C.. 2013b. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle. 12(18):2948–2952. PubMed PMC

Peli-Gulli MP, Sardu A, Panchaud N, Raucci S, De Virgilio C.. 2015. Amino acids stimulate TORC1 through Lst4–Lst7, a GTPaseactivating protein complex for the Rag family GTPase Gtr2. Cell Rep. 13(1):1–7. PubMed

Rai R, Genbauffe FS, Sumrada RA, Cooper TG.. 1989. Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol Cell Biol. 9(2):602–608. PubMed PMC

Rai R, Tate JJ, Georis I, Dubois E, Cooper TG.. 2014. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms. J Biol Chem. 289(5):2918–2933. PubMed PMC

Rai R, Tate JJ, Nelson DR, Cooper TG.. 2013. gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1. J Biol Chem. 288(4):2789–2804. PubMed PMC

Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, et al.2015. Nuclear Gln3 import is regulated by nitrogen catabolite repression whereas export is specifically regulated by glutamine. Genetics 201(3):989–1016. PubMed PMC

Rohde JR, Bastidas R, Puria R, Cardenas M.. 2008. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol. 11(2):153–160. PubMed PMC

Rousselet G, Simon M, Ripoche P, Buhler JM.. 1995. A second nitrogen permease regulator in Saccharomyces cerevisiae. FEBS Lett. 359(2–3):215–219. PubMed

Schenberg-Frascino A, Moustacchi E.. 1972. Lethal and mutagenic effects of elevated temperature on haploid yeast. Mol Gen Genet. 115(3):243–257. PubMed

Scherens B, Feller A, Vierendeels F, Messenguy F, Dubois E.. 2006. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res. 6(5):777–791. PubMed

Schmidt A, Beck T, Koller A, Kunz J, Hall MN.. 1998. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 17(23):6924–6931. PubMed PMC

Staschke KA, Dey S, Zaborske JM, Palam LR, McClintick JN, et al.2010. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem. 285(22):16893–16911. PubMed PMC

Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN.. 2014. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem. 289(36):25010–25020. PubMed PMC

Sumrada R, Cooper TG.. 1978. Control of vacuole permeability and protein degradation by the cell cycle arrest signal in Saccharomyces cerevisiae. J Bacteriol. 136(1):234–246. PubMed PMC

Sutter BM, Wu X, Laxman S, Tu BP.. 2013. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154(2):403–415. PubMed PMC

Swinnen E, Ghillebert R, Wilms T, Winderickx J.. 2014. Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signaling branch to lifespan regulation in Saccharomyces cerevisiae. FEMS Yeast Res. 14(1):17–32. PubMed

Tanigawa1 M, Yamamoto K, Nagatoishi S, Nagata K, Noshiro D, et al.2021. A glutamine sensor that directly activates TORC1. Commun Biol. 4:1093–2004. PubMed PMC

Tate JJ, Buford D, Rai R, Cooper TG.. 2017. General amino acid control and 14-3-3 proteins Bmh1/2 are required for nitrogen catabolite repression-sensitive regulation of Gln3 and Gat1 localization. Genetics 205(2):633–655. PubMed PMC

Tate JJ, Cooper TG.. 2013. Five conditions commonly used to down-regulate tor complex 1 generate different physiological situations exhibiting distinct requirements and outcomes. J Biol Chem. 288(38):27243–27262. PubMed PMC

Tate JJ, Georis I, Dubois E, Cooper TG.. 2010. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J Biol Chem. 285(23):17880–17895. PubMed PMC

Tate JJ, Rai R, De Virgilio C, Cooper TG.. 2021. N- and C-terminal Gln3-Tor1 interaction sites: one acting negatively and the other positively to regulate nuclear Gln3 localization. Genetics 217(4):iyab017. PubMed PMC

Tate JJ, Georis I, Feller A, Dubois E, Cooper TG.. 2009. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: sit4 and PP2A phosphatases are regulated and function differently. J Biol Chem. 284(4):2522–2534. PubMed PMC

Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, Cooper TG.. 2015. GATA factor regulation in excess nitrogen occurs independently of Gtr-Ego complex-dependent TorC1 activation. G3 (Bethesda) 5(8):1625–1638. PubMed PMC

Tate JJ, Rai R, Cooper TG.. 2006. Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1. J Biol Chem. 281(38):28460–28469. PubMed PMC

Tate JJ, Rai R, Cooper TG.. 2018. More than one way in: three Gln3 sequences required to relieve negative Ure2 regulation and support nuclear Gln3 import in Saccharomyces cerevisiae. Genetics 208(1):207–227. PubMed PMC

Tate JJ, Tolley EA, Cooper TG.. 2019. Sit4 and PP2A dephosphorylate nitrogen catabolite repression-sensitive Gln3 when TorC1 is up- as well as downregulated. Genetics 212(4):1205–1225. PubMed PMC

Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, et al.2013. Genome wide consequences of deleting any single gene. Mol Cell. 52(4):485–494. PubMed PMC

Teng X, Hardwick JM.. 2019. Whi2: a new player in amino acid sensing. Curr Genet. 65(3):701–709. PubMed

Teng X, Yau E, Sing C, Hardwick JM.. 2018. Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res. 18(8):foy095. PubMed PMC

Ukai H, Araki Y, Kira S, Oikawa Y, May AI, et al.2018. Gtr/Ego independent TORC1 activation is achieved through a glutamine sensitive interaction with Pib2 on the vacuolar membrane. PLoS Genet. 14(4):e1007334. PubMed PMC

Vandenbol M, Jauniaux JC, Grenson M.. 1990. The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol Gen Genet. 222(2–3):393–399. PubMed

Wang H, Wang X, Jiang Y.. 2003. Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol Biol Cell. 14(11):4342–4351. PubMed PMC

Yan G, Shen X, Jiang Y.. 2006. Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J. 25(15):3546–3555. PubMed PMC

Yuan W, Guo S, Gao J, Zhong M, Yan Wu GW, et al.2017. General control nonderepressible 2 (GCN2) kinase inhibits Target of Rapamycin Complex 1 in response to amino acid starvation in Saccharomyces cerevisiae. J Biol Chem. 292(7):2660–2669. PubMed PMC

Zaborske JM, Narasimhan J, Jiang L, Wek SA, Dittmar KA, et al.2009. Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem. 284(37):25254–25267. PubMed PMC

Zaborske JM, Wu X, Wek RC, Pan T.. 2010. Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem. 11:29. PubMed PMC

Zacharski CA, Cooper TG.. 1978. Metabolite compartmentation in Saccharomyces cerevisiae. J Bacteriol. 135(2):490–497. PubMed PMC

Zhang W, Du G, Zhou J, Chen J.. 2018. Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae. Mol Biol Rev. 82:e00040-17. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace